首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In all domains of life Oxa1p-like proteins are involved in membrane protein biogenesis. Bacillus subtilis, a model organism for gram-positive bacteria, contains two Oxa1p homologs: SpoIIIJ and YqjG. These molecules appear to be mutually exchangeable, although SpoIIIJ is specifically required for spore formation. SpoIIIJ and YqjG have been implicated in a posttranslocational stage of protein secretion. Here we show that the expression of either spoIIIJ or yqjG functionally compensates for the defects in membrane insertion due to YidC depletion in Escherichia coli. Both SpoIIIJ and YqjG complement the function of YidC in SecYEG-dependent and -independent membrane insertion of subunits of the cytochrome o oxidase and F1Fo ATP synthase complexes. Furthermore, SpoIIIJ and YqjG facilitate membrane insertion of F1Fo ATP synthase subunit c from both E. coli and B. subtilis into inner membrane vesicles of E. coli. When isolated from B. subtilis cells, SpoIIIJ and YqjG were found to be associated with the entire F1Fo ATP synthase complex, suggesting that they have a role late in the membrane assembly process. These data demonstrate that the Bacillus Oxa1p homologs have a role in membrane protein biogenesis rather than in protein secretion.The YidC/OxaI/Alb3 protein family plays a crucial role in membrane protein biogenesis by facilitating the insertion of a specific subset of membrane proteins (for reviews, see references 20 and 24). In mitochondria, the OxaI protein is essential for insertion of both nucleus- and mitochondrion-encoded proteins into the inner membrane (39). The OxaI homolog of Escherichia coli, designated YidC, is known to play a role in two different membrane protein insertion pathways. Some proteins, such as subunit c of the rotary domain of the F1Fo ATP synthase (Foc) (47), MscL (10), M13 (34), and Pf3 (5), insert via the YidC-only pathway. YidC also functions in concert with the protein-conducting channel SecYEG in membrane insertion of subunit a of cytochrome o oxidase (CyoA) (8, 44) and subunit a of the F1Fo ATP synthase (23, 53, 54). In addition, YidC has been implicated in the folding of a membrane-inserted lactose permease (30) and the binding protein-dependent maltose ABC transporter (50).Members of the YidC/OxaI/Alb3 protein family are found in all three domains of life, and the number of paralogs per cell or organelle ranges from one (most gram-negative bacteria) to six (Arabidopsis thaliana). The length of Oxa1p-like proteins varies considerably, from just over 200 amino acids (in most gram-positive bacteria) to 795 amino acids (Chlamydophila pneumoniae) (52). However, in all Oxa1p proteins, a conserved region consisting of about 200 amino acids can be recognized, which comprises five putative transmembrane segments, as experimentally demonstrated for E. coli YidC (33). Overall, the amino acid sequence conservation among Oxa1p homologs is low (17). Bacillus subtilis contains two membrane proteins, SpoIIIJ and YqjG, with significant similarity to proteins belonging to the YidC/OxaI/Alb3 family. Previous gene inactivation analysis showed that a single paralog is sufficient for cell viability during vegetative growth of B. subtilis, while a double knockout led to a lethal phenotype (29, 41). SpoIIIJ is essential for activation of a prespore-specific sigma factor (9, 36), and cells with spoIIIJ deleted are incapable of spore formation. Sporulation is blocked at stage III, directly after completion of prespore engulfment (9). YqjG cannot complement SpoIIIJ in this process, but the exact reason for the specific requirement for SpoIIIJ is unknown. Previous studies indicated that the stability of various secretory proteins (e.g., LipA and PhoA) was strongly affected under YqjG- and SpoIIIJ-limiting conditions, while the insertion or stability of a number of membrane proteins tested appeared to be unaffected (41). These data suggested that YqjG and SpoIIIJ, unlike the other Oxa1p-like proteins, play a role in protein secretion. Here we show that both YidC homologs in B. subtilis complement the E. coli growth defect due to a YidC depletion and functionally replace YidC in Sec-dependent and -independent membrane protein insertion. In vitro insertion assays demonstrated that membrane insertion of Foc of both E. coli and B. subtilis is mediated by SpoIIIJ and YqjG. In addition, the entire F1Fo ATP synthase of B. subtilis was found to copurify with both SpoIIIJ and YqjG, suggesting that these proteins have a role in a late stage of the assembly of this membrane protein complex.  相似文献   

2.
Vinyl chloride (VC) is a toxic groundwater pollutant associated with plastic manufacture and chlorinated solvent use. Aerobic bacteria that grow on VC as a carbon and energy source can evolve in the laboratory from bacteria that grow on ethene, but the genetic changes involved are unknown. We investigated VC adaptation in two variants (JS623-E and JS623-T) of the ethene-oxidizing Mycobacterium strain JS623. Missense mutations in the EtnE gene developed at two positions (W243 and R257) in cultures exposed to VC but not in cultures maintained on ethene. Epoxyalkane-coenzyme M transferase (EaCoMT) activities in cell extracts of JS623-E and JS623-T (150 and 645 nmol/min/mg protein, respectively) were higher than that of wild-type JS623 (74 nmol/min/mg protein), and in both variant cultures epoxyethane no longer accumulated during growth on ethene. The heterologous expression of two variant etnE alleles (W243G [etnE1] and R257L [etnE2]) from strain JS623 in Mycobacterium smegmatis showed that they had 42 to 59% higher activities than the wild type. Recombinant JS623 cultures containing mutant EtnE genes cloned in the vector pMV261 adapted to growth on VC more rapidly than the wild-type JS623 strain, with incubation times of 60 days (wild type), 1 day (pMVetnE1), and 35 days (pMVetnE2). The JS623(pMVetnE) culture did not adapt to VC after more than 60 days of incubation. Adaptation to VC in strain JS623 is consistently associated with two particular missense mutations in the etnE gene that lead to higher EaCoMT activity. This is the first report to pinpoint a genetic change associated with the transition from cometabolic to growth-linked VC oxidation in bacteria.Bacteria that biodegrade pollutants are useful for the cleanup of contaminated sites (i.e., bioremediation) and are interesting as models of evolutionary processes (21, 38, 40). Understanding the molecular genetic and evolutionary basis of biodegradation processes allows improved monitoring and predictions of bacterial activities in situ (39) and promises the development of improved strains and enzymes with increased specific activity (3), increased substrate affinity (16), extended substrate range (3, 16, 21, 37), extended inducer range (30, 31), or constitutive expression (39). Missense mutations in catabolic enzymes or regulatory proteins commonly lead to these changes (43), although other important mechanisms include duplication, deletion, and inversion (38-40).Vinyl chloride (VC) is a common groundwater pollutant (35) and known human carcinogen (24), and it poses a health risk to exposed populations. Although trace amounts (e.g., parts per trillion) of VC have been detected in uncontaminated soil (23), higher concentrations are found only associated with human industry, particularly the manufacture of polyvinylchloride (PVC) plastic and the chlorinated solvents trichloroethene (TCE) and perchloroethene (PCE) (4). Aerobic bacteria that grow on VC as a sole carbon and energy source are diverse, including strains of Mycobacterium (8, 17, 18), Nocardioides (8), Pseudomonas (11, 41, 42), Ochrobactrum (11), and Ralstonia (13, 33). The relative ease of the isolation of VC assimilators from chlorinated ethene-contaminated sites suggests that such bacteria are influential in the natural attenuation of VC, but this interpretation is complicated by the fact that VC-assimilating bacteria are closely related to ethene-assimilating bacteria (8-10, 29) and cannot yet be distinguished from them by molecular tests.The VC and ethene pathway and genes are homologous to some extent with the propene assimilation pathway and genes in Xanthobacter Py2 and Gordonia B-276. The comparison of the genomes of the VC-assimilating Nocardioides JS614 and the propene-assimilating Xanthobacter Py2 indicates that growth on alkenes requires about 20 kb of alkene/epoxide catabolic genes and approximately 7 kb of coenzyme M (CoM) biosynthesis genes. The oxidation of VC and ethene is initiated by an alkene monooxygenase (AkMO; EtnABCD) (8-10, 29), which yields epoxyethane from ethene and chlorooxirane from VC (8, 17). An epoxyalkane-coenzyme M transferase (EaCoMT) enzyme, EtnE, acts upon these reactive, toxic, and mutagenic epoxides (2, 19), converting them to hydroxyalkyl-CoM derivatives. The remainder of the VC/ethene pathway is unclear. The JS614 genome indicates further homology with propene oxidizers, in that a reductase/carboxylase and SDR family dehydrogenase are present, but that other aspects of the VC/ethene pathway gene cluster are unique (e.g., the presence of a semialdehyde dehydrogenase [5] and a disulfide reductase-like gene [GenBank accession no. NC_008697]).The EtnE enzyme and the homologous XecA enzyme that acts on epoxypropane in Xanthobacter Py2 and Gordonia B-276 (9, 10, 12, 29) are unusual in their requirement for CoM as a cofactor. The C2- and C3-alkene oxidizers are the only Eubacteria known to biosynthesize and require CoM, which is otherwise found only in methanogenic Archaea. The XecA protein of Py2 has been purified and shown to be a Zn-dependent enzyme (1, 14, 26, 44). Based on sequence homology and the presence of the Cys-X-His-Xn-Cys motif (see Fig. S1 in the supplemental material), the EtnE enzymes also are likely to be Zn-dependent enzymes. Heterologous expression systems for XecA and EtnE have been developed (9, 25), but no crystal structures are available yet for EaCoMT from any source.Pure cultures of ethene-assimilating bacteria are capable of spontaneously adapting to growth on VC as a carbon source (22, 42), but the molecular basis of this phenomenon is not clear. This knowledge gap confounds the development of molecular probes specific for VC-assimilating bacteria. Pseudomonas aeruginosa strain DL1 shifted from cometabolism to growth on VC after more than 40 days of incubation (42), while Mycobacterium strains JS622, JS623, JS624, and JS625 took between 55 and 476 days to adapt to VC (22). The VC-adapted phenotype in Mycobacterium strains was not lost after growth in nonselective medium, suggesting a genetic change rather than a physiological adaptation (22).Here, we tested the hypothesis that mutations in the alkene/epoxide catabolic genes are responsible for VC adaptation. This was done by sequencing EtnEABCD genes in fosmid clones from cultures before and after VC adaptation, by sequencing etnE PCR products at different time points during VC adaptation, and by examining the EtnE enzyme activity in VC-adapted strains and recombinant strains carrying evolved etnE alleles.  相似文献   

3.
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpLM, an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpLM and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of β-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpLM is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impLM mutants with substitutions or deletions in the Walker A motif failed to complement the impLM deletion mutant for Hcp secretion, which provided evidence that ImpLM may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpLM and another essential T6SS component, ImpKL. Topology and biochemical fractionation analyses suggested that ImpKL is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpLM-ImpKL interaction domains suggested that ImpLM interacts with ImpKL via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpLM interacts with ImpKL, and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.Many pathogenic gram-negative bacteria employ protein secretion systems formed by macromolecular complexes to deliver proteins or protein-DNA complexes across the bacterial membrane. In addition to the general secretory (Sec) pathway (18, 52) and twin-arginine translocation (Tat) pathway (7, 34), which transport proteins across the inner membrane into the periplasm, at least six distinct protein secretion systems occur in gram-negative bacteria (28, 46, 66). These systems are able to secrete proteins from the cytoplasm or periplasm to the external environment or the host cell and include the well-documented type I to type V secretion systems (T1SS to T5SS) (10, 15, 23, 26, 30) and a recently discovered type VI secretion system (T6SS) (4, 8, 22, 41, 48, 49). These systems use ATPase or a proton motive force to energize assembly of the protein secretion machinery and/or substrate translocation (2, 6, 41, 44, 60).Agrobacterium tumefaciens is a soilborne pathogenic gram-negative bacterium that causes crown gall disease in a wide range of plants. Using an archetypal T4SS (9), A. tumefaciens translocates oncogenic transferred DNA and effector proteins to the host and ultimately integrates transferred DNA into the host genome. Because of its unique interkingdom DNA transfer, this bacterium has been extensively studied and used to transform foreign DNA into plants and fungi (11, 24, 40, 67). In addition to the T4SS, A. tumefaciens encodes several other secretion systems, including the Sec pathway, the Tat pathway, T1SS, T5SS, and the recently identified T6SS (72). T6SS is highly conserved and widely distributed in animal- and plant-associated Proteobacteria and plays an important role in the virulence of several human and animal pathogens (14, 19, 41, 48, 56, 63, 74). However, T6SS seems to play only a minor role or even a negative role in infection or virulence of the plant-associated pathogens or symbionts studied to date (5, 37-39, 72).T6SS was initially designated IAHP (IcmF-associated homologous protein) clusters (13). Before T6SS was documented by Pukatzki et al. in Vibrio cholerae (48), mutations in this gene cluster in the plant symbiont Rhizobium leguminosarum (5) and the fish pathogen Edwardsiella tarda (51) caused defects in protein secretion. In V. cholerae, T6SS was responsible for the loss of cytotoxicity for amoebae and for secretion of two proteins lacking a signal peptide, hemolysin-coregulated protein (Hcp) and valine-glycine repeat protein (VgrG). Secretion of Hcp is the hallmark of T6SS. Interestingly, mutation of hcp blocks the secretion of VgrG proteins (VgrG-1, VgrG-2, and VgrG-3), and, conversely, vgrG-1 and vgrG-2 are both required for secretion of the Hcp and VgrG proteins from V. cholerae (47, 48). Similarly, a requirement of Hcp for VgrG secretion and a requirement of VgrG for Hcp secretion have also been shown for E. tarda (74). Because Hcp forms a hexameric ring (41) stacked in a tube-like structure in vitro (3, 35) and VgrG has a predicted trimeric phage tail spike-like structure similar to that of the T4 phage gp5-gp27 complex (47), Hcp and VgrG have been postulated to form an extracellular translocon. This model is further supported by two recent crystallography studies showing that Hcp, VgrG, and a T4 phage gp25-like protein resembled membrane penetration tails of bacteriophages (35, 45).Little is known about the topology and structure of T6SS machinery subunits and the distinction between genes encoding machinery subunits and genes encoding regulatory proteins. Posttranslational regulation via the phosphorylation of Fha1 by a serine-threonine kinase (PpkA) is required for Hcp secretion from Pseudomonas aeruginosa (42). Genetic evidence for P. aeruginosa suggested that the T6SS may utilize a ClpV-like AAA+ ATPase to provide the energy for machinery assembly or substrate translocation (41). A recent study of V. cholerae suggested that ClpV ATPase activity is responsible for remodeling the VipA/VipB tubules which are crucial for type VI substrate secretion (6). An outer membrane lipoprotein, SciN, is an essential T6SS component for mediating Hcp secretion from enteroaggregative Escherichia coli (1). A systematic study of the T6SS machinery in E. tarda revealed that 13 of 16 genes in the evp gene cluster are essential for secretion of T6S substrates (74), which suggests the core components of the T6SS. Interestingly, most of the core components conserved in T6SS are predicted soluble proteins without recognizable signal peptide and transmembrane (TM) domains.The intracellular multiplication F (IcmF) and H (IcmH) proteins are among the few core components with obvious TM domains (8). In Legionella pneumophila Dot/Icm T4SSb, IcmF and IcmH are both membrane localized and partially required for L. pneumophila replication in macrophages (58, 70, 75). IcmF and IcmH are thought to interact with each other in stabilizing the T4SS complex in L. pneumophila (58). In T6SS, IcmF is one of the essential components required for secretion of Hcp from several animal pathogens, including V. cholerae (48), Aeromonas hydrophila (63), E. tarda (74), and P. aeruginosa (41), as well as the plant pathogens A. tumefaciens (72) and Pectobacterium atrosepticum (39). In E. tarda, IcmF (EvpO) interacted with IcmH (EvpN), EvpL, and EvpA in a yeast two-hybrid assay, and its putative nucleotide-binding site (Walker A motif) was not essential for secretion of T6SS substrates (74).In this study, we characterized the topology and interactions of the IcmF and IcmH family proteins ImpLM and ImpKL, which are two essential components of the T6SS of A. tumefaciens. We adapted the nomenclature proposed by Cascales (8), using the annotated gene designation followed by the letter indicated by Shalom et al. (59). Our data indicate that ImpLM and ImpKL are both integral inner membrane proteins and interact with each other via their N-terminal domains residing in the cytoplasm. We also provide genetic evidence showing that ImpLM may function as a nucleoside triphosphate (NTP)-binding protein or nucleoside triphosphatase to mediate T6S machinery assembly and/or substrate secretion.  相似文献   

4.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

5.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

6.
The structural precursor polyprotein, Gag, encoded by all retroviruses, including the human immunodeficiency virus type 1 (HIV-1), is necessary and sufficient for the assembly and release of particles that morphologically resemble immature virus particles. Previous studies have shown that the addition of Ca2+ to cells expressing Gag enhances virus particle production. However, no specific cellular factor has been implicated as mediator of Ca2+ provision. The inositol (1,4,5)-triphosphate receptor (IP3R) gates intracellular Ca2+ stores. Following activation by binding of its ligand, IP3, it releases Ca2+ from the stores. We demonstrate here that IP3R function is required for efficient release of HIV-1 virus particles. Depletion of IP3R by small interfering RNA, sequestration of its activating ligand by expression of a mutated fragment of IP3R that binds IP3 with very high affinity, or blocking formation of the ligand by inhibiting phospholipase C-mediated hydrolysis of the precursor, phosphatidylinositol-4,5-biphosphate, inhibited Gag particle release. These disruptions, as well as interference with ligand-receptor interaction using antibody targeted to the ligand-binding site on IP3R, blocked plasma membrane accumulation of Gag. These findings identify IP3R as a new determinant in HIV-1 trafficking during Gag assembly and introduce IP3R-regulated Ca2+ signaling as a potential novel cofactor in viral particle release.Assembly of the human immunodeficiency virus (HIV) is determined by a single gene that encodes a structural polyprotein precursor, Gag (71), and may occur at the plasma membrane or within late endosomes/multivesicular bodies (LE/MVB) (7, 48, 58; reviewed in reference 9). Irrespective of where assembly occurs, the assembled particle is released from the plasma membrane of the host cell. Release of Gag as virus-like particles (VLPs) requires the C-terminal p6 region of the protein (18, 19), which contains binding sites for Alix (60, 68) and Tsg101 (17, 37, 38, 41, 67, 68). Efficient release of virus particles requires Gag interaction with Alix and Tsg101. Alix and Tsg101 normally function to sort cargo proteins to LE/MVB for lysosomal degradation (5, 15, 29, 52). Previous studies have shown that addition of ionomycin, a calcium ionophore, and CaCl2 to the culture medium of cells expressing Gag or virus enhances particle production (20, 48). This is an intriguing observation, given the well-documented positive role for Ca2+ in exocytotic events (33, 56). It is unclear which cellular factors might regulate calcium availability for the virus release process.Local and global elevations in the cytosolic Ca2+ level are achieved by ion release from intracellular stores and by influx from the extracellular milieu (reviewed in reference 3). The major intracellular Ca2+ store is the endoplasmic reticulum (ER); stores also exist in MVB and the nucleus. Ca2+ release is regulated by transmembrane channels on the Ca2+ store membrane that are formed by tetramers of inositol (1,4,5)-triphosphate receptor (IP3R) proteins (reviewed in references 39, 47, and 66). The bulk of IP3R channels mediate release of Ca2+ from the ER, the emptying of which signals Ca2+ influx (39, 51, 57, 66). The few IP3R channels on the plasma membrane have been shown to be functional as well (13). Through proteomic analysis, we identified IP3R as a cellular protein that was enriched in a previously described membrane fraction (18) which, in subsequent membrane floatation analyses, reproducibly cofractionated with Gag and was enriched in the membrane fraction only when Gag was expressed. That IP3R is a major regulator of cytosolic calcium concentration (Ca2+) is well documented (39, 47, 66). An IP3R-mediated rise in cytosolic Ca2+ requires activation of the receptor by a ligand, inositol (1,4,5)-triphosphate (IP3), which is produced when phospholipase C (PLC) hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] at the plasma membrane (16, 25, 54). Paradoxically, PI(4,5)P2 binds to the matrix (MA) domain in Gag (8, 55, 59), and the interaction targets Gag to PI(4,5)P2-enriched regions on the plasma membrane; these events are required for virus release (45). We hypothesized that PI(4,5)P2 binding might serve to target Gag to plasma membrane sites of localized Ca2+ elevation resulting from PLC-mediated PI(4,5)P2 hydrolysis and IP3R activation. This idea prompted us to investigate the role of IP3R in Gag function.Here, we show that HIV-1 Gag requires steady-state levels of IP3R for its efficient release. Three isoforms of IP3R, types 1, 2, and 3, are encoded in three independent genes (39, 47). Types 1 and 3 are expressed in a variety of cells and have been studied most extensively (22, 39, 47, 73). Depletion of the major isoforms in HeLa or COS-1 cells by small interfering RNA (siRNA) inhibited viral particle release. Moreover, we show that sequestration of the IP3R activating ligand or blocking ligand formation also inhibited Gag particle release. The above perturbations, as well as interfering with receptor expression or activation, led to reduced Gag accumulation at the cell periphery. The results support the conclusion that IP3R activation is required for efficient HIV-1 viral particle release.  相似文献   

7.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

8.
Claudin-1, a component of tight junctions between liver hepatocytes, is a hepatitis C virus (HCV) late-stage entry cofactor. To investigate the structural and functional roles of various claudin-1 domains in HCV entry, we applied a mutagenesis strategy. Putative functional intracellular claudin-1 domains were not important. However, we identified seven novel residues in the first extracellular loop that are critical for entry of HCV isolates drawn from six different subtypes. Most of the critical residues belong to the highly conserved claudin motif W30-GLW51-C54-C64. Alanine substitutions of these residues did not impair claudin-1 cell surface expression or lateral protein interactions within the plasma membrane, including claudin-1-claudin-1 and claudin-1-CD81 interactions. However, these mutants no longer localized to cell-cell contacts. Based on our observations, we propose that cell-cell contacts formed by claudin-1 may generate specialized membrane domains that are amenable to HCV entry.Hepatitis C virus (HCV) is a major human pathogen that affects approximately 3% of the global population, leading to cirrhosis and hepatocellular carcinoma in chronically infected individuals (5, 23, 42). Hepatocytes are the major target cells of HCV (11), and entry follows a complex cascade of interactions with several cellular factors (6, 8, 12, 17). Infectious viral particles are associated with lipoproteins and initially attach to target cells via glycosaminoglycans and the low-density lipoprotein receptor (1, 7, 31). These interactions are followed by direct binding of the E2 envelope glycoprotein to the scavenger receptor class B type I (SR-B1) and then to the CD81 tetraspanin (14, 15, 33, 36). Early studies showed that CD81 and SR-B1 were necessary but not sufficient for HCV entry, and claudin-1 was discovered to be a requisite HCV entry cofactor that appears to act at a very late stage of the process (18).Claudin-1 is a member of the claudin protein family that participates in the formation of tight junctions between adjacent cells (25, 30, 37). Tight junctions regulate the paracellular transport of solutes, water, and ions and also generate apical-basal cell polarity (25, 37). In the liver, the apical surfaces of hepatocytes form bile canaliculi, whereas the basolateral surfaces face the underside of the endothelial layer that lines liver sinusoids. Claudin-1 is highly expressed in tight junctions formed by liver hepatocytes as well as on all hepatoma cell lines that are permissive to HCV entry (18, 24, 28). Importantly, nonhepatic cell lines that are engineered to express claudin-1 become permissive to HCV entry (18). Claudin-6 and -9 are two other members of the human claudin family that enable HCV entry into nonpermissive cells (28, 43).The precise role of claudin-1 in HCV entry remains to be determined. A direct interaction between claudins and HCV particles or soluble E2 envelope glycoprotein has not been demonstrated (18; T. Dragic, unpublished data). It is possible that claudin-1 interacts with HCV entry receptors SR-B1 or CD81, thereby modulating their ability to bind to E2. Alternatively, claudin-1 may ferry the receptor-virus complex to fusion-permissive intracellular compartments. Recent studies show that claudin-1 colocalizes with the CD81 tetraspanin at the cell surface of permissive cell lines (22, 34, 41). With respect to nonpermissive cells, one group observed that claudin-1 was predominantly intracellular (41), whereas another reported associations of claudin-1 and CD81 at the cell surface, similar to what is observed in permissive cells (22).Claudins comprise four transmembrane domains along with two extracellular loops and two cytoplasmic domains (19, 20, 25, 30, 37). The first extracellular loop (ECL1) participates in pore formation and influences paracellular charge selectivity (25, 37). It has been shown that the ECL1 of claudin-1 is required for HCV entry (18). All human claudins comprise a highly conserved motif, W30-GLW51-C54-C64, in the crown of ECL1 (25, 37). The exact function of this domain is unknown, and we hypothesized that it is important for HCV entry. The second extracellular loop is required for the holding function and oligomerization of the protein (25). Claudin-1 also comprises various signaling domains and a PDZ binding motif in the intracellular C terminus that binds ZO-1, another major component of tight junctions (30, 32, 37). We further hypothesized that some of these domains may play a role in HCV entry.To understand the role of claudin-1 in HCV infection, we developed a mutagenesis strategy targeting the putative sites for internalization, glycosylation, palmitoylation, and phosphorylation. The functionality of these domains has been described by others (4, 16, 25, 35, 37, 40). We also mutagenized charged and bulky residues in ECL1, including all six residues within the highly conserved motif W30-GLW51-C54-C64. None of the intracellular domains were found to affect HCV entry. However, we identified seven residues in ECL1 that are critical for entry mediated by envelope glycoproteins derived from several HCV subtypes, including all six residues of the conserved motif. These mutants were still expressed at the cell surface and able to form lateral homophilic interactions within the plasma membrane as well as to engage in lateral interactions with CD81. In contrast, they no longer engaged in homophilic trans interactions at cell-cell contacts. We conclude that the highly conserved motif W30-GLW51-C54-C64 of claudin-1 is important for HCV entry into target cells and participates in the formation of cell-cell contacts.  相似文献   

9.
Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.Lassa virus (LASV) is a member of the family Arenaviridae, of which Lymphocytic choriomeningitis virus (LCMV) is the prototype. Arenaviruses comprise more than 20 species, divided into the Old World and New World virus complexes (19). The Old World arenaviruses include the human pathogenic LASV strains, Lujo virus, which was first identified in late 2008 and is associated with an unprecedented high case fatality rate in humans, the nonhuman pathogenic Ippy, Mobala, and Mopeia viruses, and the recently described Kodoko virus (10, 30, 49). The New World virus complex contains, among others, the South American hemorrhagic fever-causing viruses Junín virus, Machupo virus, Guanarito virus, Sabiá virus, and the recently discovered Chapare virus (22).Arenaviruses contain a bisegmented single-stranded RNA genome encoding the polymerase L, matrix protein Z, nucleoprotein NP, and glycoprotein GP. The bipartite ribonucleoprotein of LASV is surrounded by a lipid envelope derived from the plasma membrane of the host cell. The matrix protein Z has been identified as a major budding factor, which lines the interior of the viral lipid membrane, in which GP spikes are inserted (61, 75). The glycoprotein is synthesized as precursor protein pre-GP-C and is cotranslationally cleaved by signal peptidase into GP-C and the signal peptide, which exhibits unusual length, stability, and topology (3, 27, 28, 33, 70, 87). Moreover, the arenaviral signal peptide functions as trans-acting maturation factor (2, 26, 33). After processing by signal peptidase, GP-C of both New World and Old World arenaviruses is cleaved by the cellular subtilase subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) into the distal subunit GP-1 and the membrane-anchored subunit GP-2 within the secretory pathway (5, 52, 63). For LCMV, it has been shown that GP-1 subunits are linked to each other by disulfide bonds and are noncovalently connected to GP-2 subunits (14, 24, 31). GP-1 is responsible for binding to the host cell receptor, while GP-2 mediates fusion between the virus envelope and the endosomal membrane at low pH due to a bipartite fusion peptide near the amino terminus (24, 36, 44). Sequence analysis of the LCMV GP-2 ectodomain revealed two heptad repeats that most likely form amphipathic helices important for this process (34, 86).In general, viral class I fusion proteins have triplets of α-helical structures in common, which contain heptad repeats (47, 73). In contrast, class II fusion proteins are characterized by β-sheets that form dimers in the prefusion status and trimers in the postfusion status (43). The class III fusion proteins are trimers that, unlike class I fusion proteins, were not proteolytically processed N-terminally of the fusion peptide, resulting in a fusion-active membrane-anchored subunit (39, 62). Previous studies with LCMV described a tetrameric organization of the glycoprotein spikes (14), while more recent data using a bacterially expressed truncated ectodomain of the LCMV GP-2 subunit pointed toward a trimeric spike structure (31). Due to these conflicting data regarding the oligomerization status of LCMV GP, it remains unclear to which class of fusion proteins the arenaviral glycoproteins belong.The state of oligomerization and the correct conformation of viral glycoproteins are crucial for membrane fusion during virus entry. The early steps of infection have been shown for several viruses to be dependent on the cholesterol content of the participating membranes (i.e., either the virus envelope or the host cell membrane) (4, 9, 15, 20, 21, 23, 40, 42, 53, 56, 76, 78, 79). In fact, it has been shown previously that entry of both LASV and LCMV is susceptible to cholesterol depletion of the target host cell membrane using methyl-β-cyclodextrin (MβCD) treatment (64, 71). Moreover, cholesterol not only plays an important role in the early steps during entry in the viral life cycle but also is critical in the virus assembly and release process. Several viruses of various families, including influenza virus, human immunodeficiency virus type 1 (HIV-1), measles virus, and Ebola virus, use the ordered environment of lipid raft microdomains. Due to their high levels of glycosphingolipids and cholesterol, these domains are characterized by insolubility in nonionic detergents under cold conditions (60, 72). Recent observations have suggested that budding of the New World arenavirus Junin virus occurs from detergent-soluble membrane areas (1). Assembly and release from distinct membrane microdomains that are detergent soluble have also been described for vesicular stomatitis virus (VSV) (12, 38, 68). At present, however, it is not known whether LASV requires cholesterol in its viral envelope for successful virus entry or whether specific membrane microdomains are important for LASV assembly and release.In this study, we first investigated the oligomeric state of the premature and mature LASV glycoprotein complexes. Since it has been shown for several membrane proteins that the oligomerization and conformation are dependent on cholesterol (58, 59, 76, 78), we further analyzed the dependence of the cholesterol content of the virus envelope on glycoprotein oligomerization and virus infectivity. Finally, we characterized the lipid membrane areas from which LASV is released.  相似文献   

10.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

11.
12.
Newly designed primers for [Fe-Fe]-hydrogenases indicated that (i) fermenters, acetogens, and undefined species in a fen harbor hitherto unknown hydrogenases and (ii) Clostridium- and Thermosinus-related primary fermenters, as well as secondary fermenters related to sulfate or iron reducers might be responsible for hydrogen production in the fen. Comparative analysis of [Fe-Fe]-hydrogenase and 16S rRNA gene-based phylogenies indicated the presence of homologous multiple hydrogenases per organism and inconsistencies between 16S rRNA gene- and [Fe-Fe]-hydrogenase-based phylogenies, necessitating appropriate qualification of [Fe-Fe]-hydrogenase gene data for diversity analyses.Molecular hydrogen (H2) is important in intermediary ecosystem metabolism (i.e., processes that link input to output) in wetlands (7, 11, 12, 33) and other anoxic habitats like sewage sludges (34) and the intestinal tracts of animals (9, 37). H2-producing fermenters have been postulated to form trophic links to H2-consuming methanogens, acetogens (i.e., organisms capable of using the acetyl-coenzyme A [CoA] pathway for acetate synthesis) (7), Fe(III) reducers (17), and sulfate reducers in a well-studied moderately acidic fen in Germany (11, 12, 16, 18, 22, 33). 16S rRNA gene analysis revealed the presence of Clostridium spp. and Syntrophobacter spp., which represent possible primary and secondary fermenters, as well as H2 producers in this fen (11, 18, 33). However, H2-producing bacteria are polyphyletic (30, 31, 29). Thus, a structural marker gene is required to target this functional group by molecular methods. [Fe-Fe]-hydrogenases catalyze H2 production in fermenters (19, 25, 29, 30, 31), and genes encoding [Fe-Fe]-hydrogenases represent such a marker gene. The objectives of this study were to (i) develop primers specific for highly diverse [Fe-Fe]-hydrogenase genes, (ii) analyze [Fe-Fe]-hydrogenase genes in pure cultures of fermenters, acetogens, and a sulfate reducer, (iii) assess [Fe-Fe]-hydrogenase gene diversity in H2-producing fen soil enrichments, and (iv) evaluate the limitations of the amplified [Fe-Fe]-hydrogenase fragment as a phylogenetic marker.  相似文献   

13.
The filovirus VP40 protein is capable of budding from mammalian cells in the form of virus-like particles (VLPs) that are morphologically indistinguishable from infectious virions. Ebola virus VP40 (eVP40) contains well-characterized overlapping L domains, which play a key role in mediating efficient virus egress. L domains represent only one component required for efficient budding and, therefore, there is a need to identify and characterize additional domains important for VP40 function. We demonstrate here that the 96LPLGVA101 sequence of eVP40 and the corresponding 84LPLGIM89 sequence of Marburg virus VP40 (mVP40) are critical for efficient release of VP40 VLPs. Indeed, deletion of these motifs essentially abolished the ability of eVP40 and mVP40 to bud as VLPs. To address the mechanism by which the 96LPLGVA101 motif of eVP40 contributes to egress, a series of point mutations were introduced into this motif. These mutants were then compared to the eVP40 wild type in a VLP budding assay to assess budding competency. Confocal microscopy and gel filtration analyses were performed to assess their pattern of intracellular localization and ability to oligomerize, respectively. Our results show that mutations disrupting the 96LPLGVA101 motif resulted in both altered patterns of intracellular localization and self-assembly compared to wild-type controls. Interestingly, coexpression of either Ebola virus GP-WT or mVP40-WT with eVP40-ΔLPLGVA failed to rescue the budding defective eVP40-ΔLPLGVA mutant into VLPs; however, coexpression of eVP40-WT with mVP40-ΔLPLGIM successfully rescued budding of mVP40-ΔLPLGIM into VLPs at mVP40-WT levels. In sum, our findings implicate the LPLGVA and LPLGIM motifs of eVP40 and mVP40, respectively, as being important for VP40 structure/stability and budding.Ebola and Marburg viruses are members of the family Filoviridae. Filoviruses are filamentous, negative-sense, single-stranded RNA viruses that cause lethal hemorrhagic fevers in both humans and nonhuman primates (5). Filoviruses encode seven viral proteins including: NP (major nucleoprotein), VP35 (phosphoprotein), VP40 (matrix protein), GP (glycoprotein), VP30 (minor nucleoprotein), VP24 (secondary matrix protein), and L (RNA-dependent RNA polymerase) (2, 5, 10, 12, 45). Numerous studies have shown that expression of Ebola virus VP40 (eVP40) alone in mammalian cells leads to the production of virus-like particles (VLPs) with filamentous morphology which is indistinguishable from infectious Ebola virus particles (12, 17, 18, 25, 26, 27, 30, 31, 34, 49). Like many enveloped viruses such as rhabdovirus (11) and arenaviruses (44), Ebola virus encodes late-assembly or L domains, which are sequences required for the membrane fission event that separates viral and cellular membranes to release nascent virion particles (1, 5, 7, 10, 12, 18, 25, 27, 34). Thus far, four classes of L domains have been identified which were defined by their conserved amino acid core sequences: the Pro-Thr/Ser-Ala-Pro (PT/SAP) motif (25, 27), the Pro-Pro-x-Tyr (PPxY) motif (11, 12, 18, 19, 41, 53), the Tyr-x-x-Leu (YxxL) motif (3, 15, 27, 37), and the Phe-Pro-Ile-Val (FPIV) motif (39). Both PTAP and the PPxY motifs are essential for efficient particle release for eVP40 (25, 27, 48, 49), whereas mVP40 contains only a PPxY motif. L domains are believed to act as docking sites for the recruitment of cellular proteins involved in endocytic trafficking and multivesicular body biogenesis to facilitate virus-cell separation (8, 13, 14, 16, 28, 29, 33, 36, 43, 50, 51).In addition to L domains, oligomerization, and plasma-membrane localization of VP40 are two functions of the protein that are critical for efficient budding of VLPs and virions. Specific sequences involved in self-assembly and membrane localization have yet to be defined precisely. However, recent reports have attempted to identify regions of VP40 that are important for its overall function in assembly and budding. For example, the amino acid region 212KLR214 located at the C-terminal region was found to be important for efficient release of eVP40 VLPs, with Leu213 being the most critical (30). Mutation of the 212KLR214 region resulted in altered patterns of cellular localization and oligomerization of eVP40 compared to those of the wild-type genotype (30). In addition, the proline at position 53 was also implicated as being essential for eVP40 VLP release and plasma-membrane localization (54).In a more recent study, a YPLGVG motif within the M protein of Nipah virus (NiV) was shown to be important for stability, membrane binding, and budding of NiV VLPs (35). Whether this NiV M motif represents a new class of L domain remains to be determined. However, it is clear that this YPLGVG motif of NiV M is important for budding, perhaps involving a novel mechanism (35). Our rationale for investigating the corresponding, conserved motifs present within the Ebola and Marburg virus VP40 proteins was based primarily on these findings with NiV. In addition, Ebola virus VP40 motif maps close to the hinge region separating the N- and C-terminal domains of VP40 (4). Thus, the 96LPLGVA101 motif of eVP40 is predicted to be important for the overall stability and function of VP40 during egress. Findings presented here indicate that disruption of these filovirus VP40 motifs results in a severe defect in VLP budding, due in part to impairment in overall VP40 structure, stability and/or intracellular localization.  相似文献   

14.
15.
Deleting individual genes for outer surface c-type cytochromes in Geobacter sulfurreducens partially inhibited the reduction of humic substances and anthraquinone-2,6,-disulfonate. Complete inhibition was obtained only when five of these genes were simultaneously deleted, suggesting that diverse outer surface cytochromes can contribute to the reduction of humic substances and other extracellular quinones.Humic substances can play an important role in the reduction of Fe(III), and possibly other metals, in sedimentary environments (6, 34). Diverse dissimilatory Fe(III)-reducing microorganisms (3, 5, 7, 9, 11, 19-22, 25) can transfer electrons onto the quinone moieties of humic substances (38) or the model compound anthraquinone-2,6-disulfonate (AQDS). Reduced humic substances or AQDS abiotically reduces Fe(III) to Fe(II), regenerating the quinone. Electron shuttling in this manner can greatly increase the rate of electron transfer to insoluble Fe(III) oxides, presumably because soluble quinone-containing molecules are more accessible for microbial reduction than insoluble Fe(III) oxides (19, 22). Thus, catalytic amounts of humic substances have the potential to dramatically influence rates of Fe(III) reduction in soils and sediments and can promote more rapid degradation of organic contaminants coupled to Fe(III) reduction (1, 2, 4, 10, 24).To our knowledge, the mechanisms by which Fe(III)-reducing microorganisms transfer electrons to humic substances have not been investigated previously for any microorganism. However, reduction of AQDS has been studied using Shewanella oneidensis (17, 40). Disruption of the gene for MtrB, an outer membrane protein required for proper localization of outer membrane cytochromes (31), inhibited reduction of AQDS, as did disruption of the gene for the outer membrane c-type cytochrome, MtrC (17). However, in each case inhibition was incomplete, and it was suggested that there was a possibility of some periplasmic reduction (17), which would be consistent with the ability of AQDS to enter the cell (40).The mechanisms for electron transfer to humic substances in Geobacter species are of interest because molecular studies have frequently demonstrated that Geobacter species are the predominant Fe(III)-reducing microorganisms in sedimentary environments in which Fe(III) reduction is an important process (references 20, 32, and 42 and references therein). Geobacter sulfurreducens has routinely been used for investigations of the physiology of Geobacter species because of the availability of its genome sequence (29), a genetic system (8), and a genome-scale metabolic model (26) has made it possible to take a systems biology approach to understanding the growth of this organism in sedimentary environments (23).  相似文献   

16.
For construction of the bacterial flagellum, many of the flagellar proteins are exported into the central channel of the flagellar structure by the flagellar type III protein export apparatus. FlhA and FlhB, which are integral membrane proteins of the export apparatus, form a docking platform for the soluble components of the export apparatus, FliH, FliI, and FliJ. The C-terminal cytoplasmic domain of FlhA (FlhAC) is required for protein export, but it is not clear how it works. Here, we analyzed a temperature-sensitive Salmonella enterica mutant, the flhA(G368C) mutant, which has a mutation in the sequence encoding FlhAC. The G368C mutation did not eliminate the interactions with FliH, FliI, FliJ, and the C-terminal cytoplasmic domain of FlhB, suggesting that the mutation blocks the export process after the FliH-FliI-FliJ-export substrate complex binds to the FlhA-FlhB platform. Limited proteolysis showed that FlhAC consists of at least three subdomains, a flexible linker, FlhACN, and FlhACC, and that FlhACN becomes sensitive to proteolysis by the G368C mutation. Intragenic suppressor mutations were identified in these subdomains and restored flagellar protein export to a considerable degree. However, none of these suppressor mutations suppressed the protease sensitivity. We suggest that FlhAC not only forms part of the docking platform for the FliH-FliI-FliJ-export substrate complex but also is directly involved in the translocation of the export substrate into the central channel of the growing flagellar structure.The bacterial flagellum, which is responsible for motility, is a supramolecular complex of about 30 different proteins, and it consists of at least three substructures: the basal body, the hook, and the filament. Flagellar assembly begins with the basal body, followed by the hook and finally the filament. Many of the flagellar component proteins are translocated into the central channel of the growing flagellar structure and then to the distal end of the structure for self-assembly by the flagellar type III protein export apparatus (11, 16, 22). This export apparatus consists of six integral membrane proteins, FlhA, FlhB, FliO, FliP, FliQ, and FliR, and three soluble proteins, FliH, FliI, and FliJ (18, 21). These protein components show significant sequence and functional similarities to those of the type III secretion systems of pathogenic bacteria, which directly inject virulence factors into their host cells (11, 16).FliI is an ATPase (4) and forms an FliH2-FliI complex with its regulator, FliH, in the cytoplasm (20). FliI self-assembles into a homo-hexamer and hence exhibits full ATPase activity (1, 8, 17). FliH and FliI, together with FliJ and the export substrate, bind to the export core complex, which is composed of the six integral membrane proteins, to recruit export substrates from the cytoplasm to the core complex (14) and facilitate the initial entry of export substrates into the export gate (23). FliJ not only prevents premature aggregation of export substrates in the cytoplasm (13) but also plays an important role in the escort mechanism for cycling export chaperones during flagellar assembly (3). The export core complex is believed to be located in the central pore of the basal body MS ring (11, 16, 22). In fact, it has been found that FlhA, FliP, and FliR are associated with the MS ring (5, 9). The FliR-FlhB fusion protein is partially functional, suggesting that FliR and FlhB interact with each other within the MS ring (29). The export core complex utilizes a proton motive force across the cytoplasmic membrane as the energy source to drive the successive unfolding of export substrates and their translocation into the central channel of the growing flagellum (23, 27). Here we refer to the export core complex as the “export gate,” as we have previously (8, 16, 23, 24).FlhA is a 692-amino-acid protein consisting of two regions: a hydrophobic N-terminal transmembrane region with eight predicted α-helical transmembrane spans (FlhATM) and a hydrophilic C-terminal cytoplasmic region (FlhAC) (12, 15). FlhATM is responsible for the association with the MS ring (9). FlhAC interacts with FliH, FliI, FliJ, and the C-terminal cytoplasmic domain of FlhB (6, 12, 21, 24) and plays a role in the initial export process with these proteins (28). It has been shown that the V404M mutation in FlhAC increases not only the probability of FliI binding to the export gate in the absence of FliH (14) but also the efficiency of substrate translocation through the export gate in the absence of FliH and FliI (23). Recently, it has been shown that FlhAC is also required for substrate recognition (7). These observations suggest that an interaction between FlhAC and FliI is coupled with substrate entry, although it is not clear how.In order to understand the mechanism of substrate entry into the export gate, we characterized a temperature-sensitive Salmonella enterica mutant, the flhA(G368C) mutant, whose mutation blocks the flagellar protein export process at 42°C (28). We show here that this mutation severely inhibits translocation of flagellar proteins through the export gate after the FliH-FliI-FliJ complex binds to the FlhA-FlhB platform of the gate and that the impaired ability of the flhA(G368C) mutant to export flagellar proteins is restored almost to wild-type levels by intragenic second-site mutations that may alter the interactions between subdomains of FlhAC for possible rearrangement for the export function.  相似文献   

17.
18.
Borna disease virus (BDV), the prototypic member of the family Bornaviridae within the order Mononegavirales, provides an important model for the investigation of viral persistence within the central nervous system (CNS) and of associated brain disorders. BDV is highly neurotropic and enters its target cell via receptor-mediated endocytosis, a process mediated by the virus surface glycoprotein (G), but the cellular factors and pathways determining BDV cell tropism within the CNS remain mostly unknown. Cholesterol has been shown to influence viral infections via its effects on different viral processes, including replication, budding, and cell entry. In this work, we show that cell entry, but not replication and gene expression, of BDV was drastically inhibited by depletion of cellular cholesterol levels. BDV G-mediated attachment to BDV-susceptible cells was cholesterol independent, but G localized to lipid rafts (LR) at the plasma membrane. LR structure and function critically depend on cholesterol, and hence, compromised structural integrity and function of LR caused by cholesterol depletion likely inhibited the initial stages of BDV cell internalization. Furthermore, we also show that viral-envelope cholesterol is required for BDV infectivity.Borna disease virus (BDV) is an enveloped virus with a nonsegmented negative-strand RNA genome whose organization (3′-N-p10/P-M-G-L-5′) is characteristic of mononegaviruses (6, 28, 46, 48). However, based on its unique genetics and biological features, BDV is considered to be the prototypic member of a new virus family, Bornaviridae, within the order Mononegavirales (8, 28, 46, 49).BDV can infect a variety of cell types in cell culture but in vivo exhibits exquisite neurotropism and causes central nervous system (CNS) disease in different vertebrate species, which is frequently manifested in behavioral abnormalities (19, 33, 44, 53). Both host and viral factors contribute to a variable period of incubation and heterogeneity in the symptoms and pathology associated with BDV infection (14, 16, 29, 42, 44). BDV provides an important model for the investigation of both immune-mediated pathological events associated with virus-induced neurological disease and mechanisms whereby noncytolytic viruses induce neurodevelopmental and behavioral disturbances in the absence of inflammation (15, 18, 41). Moreover, serological data and molecular epidemiological studies suggest that BDV, or a BDV-like virus, can infect humans and that it might be associated with certain neuropsychiatric disorders (17, 24), which further underscores the interest in understanding the mechanisms underlying BDV persistence in the CNS and its effect on brain cell functions. The achievement of these goals will require the elucidation of the determinants of BDV cell tropism within the CNS.BDV enters its target cell via receptor-mediated endocytosis, a process in which the BDV G protein plays a central role (1, 5, 13, 14, 39). Cleavage of BDV G by the cellular protease furin generates two functional subunits: GP1 (GPN), involved in virus interaction with a yet-unidentified cell surface receptor (1, 39), and GP2 (GPC), which mediates a pH-dependent fusion event between viral and cellular membranes (13). However, a detailed characterization of cellular factors and pathways involved in BDV cell entry remains to be done.Besides cell surface molecules that serve as viral receptors, many other cell factors, including nonproteinaceous molecules, can influence cell entry by virus (52). In this regard, cholesterol, which plays a critical role in cellular homeostasis (55), has also been identified as a key factor required for productive infection by different viruses. Accordingly, cholesterol participates in a variety of processes in virus-infected cells, including fusion events between viral and cellular membranes (3), viral replication (23), and budding (35, 37), as well as maintenance of lipid rafts (LR) (12) as scaffold structures where the viral receptor and coreceptor associate (11, 26, 32, 36). LR are specialized microdomains within cellular membranes constituted principally of proteins, sphingolipids, and cholesterol. LR facilitate the close proximity and interaction of specific sets of proteins and contribute to different processes associated with virus multiplication (38). Cholesterol can also influence virus infection by contributing to the maintenance of the properties of the viral envelope required for virus particle infectivity (21, 54). Here, we show for the first time that cholesterol plays a critical role in BDV infection. Depletion of cellular cholesterol prior to, but not after, BDV cell entry prevented productive BDV infection, likely due to disruption of plasma membrane LR that appear to be the cell entry point for BDV. In addition, we document that cholesterol also plays an essential role in the properties of the BDV envelope required for virus particle infectivity.  相似文献   

19.
20.
The human immunodeficiency virus type 1 (HIV-1) matrix (MA) protein targets HIV-1 precursor Gag (PrGag) proteins to assembly sites at plasma membrane (PM) sites that are enriched in cholesterol and phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. MA is myristoylated, which enhances membrane binding, and specifically binds PI(4,5)P2 through headgroup and 2′ acyl chain contacts. MA also binds nucleic acids, although the significance of this association with regard to the viral life cycle is unclear. We have devised a novel MA binding assay and used it to examine MA interactions with membranes and nucleic acids. Our results indicate that cholesterol increases the selectivity of MA for PI(4,5)P2-containing membranes, that PI(4,5)P2 binding tolerates 2′ acyl chain variation, and that the MA myristate enhances membrane binding efficiency but not selectivity. We also observed that soluble PI(4,5)P2 analogues do not compete effectively with PI(4,5)P2-containing liposomes for MA binding but surprisingly do increase nonspecific binding to liposomes. Finally, we have demonstrated that PI(4,5)P2-containing liposomes successfully outcompete nucleic acids for MA binding, whereas other liposomes do not. These results support a model in which RNA binding protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to PM assembly sites.The matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) precursor Gag (PrGag) protein serves several functions in the viral replication cycle. One essential function is to target PrGag proteins to their assembly sites at the plasma membranes (PMs) of infected cells (4, 5, 11, 16, 25, 29, 30, 33, 35, 39, 43-45, 47, 50, 54, 56, 57). A second function is the recruitment of the viral surface/transmembrane (SU/TM; also referred to as gp120/gp41) envelope (Env) protein complex into virions (14, 15, 18, 19, 27, 51-53). In addition to these activities, numerous reports have attributed nucleic acid binding properties to retroviral MAs (24, 38, 47), and with some viruses MA appears to serve in an encapsidation capacity (24). While no encapsidation role has been assigned for HIV-1 MA, experiments have shown that MA can substitute for the HIV-1 nucleocapsid (NC) protein assembly function (38) under some circumstances, presumably by virtue of its facility to concentrate PrGag proteins by binding them to RNAs (38).A number of structural studies have been conducted on HIV-1 MA (1, 22, 41, 42, 49). The protein is N terminally myristoylated and composed of six α helices, capped by a three-strand β sheet (7, 22, 41, 42, 49). The protein trimerizes in solution and in crystals (22, 28, 49) and recently has been shown to organize as hexamers of trimers on lipid membranes (1). The membrane binding face of HIV-1 MA is basic, fostering its ability to associate with negatively charged phospholipid headgroups (1, 22, 30, 41, 42, 49). The importance of such an interaction has been underscored in molecular genetic experiments which demonstrated that depletion of PM phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] reduced the assembly efficiency of HIV-1 (9, 36). Consistent with these observations, HIV-1 MA preferentially binds to soluble PI(4,5)P2 mimics through contacts with the headgroup and 2′ acyl chain, and binding promotes exposure of the MA myristate group and protein oligomerization (17, 21, 40-43, 46). However, PI(4,5)P2 is not the only lipid to demonstrate an association with HIV-1. In particular, HIV-1 appears to assemble at cholesterol-rich PM sites, cholesterol is highly enriched in HIV-1 virions, and cholesterol depletion reduces viral infectivity (2, 6, 8, 20, 23, 26, 31, 34, 37). The HIV-1 lipidome shows additional differences from the PM lipids of infected cells (2, 5, 8), suggesting that other lipids could affect PrGag-membrane binding or virus assembly site selection.To gain a better understanding of the functions and interactions of HIV-1 MA, we have examined the liposome and nucleic acid binding properties of purified myristoylated MA. Using liposome flotation assays and a novel liposome bead binding assay, we have demonstrated that the PI(4,5)P2 binding specificity of MA is enhanced by cholesterol, that protein myristoylation increases membrane binding efficiency but not specificity, and that 2′ acyl chain variation is compatible with PI(4,5)P2 binding. We also examined whether soluble PI(4,5)P2 mimics could compete with liposomes for MA binding. Surprisingly, we found that soluble mimics not only failed to compete with PI(4,5)P2 liposomes but also increased MA binding to membranes that do not contain acidic phospholipids. Finally, we have observed that while MA does bind nucleic acids, nucleic acid binding is outcompeted by PI(4,5)P2-containing liposomes. Our results suggest models for PrGag-membrane and RNA association and the HIV-1 assembly pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号