首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using both sequence- and function-based metagenomic approaches, multiple antibiotic resistance determinants were identified within metagenomic libraries constructed from DNA extracted from bacterial chromosomes, plasmids, or viruses within an activated sludge microbial assemblage. Metagenomic clones and a plasmid that in Escherichia coli expressed resistance to chloramphenicol, ampicillin, or kanamycin were isolated, with many cloned DNA sequences lacking any significant homology to known antibiotic resistance determinants.Activated sludge in wastewater treatment plants is an open system with a dynamic and phylogenetically diverse microbial community (2, 3, 6, 7, 10, 11). Since the activated sludge process promotes cellular interactions among diverse microorganisms, there is great potential for the lateral transfer of antibiotic resistance genes between microbes in activated sludge and in downstream environments. Several studies have previously identified antibiotic resistance determinants from wastewater communities that are carried on bacterial chromosomes (1, 4, 14) and plasmids (9, 12, 13), but to our knowledge, a simultaneous metagenomic survey of antibiotic resistance determinants from all three genetic reservoirs (i.e., chromosomes, plasmids, and viruses) has never been performed within the same environment. To achieve a more comprehensive assessment of antibiotic resistance genes in the activated sludge microbial community, this study used both function- and sequence-based metagenomic approaches to identify antibiotic resistance determinants carried on bacterial chromosomes, plasmids, or viruses within an activated sludge microbial assemblage.  相似文献   

2.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

3.
DNA extraction bias is a frequently cited but poorly understood limitation of molecular characterizations of environmental microbial communities. To assess the bias of a commonly used soil DNA extraction kit, we varied the cell lysis protocol and conducted multiple extractions on subsamples of clay, sand, and organic soils. DNA, as well as bacterial and fungal ribosomal gene copies as measured by quantitative PCR, continued to be isolated in successive extractions. When terminal restriction fragment length polymorphism was used, a significant shift in community composition due to extraction bias was detected for bacteria but not for fungi. Pyrosequencing indicated that the relative abundances of sequences from rarely cultivated groups such as Acidobacteria, Gemmatimonades, and Verrucomicrobia were higher in the first extraction than in the sixth but that the reverse was true for Proteobacteria and Actinobacteria. This suggests that the well-known phylum-level bacterial cultivation bias may be partially exaggerated by DNA extraction bias. We conclude that bias can be adequately reduced in many situations by pooling three successive extractions, and additional measures should be considered when divergent soil types are compared or when comprehensive community analysis is necessary.The vast majority of soil bacteria (1, 7, 27) and fungi (13, 29) cannot be cultured via traditional laboratory techniques and must be identified using molecular methods. Successful characterization of microbial communities is therefore often dependent on DNA that is extracted from the environment. However, extraction of high-quality DNA from soil can be problematic (8, 11, 22, 26). Commercial DNA extraction kits are now commonly used in the assessment of taxonomic and functional diversity, community composition, and population abundance (e.g., references 19, 21, 23, 25, and 31). Studies comparing various kits (18, 32) or comparing commercial kits to other methods (2, 10, 24) have shown that DNA yield and purity vary depending on methodology and soil type. While these comparative studies are valuable, it is still unclear to what extent these protocols yield genomic DNA representative of the microbial community found within soil.Our objective in this study was to optimize and assess the bias of a widely used commercial soil DNA extraction kit. We hypothesized that cell lysis would be enhanced and DNA would be removed from adsorption sites by conducting multiple extractions on a single sample, thereby increasing genomic DNA yield and obtaining a more complete survey of microbial taxa. This hypothesis was tested by (i) varying the extraction protocol and measuring DNA yield for three soils with differing characteristics and (ii) examining extraction bias in the genomic DNA obtained from successive extractions by using an improved method. Analytical replicates rather than biological replicates were used in order to focus strictly on variation and bias introduced through methodology, although multiple soil types were analyzed to determine whether biases detected were consistent.  相似文献   

4.
We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil.Isolating and characterizing DNA sequences for use in molecular methods are integral to evaluating microbial community diversity in soil (6, 21, 22, 24, 37). Any isolation protocol should maximize nucleic acid isolation while minimizing copurification of enzymatic inhibitors. Although several methods that focus on extraction of total community DNA from environmental soil and water samples have been published (7, 21, 26, 34), the lack of a standard nucleic acid isolation protocol (32) reflects the difficulty in accomplishing these goals, most likely due to the complex nature of the soil environment.DNA extraction is especially difficult for soils containing clay (3, 5), given the tight binding of DNA strands to clay soil particles (7, 10, 20). Additionally, extracellular DNA binds to and is copurified with soil humic substances (10), which inhibit the activity of enzymes such as restriction endonucleases and DNA polymerase (6, 13, 23). Although clay-bound DNA can be PCR amplified in the absence of inhibitors (1), it is often the case that inhibitors are present in the soil environment, among them bilirubin, bile salts, urobilinogens, and polysaccharides (40). Of these inhibitors, humic substances have been found to be the most recalcitrant (36).A promising technique for isolating specific target sequences from soil particles and enzymatic inhibitors is the magnetic capture hybridization-PCR technique (MCH-PCR) presented by Jacobsen (19) and used to obtain high detection sensitivities (11, 38).We have found no evidence in the published literature of the use of MCH-PCR on soils that have high clay contents and here present a three-step strategy for isolating specific DNA sequences from the most difficult soil environment—clay that contains humic substances—and enumerating a specific target sequence from the crude extract.  相似文献   

5.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

6.
The viral metagenome within an activated sludge microbial assemblage was sampled using culture-dependent and culture-independent methods and compared to the diversity of activated sludge bacterial taxa. A total of 70 unique cultured bacterial isolates, 24 cultured bacteriophages, 829 bacterial metagenomic clones of 16S rRNA genes, and 1,161 viral metagenomic clones were subjected to a phylogenetic analysis.Bacteriophages play an active role in the ecology of natural environments, influencing prokaryotic population dynamics (5, 15) and mediating lateral gene transfer between diverse bacterial species, for example. Activated sludge (AS) microbial assemblages in wastewater treatment plants have been shown to harbor great numbers of viruses with a wide range of genome sizes (7, 9, 10, 16). Historically, the focus of wastewater viral studies has been on specific host-virus interactions, the application of phages as tools in microbial source tracking, or the use of phages to improve the efficiency of the wastewater treatment process (e.g., foam and pathogen control) (2, 4, 8, 12, 17). Despite the interest in the wastewater viral community, a census of the activated sludge total viral community has not, to our knowledge, been investigated using both culture-based and metagenomic approaches.  相似文献   

7.
One of the oldest unresolved microbiological phenomena is why only a small fraction of the diverse microbiological population grows on artificial media. The “uncultivable” microbial majority arguably represents our planet''s largest unexplored pool of biological and chemical novelty. Previously we showed that species from this pool could be grown inside diffusion chambers incubated in situ, likely because diffusion provides microorganisms with their naturally occurring growth factors. Here we utilize this approach and develop a novel high-throughput platform for parallel cultivation and isolation of previously uncultivated microbial species from a variety of environments. We have designed and tested an isolation chip (ichip) composed of several hundred miniature diffusion chambers, each inoculated with a single environmental cell. We show that microbial recovery in the ichip exceeds manyfold that afforded by standard cultivation, and the grown species are of significant phylogenetic novelty. The new method allows access to a large and diverse array of previously inaccessible microorganisms and is well suited for both fundamental and applied research.It has been known for over a century that the overwhelming majority of microbial species do not grow on synthetic media in vitro and remain unexplored (13, 32, 37, 39, 40, 43). The rRNA and metagenomics approaches demonstrated a spectacular diversity of these uncultivated species (11, 21, 25-27, 30, 36). Accessing this “missing” microbial diversity is of significant interest for both basic and applied sciences and has been recognized as one of the principal challenges for microbiology today (12, 29, 41). In recent years, technical advances in cultivation methodologies have recovered a diverse set of ecologically relevant species (1, 3, 5, 7, 15, 20, 24, 28, 33, 42). However, by and large the gap between microbial diversity in nature and that in culture collections remains unchanged, and most microbial phyla still have no cultivable representatives (25, 29). Earlier, we developed a novel method of in situ cultivation of environmental microorganisms inside diffusion chambers (15). The rationale for such an approach was that diffusion would provide cells inside the chamber with naturally occurring growth components and enable those species that grew in nature at the time of the experiment to also grow inside the diffusion chambers. Expectedly, this method yields a rate of microbial recovery many times larger than those of standard techniques. Even so, this method is laborious and does not allow an efficient, high-throughput isolation of microbial species en masse. This limits the method''s applicability, for example, in the drug discovery effort. Here we transform this methodology into a high-throughput technology platform for massively parallel cultivation of “uncultivable” species. Capitalizing on earlier microfluidics methods developed for microbial storage and screening (4, 16), we have designed and tested an isolation chip, or ichip for short, which consists of hundreds of miniature diffusion chambers. If each diffusion minichamber is loaded with a single cell, the resulting culture is monospecific. The ichip thus allows microbial growth and isolation into pure culture in one step. Here we demonstrate that cultivation of environmental microorganisms inside the ichip incubated in situ leads to a significantly increased colony count over that observed on synthetic media. Perhaps even more significantly, species grown in ichips are different from those registered in standard petri dishes and are highly novel.  相似文献   

8.
With the advent of molecular biological techniques, especially next-generation sequencing and metagenomics, the number of microbial biogeography studies is rapidly increasing. However, these studies involve the synthesis of data generated by different laboratories using different protocols, chemicals, etc., all with inherent biases. The aim of this study was to assess inter- as well as intralaboratory variations in microbial community composition when standardized protocols are applied to a single soil sample. Aliquots from a homogenized soil sample from a rice field in Italy were sent to five participating laboratories. DNA was extracted by two investigators per laboratory using an identical protocol. All DNA samples were sent to one laboratory to perform DNA quantification, quantitative PCR (QPCR), and microarray and denaturing gradient gel electrophoresis (DGGE) analyses of methanotrophic communities. Yields, as well as purity of DNA, were significantly different between laboratories but in some cases also between investigators within the same laboratory. The differences in yield and quality of the extracted DNA were reflected in QPCR, microarray, and DGGE analysis results. Diversity indices (Shannon-Wiener, evenness, and richness) differed significantly between laboratories. The observed differences have implications for every project in which microbial communities are compared in different habitats, even if assessed within the same laboratory. To be able to make sensible comparisons leading to valid conclusions, intralaboratory variation should be assessed. Standardization of DNA extraction protocols and possible use of internal standards in interlaboratory comparisons may help in rendering a “quantifiable” bias.Microorganisms comprise a major part of total biomass and biodiversity (21, 41-43, 49). They play a critical role in biogeochemical processes and ecosystem functioning (16). However, knowledge of ecology and functioning of environmental microbial communities is still far from complete, mainly due to our inability to grow the majority of environmental microbes under laboratory conditions. The introduction of culture-independent DNA- and RNA-based techniques has led to a revolution in environmental microbiology, yielding a wealth of information on community compositions in an ever-growing range of habitats. Phylogenetic as well as functional microarrays (51) and metagenomic techniques (41, 47) enable in-depth analyses and comparison of whole microbial communities in a high-throughput manner.The collective goal of all environmental microbial ecology studies is 2-fold: (i) to obtain an overall understanding of microbial community composition, dynamics, and functioning and (ii) to identify regulating mechanisms. Reaching these goals will necessitate the integrated analyses of data generated in different laboratories and from different habitats. The first step in most if not all environmental microbial community studies is the extraction of total DNA from environmental samples in a way that reflects the in situ community composition as closely as possible. Numerous methods, protocols, and commercial kits have been developed to improve and optimize quantity and quality of extracted community DNA from a wide range of natural environments (4, 8, 28, 37, 39). However, up-to-date bias-free extraction methods are not available, especially not for complex and highly variable matrices, like soil. Beside the challenge of lysing all cells, the incomplete removal of compounds interfering with downstream processing render the development of a bias-free protocol a “mission impossible.” Assessments of the bias introduced by DNA extraction with different methods and kits on microbial community profiling revealed that a perfect protocol fitting all types of environments is not feasible (10, 17, 20, 45). However, in light of the global biodiversity debate, assessment of local and global patterns of microbial diversity and their controlling factors (19, 26) necessitates the comparison of data collected in multiple habitats and processed in different laboratories.In contrast to other scientific disciplines, intercalibration of protocols is not common practice in environmental microbiology. Interlaboratory comparisons (ring analyses) have been applied commonly in food control, veterinary, forensic, and soil studies to evaluate, for example, Salmonella diagnostic accuracy (25), virus isolation (18), enzyme-linked immmunosorbent assay methods (2), mitochondrial DNA sequencing (30), soil microbial biomass C (3), and quantitative PCR (QPCR) (11). Ring analyses assessing the reproducibility of DNA extraction and subsequent community analyses between different laboratories have not been carried out so far in environmental microbial ecology.A microbial functional guild that has been investigated intensively using molecular techniques is represented by the methanotrophs (aerobic methane-oxidizing bacteria [MOB]), which can be found in a wide variety of environments (27). The unique contribution of these bacteria to the global methane cycle has rendered the diversity and ecology of MOB hot topics for decades (9, 14, 34, 46, 48). By using methane as single source of carbon and energy, these microbes represent the only biological sink of the greenhouse gas methane under aerobic conditions (13). Aerobic MOB belong to the Gamma- and Alphaproteobacteria and the Verrucomicrobia (13, 34) and have the following features that enable linking function and identity. Assimilating methane facilitates the application of stable isotope probing of diagnostic lipids and of RNA/DNA (6, 29, 33). Besides this, the key gene in methane oxidation (for methanemonooxygenase subunit A, pmoA) reflects the phylogeny of these bacteria, facilitating a direct link between methane consumption and taxonomy. These features have made this group of microbes a model group for studies in environmental microbial ecology. Combined with the broad distribution and high environmental relevance, this group is highly suited to perform a ring analysis on reproducibility of DNA extraction and subsequent community profiling.In the present study, five independent laboratories from Norway, Finland, Netherlands, Germany, and Austria extracted DNA from the same rice field soil sample, using identical protocols and performed by two different investigators per laboratory. Subsequently, the extracted DNA was sent to one laboratory, where DNA quantification, QPCR, microarray, and denaturing gradient gel electrophoresis (DGGE) analyses were performed by one and the same person. The impacts of inter- as well as intralaboratory variations of DNA extraction are discussed, and recommendations for comparative studies are presented.  相似文献   

9.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

10.
In order to elucidate the potential mechanisms of U(VI) reduction for the optimization of bioremediation strategies, the structure-function relationships of microbial communities were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate. A polyphasic approach was used to assess the functional diversity of microbial populations likely to catalyze electron flow under conditions proposed for in situ uranium bioremediation. The addition of ethanol and glucose as supplemental electron donors stimulated microbial nitrate and Fe(III) reduction as the predominant terminal electron-accepting processes (TEAPs). U(VI), Fe(III), and sulfate reduction overlapped in the glucose treatment, whereas U(VI) reduction was concurrent with sulfate reduction but preceded Fe(III) reduction in the ethanol treatments. Phyllosilicate clays were shown to be the major source of Fe(III) for microbial respiration by using variable-temperature Mössbauer spectroscopy. Nitrate- and Fe(III)-reducing bacteria (FeRB) were abundant throughout the shifts in TEAPs observed in biostimulated microcosms and were affiliated with the genera Geobacter, Tolumonas, Clostridium, Arthrobacter, Dechloromonas, and Pseudomonas. Up to two orders of magnitude higher counts of FeRB and enhanced U(VI) removal were observed in ethanol-amended treatments compared to the results in glucose-amended treatments. Quantification of citrate synthase (gltA) levels demonstrated a stimulation of Geobacteraceae activity during metal reduction in carbon-amended microcosms, with the highest expression observed in the glucose treatment. Phylogenetic analysis indicated that the active FeRB share high sequence identity with Geobacteraceae members cultivated from contaminated subsurface environments. Our results show that the functional diversity of populations capable of U(VI) reduction is dependent upon the choice of electron donor.Uranium contamination in subsurface environments is a widespread problem at mining and milling sites across North America, South America, and Eastern Europe (1). Uranium in the oxidized state, U(VI), is highly soluble and toxic and thus is a potential contaminant to local drinking-water supplies (46). Nitrate is often a cocontaminant with U(VI) as a result of the use of nitric acid in the processing of uranium and uranium-bearing waste (6, 45). Oxidized uranium can be immobilized in contaminated groundwater through the reduction of U(VI) to insoluble U(IV) by indirect (abiotic) and direct (enzymatic) processes catalyzed by microorganisms. Current remediation practices favor the stimulation of reductive uranium immobilization catalyzed by indigenous microbial communities along with natural attenuation and monitoring (5, 24, 40, 44, 65, 68, 69). Microbial uranium reduction activity in contaminated subsurface environments is often limited by carbon or electron donor availability (13, 24, 44, 69). Previous studies have indicated that U(VI) reduction does not proceed until nitrate is depleted (13, 16, 24, 44, 68, 69), as high nitrate concentrations inhibit the reduction of U(VI) by serving as a competing and more energetically favorable terminal electron acceptor for microorganisms (11, 16). The fate and transport of uranium in groundwater are also strongly linked through sorption and precipitation processes to the bioreduction of Fe minerals, including oxides, layer-silicate clay minerals, and sulfides (7, 23, 53).In order to appropriately design U(VI) bioremediation strategies, the potential function and phylogenetic structure of indigenous subsurface microbial communities must be further understood (24, 34, 46). Conflicting evidence has been presented on which microbial groups, Fe(III)- or sulfate-reducing bacteria (FeRB or SRB), effectively catalyze the reductive immobilization of U(VI) in the presence of amended electron donors (5, 44, 69). The addition of acetate to the subsurface at a uranium-contaminated site in Rifle, Colorado, initially stimulated FeRB within the family Geobacteraceae to reduce U(VI) (5, 65). However, with long-term acetate addition, SRB within the family Desulfobacteraceae, which are not capable of U(VI) reduction, increased in abundance and a concomitant reoxidation of U(IV) was observed (5, 65). At a uranium-contaminated site in Oak Ridge, Tennessee, in situ and laboratory-based experiments successfully employed ethanol amendments to stimulate denitrification followed by the reduction of U(VI) by indigenous microbial communities (13, 24, 44, 48, 50, 57, 68). In these studies, ethanol amendments stimulated both SRB and FeRB, with SRB likely catalyzing the reduction of U(VI). This suggests that the potential for bioremediation will be affected by the choice of electron donor amendment through effects on the functional diversity of U(VI)-reducing microbial populations. As uranium reduction is dependent on the depletion of nitrate, the microbial populations mediating nitrate reduction are also critical to the design of bioremediation strategies. Although nitrate-reducing bacteria (NRB) have been studied extensively in subsurface environments (2, 15, 19, 24, 56, 58, 70), the mechanisms controlling the in situ metabolism of NRB remain poorly understood.The dynamics of microbial populations capable of U(VI) reduction in subsurface sediments are poorly understood, and the differences in the microbial community dynamics during bioremediation have not been explored. Based on the results of previous studies (13, 44, 49, 57, 68, 69), we hypothesized that the activity of nitrate- and Fe(III)-reducing microbial populations, catalyzing the reductive immobilization of U(VI) in subsurface radionuclide-contaminated sediments, would be dependent on the choice of electron donor. The objectives of the present study were (i) to characterize structure-function relationships for microbial groups likely to catalyze or limit U(VI) reduction in radionuclide-contaminated sediments and (ii) to further develop a proxy for the metabolic activity of FeRB. Microbial activity was assessed by monitoring terminal electron-accepting processes (TEAPs), electron donor utilization, and Fe(III) mineral transformations in microcosms conducted with subsurface materials cocontaminated with high levels of U(VI) and nitrate. In parallel, microbial functional groups (i.e., NRB and FeRB) were enumerated and characterized using a combination of cultivation-dependent and -independent methods.  相似文献   

11.
A hollow-fiber membrane chamber (HFMC) was developed as an in situ cultivation device for environmental microorganisms. The HFMC system consists of 48 to 96 pieces of porous hollow-fiber membrane connected with injectors. The system allows rapid exchange of chemical compounds, thereby simulating a natural environment. Comparative analysis through the cultivation of three types of environmental samples was performed using this newly designed device and a conventional agar-based petri dish. The results show that the ratios of novel phylotypes in isolates, species-level diversities, and cultivabilities in HFMC-based cultivation are higher than those in an agar-based petri dish for all three samples, suggesting that the new in situ cultivation device is effective for cultivation of various environmental microorganisms.Although highly diverse untapped microbial consortia exist in natural environments, it is generally recognized that most microorganisms are not readily cultivable in the laboratory (1, 17). Recent advances in culture-independent molecular approaches, based on rRNA or genomic approaches that can estimate microbial composition and function, have considerably improved knowledge of microbial ecosystems (7, 11, 29, 32). However, cultivation-based approaches are still necessary for comprehensive elucidation of the physiology and ecology of these organisms and for their biotechnological applications. Recently, several attempts have been made to address these issues (19, 24). Modification of growth conditions based on conventional methods, such as controlling the substrate composition and concentration, the gelling reagent, trace additives such as signaling molecules, and the length of cultivation, has improved isolation efficiencies of rarely cultivated phyla and increased the diversity of isolates (3, 4, 6, 9, 14, 15, 26, 28, 30). Newly developed cultivation methods such as high-throughput methods have brought success with uncultivated microorganisms and improved cultivation capabilities (5, 8, 20, 22, 35). Additionally, development and use of a diffusion chamber to enable the exchange of chemical compounds during cultivation have demonstrated the importance of in situ environmental conditions for the isolation of environmental microorganisms (2, 16). Among them, a concept based on “environmental simulation” is likely to be generally effective for cultivation of environmental microorganisms because various factors that are unknown but necessary for recovery and growth can be provided to the microorganisms (10). However, very few methods have been developed that are applicable to cultivation of microorganisms under in situ environmental conditions. Consequently, it is still important to develop a new cultivation device that is particularly suitable for pure cultivation under in situ environmental conditions while maintaining simple operation. For this study, we designed a new cultivation device, called the hollow-fiber membrane chamber (HFMC), which can provide in situ environmental and liquid culture conditions while maintaining a microliter- to milliliter-scale volume of each chamber. We evaluated the effect of the new device, especially for cultivation under in situ environmental conditions, on cultivation of samples from several different environments.  相似文献   

12.
13.
14.
In this report we provide evidence that the antimicrobial action of stannous salts and a gold drug, auranofin, against Treponema denticola is mediated through inhibition of the metabolism of selenium for synthesis of selenoproteins.The biological use of selenium as a catalyst, incorporated into proteins as selenocysteine, is broad. It plays an essential role in energy metabolism, redox balance, and reproduction in a variety of organisms, from bacterial pathogens to eukaryotic parasites to humans. The results of several epidemiological studies indicate that higher levels of selenium in the mammalian diet can have a negative effect on dental health (2, 17-19, 39). Although the impact of selenium is attributed to its influence on the physical properties of the enamel surface (10), the role of selenium in supporting the oral microbial community has not been studied.The oral cavity is a highly complex microbiome, with a large proportion of its residents uncharacterized due to their fastidious nature and resistance to traditional culture methods (11). Analysis of whole saliva indicates that bacterial metabolism influences the amino acid composition and indicates a role for amino acid fermentation (38). Curtis et al. demonstrated the occurrence of Stickland reactions in dental plaque (9). These reactions were first described in clostridia (35-37). They involve the coupled fermentation of amino acids in which one amino acid is oxidized (Stickland donor) and another (Stickland acceptor) is reduced (29). Treponema denticola, an established resident of the oral cavity, performs Stickland reactions via the selenoprotein glycine reductase (32). Glycine reductase is composed of a multiprotein complex that contains two separate selenoproteins, termed selenoprotein A and selenoprotein B (1, 7, 8, 15, 16). This complex of proteins converts glycine to acetyl phosphate by using inorganic phosphate and the reducing potential from thioredoxin. For the organisms that use this complex, this is a vital source of ATP. Thus far, the requirement for selenocysteine at the active site of this enzyme complex is universally conserved, even though all other selenoproteins that have been identified using computational techniques have a putative cysteine homologue (24).Treponema denticola is considered one of the primary pathogens responsible for periodontitis, a chronic inflammatory disease that is the major cause of adult tooth loss (11, 27, 33). It is the best-studied oral spirochete, commonly found with other spirochetes within the periodontal pocket. It expresses a variety of virulence factors and is capable of adhering to and penetrating endothelial cell monolayers (31). Its health impact may reach beyond the oral cavity. A recent study linked periodontitis with peripheral arterial disease and detected T. denticola, along with other periodontal pathogens, in atherosclerotic plaque (3). Sequence analysis indicates the presence of several selenoproteins in addition to glycine reductase within the genome of T. denticola (24). This organism exhibits a strict growth requirement for selenium (32).A significant literature exists that clearly demonstrates the antimicrobial activity of fluoride compounds against microorganisms associated with dental decay and periodontitis. Both sodium fluoride and stannous fluoride, as well as stannous ions alone, inhibit the growth of T. denticola (21). The inhibitory effect of stannous salts on T. denticola''s growth is unexplained. It should be noted that toothpastes containing stannous fluoride are more effective in reducing gingivitis and plaque (28, 30).Tin, as well as several other trace elements, modulates the effects of acute selenium toxicity (20). Conversely, selenium affects the activity of tin in animal models (4-6). In this study, we examine the possibility that stannous ions interfere with selenium metabolism in T. denticola.  相似文献   

15.
The effects of nitrite and ammonium on cultivated methanotrophic bacteria were investigated. Methylomicrobium album ATCC 33003 outcompeted Methylocystis sp. strain ATCC 49242 in cultures with high nitrite levels, whereas cultures with high ammonium levels allowed Methylocystis sp. to compete more easily. M. album pure cultures and cocultures consumed nitrite and produced nitrous oxide, suggesting a connection between denitrification and nitrite tolerance.The application of ammonium-based fertilizers has been shown to immediately reduce the uptake of methane in a number of diverse ecological systems (3, 5, 7, 8, 11-13, 16, 27, 28), due likely to competitive inhibition of methane monooxygenase enzymes by ammonia and production of nitrite (1). Longer-term inhibition of methane uptake by ammonium has been attributed to changes in methanotrophic community composition, often favoring activity and/or growth of type I Gammaproteobacteria methanotrophs (i.e., Gammaproteobacteria methane-oxidizing bacteria [gamma-MOB]) over type II Alphaproteobacteria methanotrophs (alpha-MOB) (19-23, 25, 26, 30). It has been argued previously that gamma-MOB likely thrive in the presence of high N loads because they rapidly assimilate N and synthesize ribosomes whereas alpha-MOB thrive best under conditions of N limitation and low oxygen levels (10, 21, 23).Findings from studies with rice paddies indicate that N fertilization stimulates methane oxidation through ammonium acting as a nutrient, not as an inhibitor (2). Therefore, the actual effect of ammonium on growth and activity of methanotrophs depends largely on how much ammonia-N is used for assimilation versus cometabolism. Many methanotrophs can also oxidize ammonia into nitrite via hydroxylamine (24, 29). Nitrite was shown previously to inhibit methane consumption by cultivated methanotrophs and by organisms in soils through an uncharacterized mechanism (9, 17, 24), although nitrite inhibits purified formate dehydrogenase from Methylosinus trichosporium OB3b (15). Together, the data from these studies show that ammonium and nitrite have significant effects on methanotroph activity and community composition and reveal the complexity of ammonia as both a nutrient and a competitive inhibitor. The present study demonstrates the differential influences of high ammonium or nitrite loads on the competitive fitness of a gamma-MOB versus an alpha-MOB strain.  相似文献   

16.
17.
18.
Proteorhodopsins (PRs) are widespread bacterial integral membrane proteins that function as light-driven proton pumps. Antarctic sea ice supports a complex community of autotrophic algae, heterotrophic bacteria, viruses, and protists that are an important food source for higher trophic levels in ice-covered regions of the Southern Ocean. Here, we present the first report of PR-bearing bacteria, both dormant and active, in Antarctic sea ice from a series of sites in the Ross Sea using gene-specific primers. Positive PR sequences were generated from genomic DNA at all depths in sea ice, and these sequences aligned with the classes Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria. The sequences showed some similarity to previously reported PR sequences, although most of the sequences were generally distinct. Positive PR sequences were also observed from cDNA reverse transcribed from RNA isolated from sea ice samples. This finding indicates that these sequences were generated from metabolically active cells and suggests that the PR gene is functional within sea ice. Both blue-absorbing and green-absorbing forms of PRs were detected, and only a limited number of blue-absorbing forms were found and were in the midsection of the sea ice profile in this study. Questions still remain regarding the protein''s ecological functions, and ultimately, field experiments will be needed to establish the ecological and functional role of PRs in the sea ice ecosystem.Proteorhodopsins (PRs) are retinal binding bacterial integral membrane proteins that function as light-driven proton pumps (9, 10) and belong to the microbial rhodopsin superfamily of proteins (54). Since the first reported PR sequence from members of SAR86 clade marine (class Gammaproteobacteria) in 2000 (9), many other PR-bearing bacteria have been identified in a range of marine habitats (5, 18, 20, 24, 25, 46, 62). In the recent Global Ocean Sampling (GOS) expedition, almost 4,000 PR sequences from 41 distinct surface marine environments were acquired, demonstrating that these PR genes are extremely abundant in the genomes of ocean bacterioplankton (46). In fact, PR-containing bacteria account for 13% of the community in the Mediterranean Sea and Red Sea and 70% of the community in the Sargasso Sea (18, 46, 49, 60). These light-harvesting bacteria are present in three major marine classes of bacteria: the Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria. In addition, two distinct PR genes encode pigments with “blue-absorbing” and “green-absorbing” properties, which is achieved by a substitution at a single amino acid position, which thereby functions as a spectral tuning switch (10, 37, 48).Sea ice represents a complex physicochemical environment in polar regions and covers up to 13% of the Earth''s surface (59). Although extreme gradients of temperature, salinity, nutrient availability, and light stratify the ice matrix from the surface to the ice-water interface (41), the sea ice habitat nevertheless supports a diverse microbial community of phytoplankton, Bacteria, Archaea, viruses, and protists that grow in liquid brine channels within the ice (14, 35, 56). This sea ice microbial community (SIMCO) is highly metabolically active despite being unable to avoid the extreme environmental conditions that they experience (39). In fact, very-high-standing stocks of the SIMCO exist in many regions of the Southern Ocean. For example, the concentration of chlorophyll a, a proxy for microalgal biomass, typically reaches 200 mg m2 in the Ross Sea, while the concentration of chlorophyll a in the water column below is approximately 2 orders of magnitude less (47), and the percentage of metabolically active bacteria (32% [39]) is significantly higher than the 10% observed for temperate marine systems (36). The SIMCO is thus a major source of biomass in ice-covered regions of the Southern Ocean (59), providing a critical food source for grazing zooplankton (and, consequently, also for higher trophic levels) for much of the year (3, 59). This biomass is of particular importance during the darkness of the polar winter, where the bottom-ice community is the only available food source for juvenile krill. These grazers absolutely rely on the sea ice microbial community to survive, as the water lacks other food sources (6, 28).In the past decade, reports of the widespread occurrence of bacteriochlorophyll and PR pigments in planktonic marine bacteria have challenged the assumption that chlorophyll a is the only principal light-capturing pigment in ocean surface waters. These alternative pigments may in fact play a critical role in light energy harvesting for microbial metabolism in various aquatic ecosystems (5, 10, 25, 40, 49). It has been proposed that energy, rather than nutrient conservation, is important for the regulation of productivity (7). PR-containing phototrophic eubacteria could play a significant role in the energy budget of cells in the photic zone in marine environments (15). PR sequences have been detected in the Southern Ocean (9), but to our knowledge, there have been no reports of PR-bearing bacteria within the sea ice matrix.The majority of the microbial rhodopsin genes found in oceanic samples have been detected by environmental sequencing (30, 46, 48, 60). We have used degenerate PR gene primers (5) in this study to positively identify PR-bearing operational taxonomic units (OTUs) from sea ice. Also, specific bacterial mRNA can now be detected from extracted nucleic acids and used to examine gene expression and, thus, infer metabolic activity (8). With this in mind, we have generated cDNA from RNA extracted from sea ice samples. From these observations, we deduce that PR-bearing bacteria are present in sea ice and may be actively contributing to the ecosystem within this extreme microenvironment.  相似文献   

19.
20.
The study site located in the Mediterranean Sea was visited eight times in 2005 and 2006 to collect samples from the epipelagic (5 m), mesopelagic (200 m, 600 m), and bathypelagic (1,000 m, 2,000 m) zones. Randomly amplified polymorphic DNA PCR (RAPD-PCR) analysis was used to obtain fingerprints from microbial and viral size fractions using two different primers each. Depending on the primer used, the number of bands in the water column varied between 12 to 24 and 6 to 19 for the microbial size fraction and between 16 to 26 and 8 to 22 for the viral size fraction. The majority of sequences from the microbial fraction was related to Alphaproteobacteria, Cyanobacteria, Gammaproteobacteria, Firmicutes, and Eukaryota. Only 9% of sequences obtained from the viral fraction were of identifiable viral origin; however, 76% of sequences had no close relatives in the nr database of GenBank. Only 20.1% of complete phage genomes tested in silico resulted in potential RAPD-PCR products, and only 12% of these were targeted by both primers. Also, in silico analysis indicated that RAPD-PCR profiles obtained by the two different primers are largely representative of two different subsets of the viral community. Also, correlation analyses and Mantel tests indicate that the links between changes in the microbial and viral community were strongest in the bathypelagic. Thus, these results suggest a strong codevelopment of virus and host communities in deep waters. The data also indicate that virus communities in the bathypelagic zone can exhibit substantial temporal dynamics.Viruses comprise the most abundant biological entities in the ocean (29) and play an integral part in global geochemical cycles (12, 35). Also, viruses have been proposed to influence the community composition of their hosts by selectively infecting the winners in the competition for nutrients (32, 33, 38). Indeed, the viral influence on prokaryotic community composition has been demonstrated in several studies (see, e.g., references 5, 26, and 41).The community composition of prokaryotes or eukaryotic single-celled organisms can be investigated by PCR-based fingerprinting techniques based on small subunit rRNA genes or their flanking regions. However, viruses lack such conserved genes, and consequently obtaining genetic data on the virus community in a water sample is challenging. Several authors have used primers specific for certain virus groups, e.g., Phycodnaviridae (8, 27) or picornaviruslike viruses (11). Undoubtedly, metagenomics currently offers the most comprehensive genetic data set on an entire viral community (see, for example, references 2, 4, and 6) and has become accessible to most research groups due to ever decreasing costs. Nevertheless, the challenge of adequately analyzing the large data sets yielded by metagenomics remains.Recently, Winget and Wommack (37) demonstrated the use of randomly amplified polymorphic DNA PCR (RAPD-PCR) to assess viral community composition. These authors showed that the banding patterns obtained by RAPD-PCR from viral communities are highly reproducible, making RAPD-PCR a valuable high-throughput and low-cost technique to assess viral community composition on a routine basis. Other studies have used RAPD-PCR for strain typing of closely related viruses (9) and to study the benthic viral community of the Chesapeake Bay (13), the pelagic viral community during an iron-induced phytoplankton bloom in the Southern Ocean (34), and virus-host interactions at hydrothermal vents (36). Since RAPD-PCR is a relatively novel fingerprinting approach to study complex viral communities, one may still ask the question of how to best interpret such results in an ecological context. To address this, we performed RAPD-PCR analysis on viral and microbial communities (prokaryotes and single-celled planktonic eukaryotes) at a station in the northwestern Mediterranean Sea to determine their temporal and depth variation. The results were coupled with in silico RAPD-PCR analysis of available whole viral genomes and sequence analysis of the DNA sequences obtained from selected RAPD-PCR bands. Finally, the RAPD-PCR banding patterns were used to relate changes in the viral and microbial communities with each other and with other microbial and environmental parameters to better understand the mechanism driving temporal and depth variation of viral and microbial communities at the study site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号