首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both aging and physical inactivity are associated with increased development of insulin resistance whereas physical activity has been shown to promote increased insulin sensitivity. Here we investigated the effects of physical activity level on aging-associated insulin resistance in myotubes derived from human skeletal muscle satellite cells. Satellite cells were obtained from young (22 yrs) normally active or middle-aged (56.6 yrs) individuals who were either lifelong sedentary or lifelong active. Both middle-aged sedentary and middle-aged active myotubes had increased p21 and myosin heavy chain protein expression. Interestingly MHCIIa was increased only in myotubes from middle-aged active individuals. Middle-aged sedentary cells had intact insulin-stimulated Akt phosphorylation however, the same cell showed ablated insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane. On the other hand, middle-aged active cells retained both insulin-stimulated increases in glucose uptake and GLUT4 translocation to the plasma membrane. Middle-aged active cells also had significantly higher mRNA expression of GLUT1 and GLUT4 compared to middle-aged sedentary cells, and significantly higher GLUT4 protein. It is likely that physical activity induces a number of stable adaptations, including increased GLUT4 expression that are retained in cells ex vivo and protect, or delay the onset of middle-aged-associated insulin resistance. Additionally, a sedentary lifestyle has an impact on the metabolism of human myotubes during aging and may contribute to aging-associated insulin resistance through impaired GLUT4 localization.  相似文献   

2.
Insulin stimulates glucose uptake into skeletal muscle tissue mainly through the translocation of glucose transporter 4 (GLUT4) to the plasma membrane. The precise mechanism involved in this process is presently unknown. In the cascade of events leading to insulin-induced glucose transport, insulin activates specific protein kinase C (PKC) isoforms. In this study we investigated the roles of PKC zeta in insulin-stimulated glucose uptake and GLUT4 translocation in primary cultures of rat skeletal muscle. We found that insulin initially caused PKC zeta to associate specifically with the GLUT4 compartments and that PKC zeta together with the GLUT4 compartments were then translocated to the plasma membrane as a complex. PKC zeta and GLUT4 recycled independently of one another. To further establish the importance of PKC zeta in glucose transport, we used adenovirus constructs containing wild-type or kinase-inactive, dominant-negative PKC zeta (DNPKC zeta) cDNA to overexpress this isoform in skeletal muscle myotube cultures. We found that overexpression of PKC zeta was associated with a marked increase in the activity of this isoform. The overexpressed, active PKC zeta coprecipitated with the GLUT4 compartments. Moreover, overexpression of PKC zeta caused GLUT4 translocation to the plasma membrane and increased glucose uptake in the absence of insulin. Finally, either insulin or overexpression of PKC zeta induced serine phosphorylation of the GLUT4-compartment-associated vesicle-associated membrane protein 2. Furthermore, DNPKC zeta disrupted the GLUT4 compartment integrity and abrogated insulin-induced GLUT4 translocation and glucose uptake. These results demonstrate that PKC zeta regulates insulin-stimulated GLUT4 translocation and glucose transport through the unique colocalization of this isoform with the GLUT4 compartments.  相似文献   

3.
Insulin stimulates glucose uptake in skeletal muscle cells and fat cells by promoting the rapid translocation of GLUT4 glucose transporters to the plasma membrane. Recent work from our laboratory supports the concept that insulin also stimulates the intrinsic activity of GLUT4 through a signaling pathway that includes p38 MAPK. Here we show that regulation of GLUT4 activity by insulin develops during maturation of skeletal muscle cells into myotubes in concert with the ability of insulin to stimulate p38 MAPK. In L6 myotubes expressing GLUT4 that carries an exofacial myc-epitope (L6-GLUT4myc), insulin-stimulated GLUT4myc translocation equals in magnitude the glucose uptake response. Inhibition of p38 MAPK with SB203580 reduces insulin-stimulated glucose uptake without affecting GLUT4myc translocation. In contrast, in myoblasts, the magnitude of insulin-stimulated glucose uptake is significantly lower than that of GLUT4myc translocation and is insensitive to SB203580. Activation of p38 MAPK by insulin is considerably higher in myotubes than in myoblasts, as is the activation of upstream kinases MKK3/MKK6. In contrast, the activation of all three Akt isoforms and GLUT4 translocation are similar in myoblasts and myotubes. Furthermore, GLUT4myc translocation and phosphorylation of regulatory sites on Akt in L6-GLUT4myc myotubes are equally sensitive to insulin, whereas glucose uptake and phosphorylation of regulatory sites on p38 MAPK show lower sensitivity to the hormone. These observations draw additional parallels between Akt and GLUT4 translocation and between p38 MAPK and GLUT4 activation. Regulation of GLUT4 activity by insulin develops upon muscle cell differentiation and correlates with p38 MAPK activation by insulin.  相似文献   

4.
Insulin resistance plays a major role in the pathogenesis of type 2 diabetes. Insulin regulates blood glucose levels primarily by promoting glucose uptake from the blood into multiple tissues and by suppressing glucose production from the liver. The glucose transporter, GLUT4, mediates insulin-stimulated glucose uptake in muscle and adipose tissue. Decreased GLUT4 expression in adipose tissue is a common feature of many insulin resistant states. GLUT4 expression is preserved in skeletal muscle in many insulin resistant states. However, functional defects in the intracellular trafficking and plasma membrane translocation of GLUT4 result in impaired insulin-stimulated glucose uptake in muscle. Tissue-specific genetic knockout of GLUT4 expression in adipose tissue or muscle of mice has provided new insights into the pathogenesis of insulin resistance. We recently determined that the expression of serum retinol binding protein (RBP4) is induced in adipose tissue as a consequence of decreased GLUT4 expression. We found that RBP4 is elevated in the serum of insulin resistant humans and mice. Furthermore, we found that increasing serum RBP4 levels by transgenic overexpression or by injection of purified RBP4 protein into normal mice causes insulin resistance. Therefore, RBP4 appears to play an important role in mediating adipose tissue communication with other insulin target tissues in insulin resistant states.  相似文献   

5.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

6.
BACKGROUND: Adipose and muscle tissues express an insulin-sensitive glucose transporter (GLUT4). This transporter has been shown to translocate from intracellular stores to the plasma membrane following insulin stimulation. The molecular mechanisms signalling this event and the details of the translocation pathway remain unknown. In type II diabetes, the cellular transport of glucose in response to insulin is impaired, partly explaining why blood-glucose levels in patients are not lowered by insulin as in normal individuals. MATERIALS AND METHODS: Isolated rat epididymal adipocytes were stimulated with insulin and subjected to subcellular fractionation and to measurement of glucose uptake. A caveolae-rich fraction was isolated from the plasma membranes after detergent solubilization and ultracentrifugal floatation in a sucrose gradient. Presence of GLUT4 and caveolin was determined by immunoblotting after SDS-PAGE. RESULTS: In freshly isolated adipocytes, insulin induced a rapid translocation of GLUT4 to the plasma membrane fraction, which was followed by a slower transition of the transporter into a detergent resistant caveolae-rich region of the plasma membrane. The insulin-stimulated appearance of transporters in the caveolae-rich fraction occurred in parallel with enhanced glucose uptake by cells. Treatment with isoproterenol plus adenosine deaminase rapidly inhibited insulin-stimulated glucose transport by 40%, and at the same time GLUT4 disappeared from the caveolae-rich fraction and from plasma membranes as a whole. CONCLUSIONS: Insulin stimulates glucose uptake in adipocytes by rapidly translocating GLUT4 from intracellular stores to the plasma membrane. This is followed by a slower transition of GLUT4 to the caveolae-rich regions of the plasma membrane, where glucose transport appears to take place. These results have implications for an understanding of the defect in glucose transport involved in type II diabetes.  相似文献   

7.
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.  相似文献   

8.
Elevated levels of resistin have been proposed to cause insulin resistance and therefore may serve as a link between obesity and type 2 diabetes. However, its role in skeletal muscle metabolism is unknown. In this study, we examined the effect of resistin on insulin-stimulated glucose uptake and the upstream insulin-signaling components in L6 rat skeletal muscle cells that were either incubated with recombinant resistin or stably transfected with a vector containing the myc-tagged mouse resistin gene. Transfected clones expressed intracellular resistin, which was released in the medium. Incubation with recombinant resistin resulted in a dose-dependent inhibition of insulin-stimulated 2-deoxyglucose (2-DG) uptake. The inhibitory effect of resistin on insulin-stimulated 2-DG uptake was not the result of impaired GLUT4 translocation to the plasma membrane. Furthermore, resistin did not alter the insulin receptor (IR) content and its phosphorylation, nor did it affect insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation, its association with the p85 subunit of phosphatidylinositol (PI) 3-kinase, or IRS-1-associated PI 3-kinase enzymatic activity. Insulin-stimulated phosphorylation of Akt/protein kinase B-alpha, one of the downstream targets of PI 3-kinase and p38 MAPK phosphorylation, was also not affected by resistin. Expression of resistin also inhibited insulin-stimulated 2-DG uptake when compared with cells expressing the empty vector (L6Neo) without affecting GLUT4 translocation, GLUT1 content, and IRS-1/PI 3-kinase signaling. We conclude that resistin does not alter IR signaling but does affect insulin-stimulated glucose uptake, presumably by decreasing the intrinsic activity of cell surface glucose transporters.  相似文献   

9.
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2−/− mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.  相似文献   

10.
Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.  相似文献   

11.
Euglycemic, hyperinsulinemic clamp tests have shown that adult ruminants are less insulin-sensitive than monogastric omnivores. The present study was carried out to elucidate possible cellular mechanisms contributing to this impaired insulin sensitivity of ruminants. Western blotting was used to measure glucose transporters 1 and 4 (GLUT1, GLUT4) in oxidative (musculus masseter and diaphragm) and glycolytic (musculus longissimus dorsi and semitendinosus) skeletal muscle in the crude membranes of pigs and cows. Muscles were characterized biochemically. To determine insulin-stimulated 3-O-D-[(3)H]-methylglucose (3-O-MG) uptake and GLUT4 translocation, porcine and bovine musculus semitendinosus strips were removed by open muscle biopsy and incubated without and with 0.1 or 20 mIU insulin/ml. GLUT4 translocation was analyzed using subcellular fractionation techniques to isolate partially purified plasma membranes and cytoplasmic vesicles and using Western blotting. GLUT4 protein contents were significantly higher in oxidative than in glycolytic muscles in pigs and cows. GLUT1 protein contents were significantly higher in glycolytic than in oxidative muscles in bovines but not in porcines. The 3-O-MG uptake into musculus semitendinosus was similar in both species. Maximum insulin-induced GLUT4 translocation into musculus semitendinosus plasma membrane was significantly lower in bovines than in porcines. These results indicate that GLUT1 is the predominant glucose transporter in bovine glycolytic muscles and that a reinforced insulin-independent glucose uptake via GLUT1 may compensate for the impaired insulin-stimulated GLUT4 translocation, resulting in a similar 3-O-MG uptake in bovine and porcine musculus semitendinosus. These findings may explain at least in part the impaired in vivo insulin sensitivity of adult ruminants compared with that of omnivorous monogastric animals.  相似文献   

12.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

13.
The glucose transporter 4 (GLUT4) is responsible for glucose uptake in the skeletal muscle. Insulin-induced translocation of GLUT4 to the plasma membrane requires phosphatidylinositol 3-kinase activation-mediated generation of phosphatidylinositol 3,4,5-trisphosphate PIP(3) and subsequent activation of Akt. Previous studies suggested that skeletal muscle and kidney enriched inositol polyphosphate phosphatase (SKIP) has negative effects on the regulation of insulin signaling in the skeletal muscle cells. Here, we compared its effects on insulin signaling by selective inhibition of SKIP, SHIP2, and phosphatase and tensin homologue on chromosome 10 (PTEN) by short interfering RNA in the C2C12 myoblast cells. Suppression of SKIP significantly increased the insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate levels and Akt phosphorylation. Furthermore, silencing of SKIP, but not of PTEN, increased the insulin-dependent recruitment of GLUT4 vesicles to the plasma membrane. Taken together, these results imply that SKIP negatively regulates insulin signaling and glucose uptake by inhibiting GLUT4 docking and/or fusion to the plasma membrane.  相似文献   

14.
Cardiac glucose utilization is regulated by reversible translocation of the glucose transporter GLUT4 from intracellular stores to the plasma membrane. During the onset of diet-induced insulin resistance, elevated lipid levels in the circulation interfere with insulin-stimulated GLUT4 translocation, leading to impaired glucose utilization. Recently, we identified vesicle-associated membrane protein (VAMP) 2 and 3 to be required for insulin- and contraction-stimulated GLUT4 translocation, respectively, in cardiomyocytes. Here, we investigated whether overexpression of VAMP2 and/or VAMP3 could protect insulin-stimulated GLUT4 translocation under conditions of insulin resistance. HL-1 atrial cardiomyocytes transiently overexpressing either VAMP2 or VAMP3 were cultured for 16 h with elevated concentrations of palmitate and insulin. Upon subsequent acute stimulation with insulin, we measured GLUT4 translocation, plasmalemmal presence of the fatty acid transporter CD36, and myocellular lipid accumulation. Overexpression of VAMP3, but not VAMP2, completely prevented lipid-induced inhibition of insulin-stimulated GLUT4 translocation. Furthermore, the plasmalemmal presence of CD36 and intracellular lipid levels remained normal in cells overexpressing VAMP3. However, insulin signaling was not retained, indicating an effect of VAMP3 overexpression downstream of PKB/Akt. Furthermore, we revealed that endogenous VAMP3 is bound by the contraction-activated protein kinase D (PKD), and contraction and VAMP3 overexpression protect insulin-stimulated GLUT4 translocation via a common mechanism. These observations indicate that PKD activates GLUT4 translocation via a VAMP3-dependent trafficking step, which pathway might be valuable to rescue constrained glucose utilization in the insulin-resistant heart.  相似文献   

15.
The small GTPase RalA has been implicated in glucose uptake in insulin-stimulated adipocytes, although it remains unclear whether RalA has a similar role in insulin signaling in other types of cells. Recently, we have demonstrated that the Rho family GTPase Rac1 has a critical role in insulin-dependent glucose uptake in myoblast culture and mouse skeletal muscle. However, the mechanisms underlying Rac1-dependent glucose uptake, mostly mediated by the plasma membrane translocation of the glucose transporter GLUT4, remain largely unknown. The purpose of this study is to examine the involvement of RalA in Rac1 regulation of the translocation of GLUT4 to the plasma membrane in muscle cells. Ectopic expression of a constitutively activated RalA mutant indeed stimulated GLUT4 translocation, suggesting an important role of RalA also in muscle cells. GLUT4 translocation induced by constitutively activated mutation of Rac1 or more physiologically by upstream Rac1 regulators, such as phosphoinositide 3 kinase and the guanine nucleotide exchange factor FLJ00068, was abrogated when the expression of RalA was downregulated by RNA interference. The expression of constitutively activated Rac1, on the other hand, caused GTP loading and subcellular redistribution of RalA. Collectively, we propose a novel mechanism involving RalA for Rac1-mediated GLUT4 translocation in skeletal muscle cells.  相似文献   

16.
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 levels in insulin-stimulated cells. At a 5% concentration, DMSO also increased cell surface levels of the transferrin receptor and GLUT1. Glucose uptake experiments indicated that while DMSO enhanced cell surface glucose transporter levels, it also inhibited glucose transporter activity. Our studies further demonstrated that DMSO did not sensitize the adipocytes for insulin and that its effect on GLUT4 was readily reversible (t1/2∼12 min) and maintained in insulin-resistant adipocytes. An enhancement of insulin-induced GLUT4 translocation was not observed in 3T3-L1 preadipocytes and L6 myotubes, indicating cell specificity. DMSO did not enhance insulin signaling nor exocytosis of GLUT4 vesicles, but inhibited GLUT4 internalization. While other chemical chaperones (glycerol and 4-phenyl butyric acid) also acutely enhanced insulin-induced GLUT4 translocation, these effects were not mediated via changes in GLUT4 endocytosis. We conclude that DMSO is the first molecule to be described that instantaneously enhances insulin-induced increases in cell surface GLUT4 levels in adipocytes, at least in part through a reduction in GLUT4 endocytosis.  相似文献   

17.
Glucose is the main source of energy for the body, requiring constant regulation of its blood concentration. Insulin release by the pancreas induces glucose uptake by insulin-sensitive tissues, most notably the brain, skeletal muscle, and adipocytes. Patients suffering from type-2 diabetes and/or obesity often develop insulin resistance and are unable to control their glucose homeostasis. New insights into the mechanisms of insulin resistance may provide new treatment strategies for type-2 diabetes.The GLUT family of glucose transporters consists of thirteen members distributed on different tissues throughout the body1. Glucose transporter type 4 (GLUT4) is the major transporter that mediates glucose uptake by insulin sensitive tissues, such as the skeletal muscle. Upon binding of insulin to its receptor, vesicles containing GLUT4 translocate from the cytoplasm to the plasma membrane, inducing glucose uptake. Reduced GLUT4 translocation is one of the causes of insulin resistance in type-2 diabetes2,3.The translocation of GLUT4 from the cytoplasm to the plasma membrane can be visualized by immunocytochemistry, using fluorophore-conjugated GLUT4-specific antibodies.Here, we describe a technique to quantify total amounts of GLUT4 translocation to the plasma membrane of cells during a chosen duration, using flow cytometry. This protocol is rapid (less than 4 hours, including incubation with insulin) and allows the analysis of as few as 3,000 cells or as many as 1 million cells per condition in a single experiment. It relies on anti-GLUT4 antibodies directed to an external epitope of the transporter that bind to it as soon as it is exposed to the extracellular medium after translocation to the plasma membrane.  相似文献   

18.
The tea polyphenol epigallocatechin-3-O-gallate (EGCG) displays some antidiabetic effects; however the mechanisms are incompletely understood. In the present study, the investigation of the effects of EGCG on insulin resistance was performed in rat L6 cells treated with dexamethasone. We found that dexamethasone increased Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1) and reduced phosphorylation of AMPK and Akt. Furthermore, glucose uptake and glucose transporter (GLUT4) translocation were inhibited by dexamethasone. However, the treatment of EGCG improved insulin-stimulated glucose uptake by increasing GLUT4 translocation to plasma membrane. Furthermore, we also demonstrated these EGCG effects essentially depended on the AMPK and Akt activation. Together, our data suggested that EGCG inhibited dexamethasone-induced insulin resistance through AMPK and PI3K/Akt pathway.  相似文献   

19.
The molecular mechanism of insulin resistance induced by high-fructose feeding is not fully understood. The present study investigated the role of downstream signaling molecules of phosphatidylinositol 3-kinase (PI3K) in the insulin-stimulated skeletal muscle of high-fructose-fed rats. Rats were divided into chow-fed and fructose-fed groups. The results of the euglycemic clamp study (insulin infusion rates: 6 mU/kg BW/min) showed a significant decrease in the glucose infusion rate (GIR) and the metabolic clearance rate of glucose (MCR) in fructose-fed rats compared with chow-fed rats. In skeletal muscle removed immediately after the clamp procedure, high-fructose feeding did not alter protein levels of protein kinase B (PKB/Akt), protein kinase C zeta (PKCzeta), or glucose transporter 4 (GLUT4). However, insulin-stimulated phosphorylation of Akt and PKCzeta and GLUT4 translocation to the plasma membrane were reduced. Our findings suggest that insulin resistance in fructose-fed rats is associated with impaired Akt and PKCzeta activation and GLUT4 translocation in skeletal muscle.  相似文献   

20.
Insulin stimulates glucose uptake in fat and muscle cells via the translocation of the GLUT4 glucose transporter from intracellular storage vesicles to the cell surface. The signaling pathways linking the insulin receptor to GLUT4 translocation in adipocytes involve activation of the Rho family GTPases TC10alpha and beta. We report here the identification of TCGAP, a potential effector for Rho family GTPases. TCGAP consists of N-terminal PX and SH3 domains, a central Rho GAP domain and multiple proline-rich regions in the C-terminus. TCGAP specifically interacts with cdc42 and TC10beta through its GAP domain. Although it has GAP activity in vitro, TCGAP is not active as a GAP in intact cells. TCGAP translocates to the plasma membrane in response to insulin in adipocytes. The N-terminal PX domain interacts specifically with phos phatidylinositol-(4,5)-bisphosphate. Overexpression of the full-length and C-terminal fragments of TCGAP inhibits insulin-stimulated glucose uptake and GLUT4 translocation. Thus, TCGAP may act as a downstream effector of TC10 in the regulation of insulin-stimulated glucose transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号