首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G1 cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.  相似文献   

2.
Hypoxia is a feature of solid tumors. Most tumors are at least partially hypoxic. This hypoxic environment plays a critical role in promoting resistance to anticancer drugs. PHLPP, a novel family of Ser/Thr protein phosphatases, functions as a tumor suppressor in colon cancers. Here, we show that the expression of both PHLPP isoforms is negatively regulated by hypoxia/anoxia in colon cancer cells. Interestingly, a hypoxia-induced decrease of PHLPP expression is attenuated by knocking down HIF1α but not HIF2α. Whereas the mRNA levels of PHLPP are not significantly altered by oxygen deprivation, the reduction of PHLPP expression is caused by decreased protein translation downstream of mTOR and increased degradation. Specifically, hypoxia-induced downregulation of PHLPP is partially rescued in TSC2 or 4E-BP1 knockdown cells as the result of elevated mTOR activity and protein synthesis. Moreover, oxygen deprivation destabilizes PHLPP protein by decreasing the expression of USP46, a deubiquitinase of PHLPP. Functionally, downregulation of PHLPP contributes to hypoxia-induced chemoresistance in colon cancer cells. Taken together, we have identified hypoxia as a novel mechanism by which PHLPP is downregulated in colon cancer, and the expression of PHLPP may serve as a biomarker for better understanding of chemoresistance in cancer treatment.  相似文献   

3.
Several types of genetic and epigenetic regulation have been implicated in the development of drug resistance, one significant challenge for cancer therapy. Although changes in the expression of non-coding RNA are also responsible for drug resistance, the specific identities and roles of them remain to be elucidated. Long non-coding RNAs (lncRNAs) are a type of ncRNA (> 200 nt) that influence the regulation of gene expression in various ways. In this study, we aimed to identify differentially expressed lncRNAs in 5-fluorouracil-resistant colon cancer cells. Using two pairs of 5-FU-resistant cells derived from the human colon cancer cell lines SNU-C4 and SNU-C5, we analyzed the expression of 90 lncRNAs by qPCR-based profiling and found that 19 and 23 lncRNAs were differentially expressed in SNU-C4R and SNU-C5R cells, respectively. We confirmed that snaR and BACE1AS were downregulated in resistant cells. To further investigate the effects of snaR on cell growth, cell viability and cell cycle were analyzed after transfection of siRNAs targeting snaR. Down-regulation of snaR decreased cell death after 5-FU treatment, which indicates that snaR loss decreases in vitro sensitivity to 5-FU. Our results provide an important insight into the involvement of lncRNAs in 5-FU resistance in colon cancer cells.  相似文献   

4.
Fan  You-Ling  Li  Heng-Chang  Zhao  Wei  Peng  Hui-Hua  Huang  Fang  Jiang  Wei-Hang  Xu  Shi-Yuan 《Neurochemical research》2016,41(9):2425-2432

Bupivacaine is widely used for regional anesthesia, spinal anesthesia, and pain management. However, bupivacaine could cause neuronal injury. Curcumin, a low molecular weight polyphenol, has a variety of bioactivities and may exert neuroprotective effects against damage induced by some stimuli. In the present study, we tested whether curcumin could attenuate bupivacaine-induced neurotoxicity in SH-SY5Y cells. Cell injury was evaluated by examining cell viability, mitochondrial damage and apoptosis. We also investigated the levels of activation of the Akt signaling pathway and the effect of Akt inhibition by triciribine on cell injury following bupivacaine and curcumin treatment. Our findings showed that the bupivacaine treatment could induce neurotoxicity. Pretreatment of the SH-SY5Y cells with curcumin significantly attenuated bupivacaine-induced neurotoxicity. Interestingly, the curcumin treatment increased the levels of Akt phosphorylation. More significantly, the pharmacological inhibition of Akt abolished the cytoprotective effect of curcumin against bupivacaine-induced cell injury. Our data suggest that pretreating SH-SY5Y cells with curcumin provides a protective effect on bupivacaine-induced neuronal injury via activation of the Akt signaling pathway.

  相似文献   

5.
Small-molecule inhibition of hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) is being explored for the treatment of anemia. Previous studies have suggested that HIF-P4H-2 inhibition may also protect the heart from an ischemic insult. Hif-p4h-2gt/gt mice, which have 76 to 93% knockdown of Hif-p4h-2 mRNA in endothelial cells, fibroblasts, and cardiomyocytes and normoxic stabilization of Hif-α, were subjected to ligation of the left anterior descending coronary artery (LAD). Hif-p4h-2 deficiency resulted in increased survival, better-preserved left ventricle (LV) systolic function, and a smaller infarct size. Surprisingly, a significantly larger area of the LV remained perfused during LAD ligation in Hif-p4h-2gt/gt hearts than in wild-type hearts. However, no difference was observed in collateral vessels, while the size of capillaries, but not their number, was significantly greater in Hif-p4h-2gt/gt hearts than in wild-type hearts. Hif-p4h-2gt/gt mice showed increased cardiac expression of endothelial Hif target genes for Tie-2, apelin, APJ, and endothelial nitric oxide (NO) synthase (eNOS) and increased serum NO concentrations. Remarkably, blockage of Tie-2 signaling was sufficient to normalize cardiac apelin and APJ expression and resulted in reversal of the enlarged-capillary phenotype and ischemic cardioprotection in Hif-p4h-2gt/gt hearts. Activation of the hypoxia response by HIF-P4H-2 inhibition in endothelial cells appears to be a major determinant of ischemic cardioprotection and justifies the exploration of systemic small-molecule HIF-P4H-2 inhibitors for ischemic heart disease.  相似文献   

6.
The targeting of oncogenic ‘driver’ kinases with small molecule inhibitors has proven to be a highly effective therapeutic strategy in selected non-small cell lung cancer (NSCLC) patients. However, acquired resistance to targeted therapies invariably arises and is a major limitation to patient care. ROS1 fusion proteins are a recently described class of oncogenic driver, and NSCLC patients that express these fusions generally respond well to ROS1-targeted therapy. In this study, we sought to determine mechanisms of acquired resistance to ROS1 inhibition. To accomplish this, we analyzed tumor samples from a patient who initially responded to the ROS1 inhibitor crizotinib but eventually developed acquired resistance. In addition, we generated a ROS1 inhibition-resistant derivative of the initially sensitive NSCLC cell line HCC78. Previously described mechanisms of acquired resistance to tyrosine kinase inhibitors including target kinase-domain mutation, target copy number gain, epithelial-mesenchymal transition, and conversion to small cell lung cancer histology were found to not underlie resistance in the patient sample or resistant cell line. However, we did observe a switch in the control of growth and survival signaling pathways from ROS1 to EGFR in the resistant cell line. As a result of this switch, ROS1 inhibition-resistant HCC78 cells became sensitive to EGFR inhibition, an effect that was enhanced by co-treatment with a ROS1 inhibitor. Our results suggest that co-inhibition of ROS1 and EGFR may be an effective strategy to combat resistance to targeted therapy in some ROS1 fusion-positive NSCLC patients.  相似文献   

7.
Memory B cells (MBCs) and long-lived plasma cells (LLPCs) are responsible for immunological “memory”, which can last for many years. The long-term survival niche for LLPCs in the bone marrow is well characterized; however, the corresponding niche for MBCs is unclear. BILL-cadherin/cadherin-17 (CDH17) is the only member of the cadherin superfamily that is expressed on mouse B lymphocytes in a spatiotemporally regulated manner. Here, we show that half of all MBCs regain expression of CDH17 during the later stage of development. The maintenance of high affinity antigen-specific serum antibodies was impaired in CDH17-/- mice and the number of antigen-specific MBCs was reduced as compared to wild-type mice (WT). Also, specific responses to secondary antigens were ablated in CDH17-/- mice, whereas primary antibody responses were the same as those in WT mice. Cell cycle analysis revealed a decline in the proliferation of CDH17- MBCs as compared to CDH17+ MBCs. In addition, we identified a subpopulation of splenic stromal cells, MAdCAM-1+ blood endothelial cells (BEC), which was CDH17+. Taken together, these results suggest that CDH17 plays a role in the long-term survival of MBCs, presumably via an “MBC niche” comprising, at least in part, BEC in the spleen.  相似文献   

8.
Neurons are highly dependent on astrocyte survival during brain damage. To identify genes involved in astrocyte function during ischemia, we performed mRNA differential display in astrocytes after oxygen and glucose deprivation (OGD). We detected a robust down-regulation of S6 kinase 1 (S6K1) mRNA that was accompanied by a sharp decrease in protein levels and activity. OGD-induced apoptosis was increased by the combined deletion of S6K1 and S6K2 genes, as well as by treatment with rapamycin that inhibits S6K1 activity by acting on the upstream regulator mTOR (mammalian target of rapamycin). Astrocytes lacking S6K1 and S6K2 (S6K1;S6K2−/−) displayed a defect in BAD phosphorylation and in the expression of the anti-apoptotic factors Bcl-2 and Bcl-xL. Furthermore reactive oxygen species were increased while translation recovery was impaired in S6K-deficient astrocytes following OGD. Rescue of either S6K1 or S6K2 expression by adenoviral infection revealed that protective functions were specifically mediated by S6K1, because this isoform selectively promoted resistance to OGD and reduction of ROS levels. Finally, “in vivo” effects of S6K suppression were analyzed in the permanent middle cerebral artery occlusion model of ischemia, in which absence of S6K expression increased mortality and infarct volume. In summary, this article uncovers a protective role for astrocyte S6K1 against brain ischemia, indicating a functional pathway that senses nutrient and oxygen levels and may be beneficial for neuronal survival.Astrocytes are the most abundant cells in the central nervous system. Their functions are crucial for central nervous system homeostasis, because they provide trophic, metabolic, and antioxidant support to neurons. In addition, astrocytes show the ability to modulate synaptic activity and are responsible for preserving neuronal integrity in conditions of disease and injury. In this regard, recent evidence indicates that they are protective for neurons during cerebral ischemia (1). As there is a growing consensus that astrocyte dysfunction may compromise the ability of neurons to survive, the need for studies that clarify the molecular mechanisms involved in the astrocytic response to ischemia is plainly justified.Among the intracellular pathways that integrate signals from nutrients and oxygen, the mammalian target of rapamycin (mTOR)2 kinase plays an evolutionary conserved role in the regulation of cell growth, proliferation, survival, and metabolism (2). mTOR exists in the cell in at least two distinct complexes with different partners, mTORC1 and mTORC2. The activity of mTORC1 is exquisitely sensitive to the energy status of the cell and is blocked by the macrolide antibiotic rapamycin. Glucose and oxygen deprivation inhibits mTORC1 activity, respectively, through the regulation of AMP-activated kinase and REDD1/REDD2 proteins (35). These factors favor the action of the tuberous sclerosis proteins TSC1 and TSC2, which suppress mTORC1 by forming a complex with GTPase-activating protein (GAP) activity for the small GTPase Rheb (6).In turn, mTORC1 phosphorylates at least three distinct classes of substrates, the eIF4E-binding proteins (4EBP-1 to -3), the ribosomal protein S6 kinases (S6K1 and S6K2) and the serum- and glucocorticoid-inducible kinase 1. However, the pathophysiological role of the mTOR pathway during hypoxia-induced brain damage and the involvement of the distinct mTOR effectors remain to be established.The anabolic actions of the mTOR pathway may in part depend on the regulation of protein synthesis. mTOR associates with the translation initiation factor eIF3 (7). In turn the mTORC1 substrates 4EBPs interact with the cap-binding protein eIF4E (8), while S6Ks phosphorylate the ribosomal protein rpS6 and eIF4B (9, 10). However loss of function mouse mutants of 4EBPs and S6Ks failed to uncover a role of these effectors in global protein synthesis during resting conditions, while instead suggesting an involvement in energy homeostasis and mitochondrial function (1113). Therefore, mTOR plays critical anabolic and energetic functions still poorly understood, raising the appealing possibility that hypoxia-induced down-regulation of the mTOR pathway could be linked to brain damage. In this regard, S6K, besides stimulating phosphorylation of the ribosomal proteins rpS6 and eIF4B, has been shown to inactivate the anti-apoptotic factor BAD and the insulin receptor substrate IRS (13, 14), demonstrating additional targets that are not directly involved in protein synthesis and may be relevant for the physiological action of the pathway. Moreover, S6K activity is decreased in in vivo paradigms of global and focal brain ischemia (1517); whereas insulin-activated cardioprotection during ischemia/reoxygenation-induced injury is linked to S6K activation (18).Here we show that oxygen and glucose deprivation (OGD) decreases S6K1 mRNA levels in astrocyte cultures, leading to a reduction of S6K1 protein and activity. S6K loss of function leads to increased astrocyte death during ischemia, impairment of protein synthesis recovery, unbalance between mitochondrial pro- and anti-apoptotic factors and rise in ROS levels. Finally we reveal an effect of S6K suppression on mouse mortality and infarct volume following permanent middle cerebral artery occlusion. Our data indicate a novel role of S6K1 promoting astrocyte survival, protein synthesis, and brain protection in conditions of ischemic stress.  相似文献   

9.
10.
TRAIL is a death receptor ligand that induces cell death preferentially in tumor cells. Recombinant soluble TRAIL, however, performs poorly as an anti-cancer therapeutic because oligomerization is required for potent biological activity. We previously generated a diabody format of tumor-targeted TRAIL termed DbαEGFR-scTRAIL, comprising single-stranded TRAIL molecules (scTRAIL) and the variable domains of a humanized variant of the EGFR blocking antibody Cetuximab. Here we define the bioactivity of DbαEGFR-scTRAIL with regard to both EGFR inhibition and TRAIL receptor activation in 3D cultures of Caco-2 colorectal cancer cells, which express wild-type K-Ras. Compared with conventional 2D cultures, Caco-2 cells displayed strongly enhanced sensitivity toward DbαEGFR-scTRAIL in these 3D cultures. We show that the antibody moiety of DbαEGFR-scTRAIL not only efficiently competed with ligand-induced EGFR function, but also determined the apoptotic response by specifically directing DbαEGFR-scTRAIL to EGFR-positive cells. To address how aberrantly activated K-Ras, which leads to Cetuximab resistance, affects DbαEGFR-scTRAIL sensitivity, we generated stable Caco-2tet cells inducibly expressing oncogenic K-RasG12V. In the presence of doxycycline, these cells showed increased resistance to DbαEGFR-scTRAIL, associated with the elevated expression of the anti-apoptotic proteins cIAP2, Bcl-xL and FlipS. Co-treatment of cells with the Smac mimetic SM83 restored the DbαEGFR-scTRAIL-induced apoptotic response. Importantly, this synergy between DbαEGFR-scTRAIL and SM83 also translated to 3D cultures of oncogenic K-Ras expressing HCT-116 and LoVo colorectal cancer cells. Our findings thus support the notion that DbαEGFR-scTRAIL therapy in combination with apoptosis-sensitizing agents may be promising for the treatment of EGFR-positive colorectal cancers, independently of their KRAS status.  相似文献   

11.
12.
Viruses have evolved an assortment of mechanisms for regulating the Akt signaling pathway to establish a cellular environment more favorable for viral replication. Myxoma virus (MYXV) is a rabbit-specific poxvirus that encodes many immunomodulatory factors, including an ankyrin repeat-containing host range protein termed M-T5 that functions to regulate tropism of MYXV for rabbit lymphocytes and certain human cancer cells. MYXV permissiveness in these human cancer cells is dependent upon the direct interaction between M-T5 and Akt, which has been shown to induce the kinase activity of Akt. In this study, an array of compounds that selectively manipulate Akt signaling was screened and we show that only a subset of Akt inhibitors significantly decreased the ability of MYXV to replicate in previously permissive human cancer cells. Furthermore, reduced viral replication efficiency was correlated with lower levels of phosphorylated Akt. In contrast, the PP2A-specific phosphatase inhibitor okadaic acid promoted increased Akt kinase activation and rescued MYXV replication in human cancer cells that did not previously support viral replication. Finally, phosphorylation of Akt at residue Thr308 was shown to dictate the physical interaction between Akt and M-T5, which then leads to phosphorylation of Ser473 and permits productive MYXV replication in these human cancer cells. The results of this study further characterize the mechanism by which M-T5 exploits the Akt signaling cascade and affirms this interaction as a major tropism determinant that regulates the replication efficiency of MYXV in human cancer cells.Following viral infection, substantial alterations in cellular physiology often lead to modification of various cellular pathways critical to the success of viral replication. The demands for energy, nutrients, and macromolecular synthesis that accompany viral replication can be substantial; thus, many viruses have evolved elaborate strategies for hijacking key cellular signaling networks necessary to support their demands (9). By the same token, antiviral pathways activated by the virus infection may also need to be blocked or subverted to ensure successful virus replication. Poxviruses possess large double-stranded DNA (dsDNA) genomes that encode multiple gene products that specifically modify or debilitate the various host signaling responses of the infected cell (28). Many of the immunoregulatory factors expressed by poxviruses have been well characterized, and these factors include virokines, viroreceptors, signaling modulators, and inhibitors of various antiviral responses, such as initiation of apoptosis pathways and signaling by protective cytokines, like interferon and tumor necrosis factor (TNF) (42).Myxoma virus (MYXV) is a member of the Leporipoxvirus genus and exhibits a restricted pathogenesis that is limited to rabbits, primarily due to its specific immunomodulation of the immune system of leporids (48). In rabbits (Sylvilagus spp.) of the Americas, MYXV infection results in a benign infection, characterized by a cutaneous fibroma restricted to the site of inoculation (14); however, the same virus causes a rapid systemic and highly lethal infection called myxomatosis in European rabbits (Oryctolagus cuniculus) (15). Although MYXV has a narrow host range in nature and is pathogenic only to European rabbits, the tropism of MYXV has recently been extended to include human tumor cells in vitro (6, 47, 54, 57, 60) and in xenografted mice in vivo (24, 25, 61). The mechanisms that mediate MYXV tropism in human cancer cells are still being investigated, but one signaling requirement has been linked to the state of cellular Akt kinase activity (57). Human cancer cells (called type I) that exhibit high levels of endogenous phosphorylated Akt (Ser473 and Thr308) supported permissive MYXV replication, while cells with no detectable endogenous phosphorylated Akt, which were unaffected by the virus infection, were nonpermissive (type III). A unique subset of cancer cells (type II) were found to be permissive to wild-type MYXV but did not support MYXV replication following the deletion of the viral host range factor M-T5 (vMyxT5KO). These type II cells constitutively expressed only low levels of endogenous phosphorylated Akt (mostly at Thr308), but following infection with permissive MYXV, a significant increase in Akt phosphorylation (particularly at Ser473) was observed. In stark contrast, the endogenous levels of phosphorylated Akt remained essentially unchanged when type II cells were infected with the nonpermissive M-T5 knockout virus MYXV (vMyxT5KO) (57).The host range factor M-T5 is essential for MYXV replication in rabbit primary lymphocytes (RL-5 cells) and for virus pathogenesis in European rabbits (31). Structurally, M-T5 possesses seven ankyrin (ANK) repeats and a carboxyl-terminal PRANC (pox protein repeats of ankyrin C-terminal) motif, which closely resembles a cellular protein motif called the F-box domain (29). Interaction between M-T5 and components of the cellular SCF (Skp-cullin-F-box) ubiquitin ligase complex was shown to protect MYXV-infected cells from cell cycle arrest (19). In MYXV-infected type II human cancer cells, physical interaction between M-T5 and cellular Akt was shown to upregulate the kinase activity of Akt (57). In another study, M-T5 was shown to be functionally interchangeable with the host ANK repeat-containing protein PIKE-A, and activation of Akt by either PIKE-A or the viral M-T5 protein was sufficient to mediate MYXV permissiveness in type II human cancer cells (59). Similarly, addition of the immunosuppressant drug rapamycin was successful at rescuing vMyxT5KO replication in type II cells by upregulating Akt activation through the mTOR pathway (47). The critical role of Akt in the regulation of multiple biological processes makes Akt a central regulator of cellular signaling, and therefore, it is not surprising that many viruses have developed sophisticated strategies for manipulating the activation of Akt (9, 11).The serine/threonine kinase Akt (also called protein kinase B [PKB]) was initially discovered as the cellular homolog of the viral oncogene (v-Akt) carried by the AKT8 retrovirus isolated from a murine T-cell lymphoma (7, 20, 46). There are three isoforms found in mammals (Akt1, -2, and -3), encoded by separate genes but sharing over 80% amino acid sequence identity. Activation of Akt is predominantly dependent upon phosphoinositide 3-kinase (PI3K), which phosphorylates phosphoinositides (PIs) at the D3 position of the inositol ring to generate PI(3,4,5)P3 (PIP3). Akt possesses an N-terminal PH (pleckstrin homology) domain that binds PIP3 to promote its translocation of the plasma membrane. Once localized at the membrane, Akt becomes phosphorylated at residue Thr308 in the activation loop by phosphoinositide-dependent kinase 1 (PDK1) and also within the carboxy terminus at residue Ser473 by mTORC2 (mammalian target of rapamycin complex 2) (2, 49, 50). Phosphorylation of both sites is necessary for full induction of Akt kinase activity. Akt is a key regulator of many important cellular functions, including cell survival, proliferation, glucose metabolism, and protein synthesis. In the majority of human cancer cells, the Akt pathway is either mutated or constitutively activated, contributing to cancer progression through both stimulation of cellular proliferation and inhibition of apoptosis (34, 55).In this study, we screened an array of Akt inhibitor compounds that selectively manipulate the Akt signaling network at some level and report that certain Akt inhibitors significantly blocked MYXV replication in previously permissive type I and II human cancer cells. An additional set of inhibitors selectively inhibited only the replication of MYXV deleted for M-T5 and did not modify the replicative ability of the parental wild-type virus. Furthermore, the decrease in viral replication efficiency was correlated with lower levels of phosphorylated Akt at residues Thr308 and Ser473. In contrast, certain PP2A-specific phosphatase inhibitors, such as okadaic acid, promoted increased Akt kinase activation and rescued MYXV replication in type III human cancer cells that did not previously support viral replication. Finally, we demonstrate that the hemi-phosphorylation of Akt at residue Thr308 dictates physical interaction between Akt and M-T5, which ultimately leads to productive MYXV replication in type II cancer cells. These studies show that activation of the Akt signaling cascade is essential for efficient MYXV replication in human cancer cells and further demonstrate the dynamic role by which M-T5 manipulates Akt signaling to establish a cellular environment more favorable for viral replication.  相似文献   

13.
Painful peripheral neuropathy is a serious dose-limiting side effect of paclitaxel therapy, which unfortunately often happens during the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms of the painful peripheral neuropathy remain largely unknown. Here, we found that paclitaxel treatment (3 × 8 mg/kg, cumulative dose 24 mg/kg) upregulated the expression of CX3CR1 and phosphorylated Akt1 in DRG and spinal dorsal horn. Blocking of Akt1 pathway activation with different inhibitor (MK-2206 or LY294002) significantly attenuated mechanical allodynia and thermal hyperalgesia induced by paclitaxel. Furthermore, inhibition of CX3CR1 by using neutralizing antibody not only prevented Akt1 activation in DRG and spinal dorsal horn but also alleviated pain-related behavior induced by paclitaxel treatment. This study suggested that CX3CR1/Akt1 signaling pathway may be a potential target for prevention and reversion of the painful peripheral neuropathy induced by paclitaxel.  相似文献   

14.

Background

The neurotensin (NTS) and its specific high affinity G protein coupled receptor, the NT1 receptor (NTSR1), are considered to be a good candidate for one of the factors implicated in neoplastic progression. In breast cancer cells, functionally expressed NT1 receptor coordinates a series of transforming functions including cellular migration and invasion.

Methods and Results

we investigated the expression of NTS and NTSR1 in normal human breast tissue and in invasive ductal breast carcinomas (IDCs) by immunohistochemistry and RT-PCR. NTS is expressed and up-regulated by estrogen in normal epithelial breast cells. NTS is also found expressed in the ductal and invasive components of IDCs. The high expression of NTSR1 is associated with the SBR grade, the size of the tumor, and the number of metastatic lymph nodes. Furthermore, the NTSR1 high expression is an independent factor of prognosis associated with the death of patients.

Conclusion

these data support the activation of neurotensinergic deleterious pathways in breast cancer progression.  相似文献   

15.
The degree of lymphocytic infiltration in and around breast tumours together with sinus histiocytosis and follicular hyperplasia in regional lymph nodes has been studied in 310 cases of breast cancer treated with standard radical mastectomy. The presence of these features was regarded as evidence of host resistance against the tumour and made possible the division of patients into three classes—no or poor reaction, good reaction, and strong reaction. The grading was shown to have a close correlation with prognosis. The relationship between host defensive factor grading and malignancy, nodal metastases, and survival was also examined. The results support the hypothesis that prognosis in breast cancer is closely related to a histological picture of cell-mediated immunity against the tumour.  相似文献   

16.
Vaccinia virus (VV) is an enveloped DNA virus from the poxvirus family and has played a crucial role in the eradication of smallpox. It continues to be used in immunotherapy for the prevention of infectious diseases and treatment of cancer. However, the mechanisms of poxvirus entry, the host factors that affect viral virulence, and the reasons for its natural tropism for tumor cells are incompletely understood. By studying the effect of hypoxia on VV infection, we found that vascular endothelial growth factor A (VEGF-A) augments oncolytic VV cytotoxicity. VEGF derived from tumor cells acts to increase VV internalization, resulting in increased replication and cytotoxicity in an AKT-dependent manner in both tumor cells and normal respiratory epithelial cells. Overexpression of VEGF also enhances VV infection within tumor tissue in vivo after systemic delivery. These results highlight the importance of VEGF expression in VV infection and have potential implications for the design of new strategies to prevent poxvirus infection and the development of future generations of oncolytic VV in combination with conventional or biological therapies.  相似文献   

17.
Here, we show that the expression of the Golgi-localized serine-threonine kinase protein kinase D3 (PKD3) is elevated in triple-negative breast cancer (TNBC). Using an antibody array, we identified PKD3 to trigger the activation of S6 kinase 1 (S6K1), a main downstream target of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. Accordingly, PKD3 knockdown in TNBC cells led to reduced S6K1 phosphorylation, which was associated with impaired activation of mTORC1 at endolysosomal membranes, the accumulation of the mannose 6-phosphate receptor in and the recruitment of the autophagy marker light chain 3 to enlarged acidic vesicles. We further show that PKD3 depletion strongly inhibited cell spreading and proliferation of TNBC cells, identifying this kinase as a potential novel molecular therapeutic target in TNBC. Together, our data suggest that PKD3 in TNBC cells provides a molecular connection between the Golgi and endolysosomal compartments to enhance proliferative mTORC1-S6K1 signaling.  相似文献   

18.
Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.  相似文献   

19.
The JNK pathway modulates AP-1 activity. While in some cells it may have proliferative and protective roles, in neuronal cells it is involved in apoptosis in response to stress or withdrawal of survival signals. To understand how JNK activation leads to apoptosis, we used PC12 cells and primary neuronal cultures. In PC12 cells, deliberate JNK activation is followed by induction of Fas ligand (FasL) expression and apoptosis. JNK activation detected by c-Jun phosphorylation and FasL induction are also observed after removal of either nerve growth factor from differentiated PC12 cells or KCl from primary cerebellar granule neurons (CGCs). Sequestation of FasL by incubation with a Fas-Fc decoy inhibits apoptosis in all three cases. CGCs derived from gld mice (defective in FasL) are less sensitive to apoptosis caused by KCl removal than wild-type neurons. In PC12 cells, protection is also conferred by a c-Jun mutant lacking JNK phosphoacceptor sites and a small molecule inhibitor of p38 mitogen-activated protein kinase and JNK, which inhibits FasL induction. Hence, the JNK-to-c-Jun-to-FasL pathway is an important mediator of stress-induced neuronal apoptosis.  相似文献   

20.
Abstract: A major histopathological hallmark in Alzheimer's disease consists of the extracellular deposition of the amyloid β-peptide (Aβ) that is proteolytically derived from the β-amyloid precursor protein (βAPP). An alternative, nonamyloidogenic cleavage, elicited by a protease called α-secretase, occurs inside the Aβ sequence and gives rise to APPα, a major secreted C-terminal-truncated form of βAPP. Here, we demonstrate that human embryonic kidney 293 (HK293) cells contain a chymotryptic-like activity that can be ascribed to the proteasome and that selective inhibitors of this enzyme reduce the phorbol 12,13-dibutyrate-sensitive APPα secretion by these cells. Furthermore, we establish that a specific proteasome blocker, lactacystin, also induces increased secretion of Aβ peptide in stably transfected HK293 cells overexpressing wild-type βAPP751. Altogether, this study represents the first identification of a proteolytic activity, namely, the proteasome, contributing likely through yet unknown intracellular relays, to the α-secretase pathway in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号