首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
玉米耐铝毒基因的分离   总被引:12,自引:0,他引:12  
以抑制消减杂交(SSH)为手段,以玉米对铝敏感的自交系Mo17和耐铝的自交系TL94B为材料,分别构建它们的正向和反向消减文库,分别筛选获得了124、47、103和64个阳性克隆。对文库的鉴定表明,插入片段分布在0.25-1.0kb之间,阳性克隆率在18%左右。对338个阳性克隆进行测序,得到232种表达序列标签(EST),其中70.2%的EST可推测其功能。结果表明,玉米的铝离子胁迫反应涉及胁迫因子的信号传导、响应基因的转录表达与调控、物质的合成与运输、细胞结构和功能的改变等。  相似文献   

2.
To investigate the genetic basis of maize seedling response to waterlogging, we performed a genome-wide association study in 144 maize inbred lines, measuring length, fresh and dry weight of roots and shoots under normal and waterlogged conditions using 45,868 SNPs. This panel was divided into three subgroups based on the population structure results and the LD decay distance was 180 kb. A biparental advanced backcross (AB) population was also used to detect quantitative trait loci (QTL). In a comparison of 16 different models, principal components analysis (PCA/top PC3)?+?K was found to be best for reduction of false-positive associations for further analysis. A whole-genome scan detected four strong peak signals (<?2.18?×?10?5) significantly associated with the waterlogging response on chromosomes 5, 6 and 9. SNP4784, SNP200, SNP298, and SNP6314 showed significant association with corresponding traits under waterlogging and explained 14.99–19.36 %, 15.75–17.64 %, 16.08 % and 15.44 % of the phenotypic variation, respectively. The identified SNPs were located in GRMZM2G012046, GRMZM2G009808, GRMZM2G137108 and GRMZM2G369629 (AGPV1). SNP4784 (GRMZM2G012046) was colocalized with the major QTL that was identified with the same traits in the AB population. Forty-seven SNPs significantly associated (P?<?2.18?×?10?4) with six traits in association mapping were identified and, among these, 33 SNPs were already reported in literature as waterlogging-related traits. These results will help elucidate the genetic basis of differential responses and tolerance to waterlogging stress among maize inbred lines, and provide novel loci for improvement of waterlogging tolerance of maize inbred lines using marker-assisted selection.  相似文献   

3.
Tibetan wild barley (Hordeum vulgare L. ssp. spontaneum), originated and grown in harsh enviroment in Tibet, is well-known for its rich germpalsm with high tolerance to abiotic stresses. However, the genetic variation and genes involved in Al tolerance are not totally known for the wild barley. In this study, a genome-wide association analysis (GWAS) was performed by using four root parameters related with Al tolerance and 469 DArT markers on 7 chromosomes within or across 110 Tibetan wild accessions and 56 cultivated cultivars. Population structure and cluster analysis revealed that a wide genetic diversity was present in Tibetan wild barley. Linkage disequilibrium (LD) decayed more rapidly in Tibetan wild barley (9.30 cM) than cultivated barley (11.52 cM), indicating that GWAS may provide higher resolution in the Tibetan group. Two novel Tibetan group-specific loci, bpb-9458 and bpb-8524 were identified, which were associated with relative longest root growth (RLRG), located at 2H and 7H on barely genome, and could explain 12.9% and 9.7% of the phenotypic variation, respectively. Moreover, a common locus bpb-6949, localized 0.8 cM away from a candidate gene HvMATE, was detected in both wild and cultivated barleys, and showed significant association with total root growth (TRG). The present study highlights that Tibetan wild barley could provide elite germplasm novel genes for barley Al-tolerant improvement.  相似文献   

4.
5.
6.
7.
8.
9.
2型糖尿病易感基因的连锁和关联研究   总被引:11,自引:0,他引:11  
2型糖尿病(T2DM)是由于胰岛素抵抗和β细胞分泌缺陷导致高血糖的一种复杂多基因疾病。遗传因素在T2DM的发生发展中起着重要的作用,其遗传率估计为70%~80%。鉴定2型糖尿病基因将有助于阐明其发病机制,发展更好的诊断、预防和治疗策略。2型糖尿病易感基因的鉴定方法主要有候选基因关联研究和全基因组连锁分析。有3种类型的候选基因:功能候选基因、图位候选基因和表达候选基因。虽然许多候选基因与T2DM的关联分析已经进行,但多数都没有得到一致的重复,过氧化物酶体增殖物激活受-γ,体和β-细胞ATP敏感性钾通道基因是目前最好重复的基因。迄今为止,T2DM的全基因组扫描已在20多个不同的群体中进行,包括欧洲人、美国白人、墨西哥裔美国人、美国本地印度人、非洲裔美国人和亚洲人,这些研究鉴定了一些与T2DM相关的QTLs区域。与T2DM显著和证实连锁的区域包括1q25、2q37.3q28、3p24、6q22、8p23、10q26、12q24、18p11、20q13等,与T2DM提示连锁的区域有1q42、2p21、2q24、4q34、5q13、5q31、7q32、9p24、9q21、10p14、11p13、11q13、12q15、14q23、20p12、Xq23等。鉴定这些区域的T2DMQTLs基因及其作用机制是未来的主要挑战。把DNA微阵列和蛋白质组学技术结合起来应用于传统的连锁分析和关联研究,研究基因-基因间、基因-环境间的互作和多个基因对T2DM的加性效应和综合作用,进一步加强国际协作,T2DM的遗传机制可望在不远的将来得到阐明。本文总结了2型糖尿病基因鉴定的现状,重点在一些得到重复的区域和未来的展望。  相似文献   

10.
Type 2 diabetes mellitus (T2DM) is a complex disease characterized by hyperglycemia, insulin resistance, and impaired insulin secretion. T2DM is under strong genetic control. Identification and characterization of genes involved in determining T2DM will contribute to a greater understanding of the pathogenesis of T2DM, and ultimately might lead to the development of better diagnosis, prevention and treatment strategies. Efforts to identify T2DM susceptibility genes have focused on candidate gene approach (association studies) and genome-wide scans (linkage analyses). In this article, we review the current status for mapping and identification of genes for T2DM, with a focus on some promising regions (or genes) and future prospects.  相似文献   

11.
Genome-Wide Analysis of bZIP-Encoding Genes in Maize   总被引:8,自引:0,他引:8  
In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a–f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson''s correlation coefficient analysis.  相似文献   

12.
13.
Maize rough dwarf disease (MRDD) is a destructive viral disease in China, which results in 20–30% of the maize yield losses in affected areas and even as high as 100% in severely infected fields. Understanding the genetic basis of resistance will provide important insights for maize breeding program. In this study, a diverse maize population comprising of 527 inbred lines was evaluated in four environments and a genome-wide association study (GWAS) was undertaken with over 556000 SNP markers. Fifteen candidate genes associated with MRDD resistance were identified, including ten genes with annotated protein encoding functions. The homologous of nine candidate genes were predicted to relate to plant defense in different species based on published results. Significant correlation (R2 = 0.79) between the MRDD severity and the number of resistance alleles was observed. Consequently, we have broadened the resistant germplasm to MRDD and identified a number of resistance alleles by GWAS. The results in present study also imply the candidate genes in defense pathway play an important role in resistance to MRDD in maize.  相似文献   

14.
Su  Zhijun  Li  Xinhai  Hao  Zhuanfang  Xie  Chuanxiao  Li  Mingshun  Weng  Jianfeng  Zhang  Degui  Liang  Xiaoling  Wang  Zhigang  Gao  Julin  Zhang  Shihuang 《Plant Molecular Biology Reporter》2011,29(3):714-722
Plant Molecular Biology Reporter - As a very complex quantitative trait, drought tolerance has always been suspended with questions at the molecular level. Abscisic acid (ABA) is the main...  相似文献   

15.
Head smut, caused by the fungus Sphacelotheca reiliana (Kühn) Clint, is a devastating threat to maize production. In this study, QTL mapping of head smut resistance was performed using a recombinant inbred line (RIL) population from a cross between a resistant line “QI319” and a susceptible line “Huangzaosi” (HZS) with a genetic map constructed from genotyping-by-sequencing (GBS) data and composed of 1638 bin markers. Two head smut resistance QTL were identified, located on Chromosome 2 (q2.09HR) and Chromosome 5 (q5.03HR), q2.09HR is co-localized with a previously reported QTL for head smut resistance, and the effect of q5.03HR has been validated in backcross populations. It was also observed that pyramiding the resistant alleles of both QTL enhanced the level of resistance to head smut. A genome-wide association study (GWAS) using 277 diverse inbred lines was processed to validate the mapped QTL and to identify additional head smut resistance associations. A total of 58 associated SNPs were detected, which were distributed in 31 independent regions. SNPs with significant association to head smut resistance were detected within the q2.09HR and q5.03HR regions, confirming the linkage mapping results. It was also observed that both additive and epistastic effects determine the genetic architecture of head smut resistance in maize. As shown in this study, the combined strategy of linkage mapping and association analysis is a powerful approach in QTL dissection for disease resistance in maize.  相似文献   

16.
17.
Saruhan Guler  N.  Ozturk  K.  Sezgin  A.  Altuntas  C.  Kadioglu  A.  Terzi  R. 《Russian Journal of Plant Physiology》2021,68(6):1152-1160
Russian Journal of Plant Physiology - Alpha lipoic acid (ALA) is a potent antioxidant molecule that has positive effects on plant growth and the adaptation of plants to environmental stresses....  相似文献   

18.
Aluminum Toxicity and Tolerance in Plants   总被引:47,自引:0,他引:47       下载免费PDF全文
Delhaize E  Ryan PR 《Plant physiology》1995,107(2):315-321
  相似文献   

19.

Background

Large-scale screens of the maize genome identified 48 genes that show the putative signature of artificial selection during maize domestication or improvement. These selection-candidate genes may act as quantitative trait loci (QTL) that control the phenotypic differences between maize and its progenitor, teosinte. The selection-candidate genes appear to be located closer in the genome to domestication QTL than expected by chance.

Methods and Findings

As a step toward defining the traits controlled by these genes, we performed phenotype-genotype association mapping in teosinte for 32 of the 48 plus three other selection-candidate genes. Our analyses assayed 32 phenotypic traits, many of which were altered during maize domestication or improvement. We observed several significant associations between SNPs in the selection-candidate genes and trait variation in teosinte. These included two associations that surpassed the Bonferroni correction and five instances where a gene significantly associated with the same trait in both of our association mapping panels. Despite these significant associations, when compared as a group the selection-candidate genes performed no better than randomly chosen genes.

Conclusions

Our results suggest association analyses can be helpful for identifying traits under the control of selection-candidate genes. Indeed, we present evidence for new functions for several selection-candidate genes. However, with the current set of selection-candidate genes and our association mapping strategy, we found very few significant associations overall and no more than we would have found with randomly chosen genes. We discuss possible reasons that a large number of significant genotype-phenotype associations were not discovered.  相似文献   

20.
The genetic and physiological mechanisms of aluminum (Al) tolerance have been well studied in certain cereal crops, and Al tolerance genes have been identified in sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Rice (Oryza sativa) has been reported to be highly Al tolerant; however, a direct comparison of rice and other cereals has not been reported, and the mechanisms of rice Al tolerance are poorly understood. To facilitate Al tolerance phenotyping in rice, a high-throughput imaging system and root quantification computer program was developed, permitting quantification of the entire root system, rather than just the longest root. Additionally, a novel hydroponic solution was developed and optimized for Al tolerance screening in rice and compared with the Yoshida''s rice solution commonly used for rice Al tolerance studies. To gain a better understanding of Al tolerance in cereals, comparisons of Al tolerance across cereal species were conducted at four Al concentrations using seven to nine genetically diverse genotypes of wheat, maize (Zea mays), sorghum, and rice. Rice was significantly more tolerant than maize, wheat, and sorghum at all Al concentrations, with the mean Al tolerance level for rice found to be 2- to 6-fold greater than that in maize, wheat, and sorghum. Physiological experiments were conducted on a genetically diverse panel of more than 20 rice genotypes spanning the range of rice Al tolerance and compared with two maize genotypes to determine if rice utilizes the well-described Al tolerance mechanism of root tip Al exclusion mediated by organic acid exudation. These results clearly demonstrate that the extremely high levels of rice Al tolerance are mediated by a novel mechanism, which is independent of root tip Al exclusion.Aluminum (Al) is the most abundant metal in the earth''s crust, constituting approximately 7% of the soil (Wolt, 1994). Al is predominately found as a key component of soil clays; however, under highly acidic soil conditions (pH < 5.0), Al3+ is solubilized into the soil solution and is highly phytotoxic. Al3+ causes a rapid inhibition of root growth that leads to a reduced and stunted root system, thus having a direct effect on the ability of a plant to acquire both water and nutrients. Approximately 30% of the world''s total land area and over 50% of potentially arable lands are acidic, with the majority (60%) found in the tropics and subtropics (von Uexkull and Mutert, 1995). Thus, acidic soils are a major limitation to crop production, particularly in the developing world.As a whole, cereal crops (Poaceae) provide an excellent model for studying Al tolerance because of their abundant genetic resources, large, active research communities, and importance to agriculture. In addition, work in one cereal species can rapidly translate into impact throughout the family. Previous research has focused on understanding the genetic and physiological mechanisms of Al tolerance in maize (Zea mays), sorghum (Sorghum bicolor), and wheat (Triticum aestivum). The most recognized physiological mechanism conferring Al tolerance in plants involves exclusion of Al from the root tip (Miyasaka et al., 1991; Delhaize and Ryan, 1995; Kochian, 1995; Kochian et al., 2004a, 2004b). The exclusion mechanism is primarily mediated by Al-activated exudation of organic acids such as malate, citrate, or oxalate from the root apex, the site of Al toxicity (Ryan et al., 1993, 2001; Ma et al., 2001). These organic acids chelate Al in the rhizosphere, reducing the concentration and toxicity of Al at the growing root tip (Ma et al., 2001). Phosphate has also been identified as a class of root exudates involved in cation chelation and therefore can be considered a potential exudate involved in Al exclusion from the root tip (Pellet et al., 1996).Al-activated malate and citrate anion efflux transporters have been cloned from wheat (ALMT1; Sasaki et al., 2004) and sorghum (SbMATE; Magalhaes et al., 2007), and root citrate efflux transporters have been implicated in Al tolerance in maize (Piñeros and Kochian, 2001; Zhang et al., 2001). Recently, a maize homolog of sorghum SbMATE was shown to be the root citrate efflux transporter that plays a role in maize Al tolerance (Maron et al., 2010). Although organic acids have been shown to play a major role in Al tolerance in these species, another exclusion mechanism has been identified in an Arabidopsis (Arabidopsis thaliana) mutant, where a root-mediated increase in rhizosphere pH lowers the Al3+ activity and thus participates in Al exclusion from the root apex (Degenhardt et al., 1998). Furthermore, there is clear evidence that tolerance in maize cannot be fully explained by organic acid release (Piñeros et al., 2005). These types of findings strongly suggest that multiple Al tolerance mechanisms exist in plants.Rice (Oryza sativa) has been reported to be the most Al-tolerant cereal crop under field conditions, capable of withstanding significantly higher concentrations of Al than other major cereals (Foy, 1988). Despite this fact, very little is known about the physiological mechanisms of Al tolerance in rice. Two independent studies have identified increased Al accumulation in the root apex in susceptible compared with Al-tolerant rice varieties, but no differences were observed in organic acid exudation or rhizosphere pH (Ma et al., 2002; Yang et al., 2008). These studies suggest that rice may contain novel physiological and/or genetic mechanisms that confer significantly higher levels of Al tolerance than those found in other cereals. A more thorough analysis is required to clarify the mechanism of Al tolerance in rice.Cultivated rice is characterized by deep genetic divergence between the two major varietal groups: Indica and Japonica (Dally and Second, 1990; Garris et al., 2005; Hu et al., 2006; Londo et al., 2006). Extensive selection pressure over the last 10,000 years has resulted in the formation of five genetically distinct subpopulations: indica and aus within the Indica varietal group, and temperate japonica, tropical japonica, and aromatic/groupV within the Japonica varietal group (Garris et al., 2005; Caicedo et al., 2007; K. Zhao and S. McCouch, personal communication). (Note: When referring to varietal groups, the first letter will be capitalized, while lowercase letters will be used to refer to the subpopulation groups.) Subpopulation differences in trait performance are often significant, particularly with respect to biotic and abiotic stress (Champoux et al., 1995; Lilley et al., 1996; Garris et al. 2003; Xu et al., 2009). This can lead to confusion because trait or performance differences may be confounded with subpopulation structure, leading to false positives (type 1 error; Devlin and Roeder, 1999; Pritchard and Donnelly, 2001; Yu et al., 2006; Zhao et al., 2007). Therefore, it is important to consider the subpopulation origin of genotypes being compared when studying the genetics and physiology of Al tolerance in rice.Al tolerance screening is typically conducted by comparing root growth of seedlings grown in hydroponic solutions, with and without Al (Piñeros and Kochian, 2001; Magalhaes et al., 2004; Sasaki et al., 2004). Sorghum and maize are often screened for Al tolerance in Magnavaca''s nutrient solution (Piñeros and Kochian, 2001; Magalhaes et al., 2004; Piñeros et al., 2005), while rice seedlings are typically grown in Yoshida''s solution (Yoshida et al., 1976). Furthermore, Al concentrations used to screen for Al tolerance in maize (222 μm), sorghum (148 μm), and wheat (100 μm) are significantly lower than those used for screening Al tolerance in rice (1,112–1,482 μm; Wu et al., 2000; Nguyen et al., 2001, 2002, 2003). These differences in chemical composition of the nutrient solutions make it difficult to directly compare plant response to Al across these cereals. In rice, the high Al concentrations required to observe significant differences in root growth between susceptible and resistant varieties also complicate Al tolerance screening due to the precipitation of Al along with other elements. The result is that control (−Al) and treatment (+Al) solutions may differ with regard to essential mineral nutrients that react with Al, leading to differences in growth not directly attributable to Al. Additionally, because the active form of Al that is toxic to root growth is Al3+, any Al that precipitates out of solution has no effect on root growth (Kochian et al., 2004a). In a hydroponic solution, Al may be found in one of four forms: (1) as free Al3+, where it actively inhibits root growth; (2) precipitated with other elements and essentially unavailable to inhibit plant growth; (3) different hydroxyl monomers of Al, which are not believed to be toxic to roots (Parker et al., 1988); or (4) complexed with other elements in an equilibrium between its active and inactive states. The degree to which Al inhibits root growth is primarily dependent upon the activity of free Al3+ in solution (Kochian et al., 2004a).The objectives of this study were to (1) develop and optimize a suitable nutrient solution and high-throughput Al tolerance screening method for rice; (2) quantify and compare differences in Al tolerance between maize, sorghum, wheat, and rice; and (3) use the developed screening methods to determine if rice utilizes the organic acid-mediated Al exclusion mechanism that is observed in maize, sorghum, and wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号