首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu,Zn superoxide dismutase (SOD1) is a dimeric metal-binding enzyme responsible for the dismutation of toxic superoxide to hydrogen peroxide and oxygen in cells. Mutations at dozens of sites in SOD1 induce amyotrophic lateral sclerosis (ALS), a fatal gain-of-function neurodegenerative disease whose molecular basis is unknown. To obtain insights into effects of the mutations on the folded and unfolded populations of immature monomeric forms whose aggregation or self-association may be responsible for ALS, the thermodynamic and kinetic folding properties of a set of disulfide-reduced and disulfide-oxidized Zn-free and Zn-bound stable monomeric SOD1 variants were compared to properties of the wild-type (WT) protein. The most striking effect of the mutations on the monomer stability was observed for the disulfide-reduced metal-free variants. Whereas the WT and S134N monomers are > 95% folded at neutral pH and 37 °C, A4V, L38V, G93A, and L106V ranged from 50% to ∼ 90% unfolded. The reduction of the disulfide bond was also found to reduce the apparent Zn affinity of the WT monomer by 750-fold, into the nanomolar range, where it may be unable to compete for free Zn in the cell. With the exception of the S134N metal-binding variant, the Zn affinity of disulfide-oxidized SOD1 monomers showed little sensitivity to amino acid replacements. These results suggest a model for SOD1 aggregation where the constant synthesis of ALS variants of SOD1 on ribosomes provides a pool of species in which the increased population of the unfolded state may favor aggregation over productive folding to the native dimeric state.  相似文献   

2.
《Journal of molecular biology》2014,426(24):4112-4124
Amyotrophic lateral sclerosis has been linked to the gain of aberrant function of superoxide dismutase, Cu,Zn-SOD1 upon protein misfolding. The mechanism of SOD1 misfolding is thought to involve mutations leading to the loss of Zn, followed by protein unfolding and aggregation. We show that the removal of Zn from SOD1 may not lead to an immediate unfolding but immediately deactivates the enzyme through a combination of subtle structural and electronic effects. Using quantum mechanics/discrete molecular dynamics, we showed that both Zn-less wild-type (WT)-SOD1 and its D124N mutant that does not bind Zn have at least metastable folded states. In those states, the reduction potential of Cu increases, leading to the presence of detectable amounts of Cu(I) instead of Cu(II) in the active site, as confirmed experimentally. The Cu(I) protein cannot participate in the catalytic Cu(I)–Cu(II) cycle. However, even without the full reduction to Cu(I), the Cu site in the Zn-less variants of SOD1 is shown to be catalytically incompetent: unable to bind superoxide in a way comparable to the WT-SOD1. The changes are more radical and different in the D124N Zn-less mutant than in the Zn-less WT-SOD1, suggesting D124N being perhaps not the most adequate model for Zn-less SOD1. Overall, Zn in SOD1 appears to be influencing the Cu site directly by adjusting its reduction potential and geometry. Thus, the role of Zn in SOD1 is not just structural, as was previously thought; it is a vital part of the catalytic machinery.  相似文献   

3.
4.
Excess Copper Induces A Cytosolic Cu,Zn-Superoxide Dismutase in Soybean Root   总被引:15,自引:0,他引:15  
The induction of several proteins in soybean roots in responseto copper was investigated. The major Cu2+-induced protein of16 kDa was purified by SDS-PAGE and 2D-PAGE. This Cu2+-inducedprotein cross-reacted with antibodies against cytosolic Cu,Zn-SODand the sequence of 40 amino-terminal residues of this proteinwas found to be 70% and 62.5% homologous to the sequences ofcytosolic Cu,Zn-SOD from rice and tomato, respectively. An assayof enzymatic activity revealed that SOD activity of Cu2+-treatedsoybean roots was more than twice that in roots of non-treatedcontrol plants. Thus, treatment with copper of soybean roots appears to inducean increase in SOD activity via the synthesis of cytosolic Cu,Zn-SOD.The induction of SOD by such treatment may be the result eitherof a direct effect of copper on the gene for SOD or of an indirecteffect via an increase in levels of O2 (Received July 12, 1991; Accepted January 22, 1992)  相似文献   

5.
When replete with zinc and copper, amyotrophic lateral sclerosis (ALS)-associated mutant SOD proteins can protect motor neurons in culture from trophic factor deprivation as efficiently as wild-type SOD. However, the removal of zinc from either mutant or wild-type SOD results in apoptosis of motor neurons through a copper- and peroxynitrite-dependent mechanism. It has also been shown that motor neurons isolated from transgenic mice expressing mutant SODs survive well in culture but undergo apoptosis when exposed to nitric oxide via a Fas-dependent mechanism. We combined these two parallel approaches for understanding SOD toxicity in ALS and found that zinc-deficient SOD-induced motor neuron death required Fas activation, whereas the nitric oxide-dependent death of G93A SOD-expressing motor neurons required copper and involved peroxynitrite formation. Surprisingly, motor neuron death doubled when Cu,Zn-SOD protein was either delivered intracellularly to G93A SOD-expressing motor neurons or co-delivered with zinc-deficient SOD to nontransgenic motor neurons. These results could be rationalized by biophysical data showing that heterodimer formation of Cu,Zn-SOD with zinc-deficient SOD prevented the monomerization and subsequent aggregation of zinc-deficient SOD under thiol-reducing conditions. ALS mutant SOD was also stabilized by mutating cysteine 111 to serine, which greatly increased the toxicity of zinc-deficient SOD. Thus, stabilization of ALS mutant SOD by two different approaches augmented its toxicity to motor neurons. Taken together, these results are consistent with copper-containing zinc-deficient SOD being the elusive “partially unfolded intermediate” responsible for the toxic gain of function conferred by ALS mutant SOD.  相似文献   

6.
Thylakoids obtained from intact spinach chloroplasts showedno superoxide dismutase (SOD) activity, but Cu,Zn- and Mn-SODactivities were detected in the presence of Triton X-100. Thylakoidmembranes and the lumen fraction were separated by centrifugationafter treatment of the thylakoids with a Yeda pressure cell.Cu,Zn-SOD was found in the lumen fraction. Mn-SOD was detectedin the thylakoid fraction only after addition of 1% Triton X-100.Antibody against spinach Cu,Zn-SOD did not interact with thelatent Cu,Zn-SOD in the thylakoids unless Triton was added.These results indicate that Cu,Zn-SOD occurs in the lumen inaddition to the stroma of spinach chloroplasts, and Mn-SOD bindsto the thylakoid membranes. (Received February 29, 1984; Accepted May 28, 1984)  相似文献   

7.
It is well established that superoxide dismutase (SOD) is the irresplaceable enzyme for aerobic lifestyle. Our understanding of its role has made strides recently as the result of gene transfection approach. Available data on consequences of Cu,Zn-SOD gene transfection in cell resistance to oxygen toxicity are reviewed. There are data that increasing only Cu,Zn-SOD can be toxic, and the balance between Cu,Zn-SOD and peroxide-removing enzymes is supposed to be of prime importance in the antioxidant defence. Role of Cu,Zn-SOD deregulation in carcinogenesis is discussed.  相似文献   

8.
More than 100 different mutations in Cu,Zn-superoxide dismutase (SOD1) are linked to a familial form of amyotrophic lateral sclerosis (fALS). Pathogenic mutations facilitate fibrillar aggregation of SOD1, upon which significant structural changes of SOD1 have been assumed; in general, however, a structure of protein aggregate remains obscure. Here, we have identified a protease-resistant core in wild-type as well as fALS-causing mutant SOD1 aggregates. Three different regions within an SOD1 sequence are found as building blocks for the formation of an aggregate core, and fALS-causing mutations modulate interactions among these three regions to form a distinct core, namely SOD1 aggregates exhibit mutation-dependent structural polymorphism, which further regulates biochemical properties of aggregates such as solubility. Based upon these results, we propose a new pathomechanism of fALS in which mutation-dependent structural polymorphism of SOD1 aggregates can affect disease phenotypes.  相似文献   

9.
Eukaryotic Cu,Zn-superoxide dismutases (SOD1s) are generally thought to acquire the essential copper cofactor and intramolecular disulfide bond through the action of the CCS copper chaperone. However, several metazoan SOD1s have been shown to acquire activity in vivo in the absence of CCS, and the Cu,Zn-SOD from Caenorhabditis elegans has evolved complete independence from CCS. To investigate SOD1 activation in the absence of CCS, we compared and contrasted the CCS-independent activation of C. elegans and human SOD1 to the strict CCS-dependent activation of Saccharomyces cerevisiae SOD1. Using a yeast expression system, both pathways were seen to acquire copper derived from cell surface transporters and compete for the same intracellular pool of copper. Like CCS, CCS-independent activation occurs rapidly with a preexisting pool of apo-SOD1 without the need for new protein synthesis. The two pathways, however, strongly diverge when assayed for the SOD1 disulfide. SOD1 molecules that are activated without CCS exhibit disulfide oxidation in vivo without oxygen and under copper-depleted conditions. The strict requirement for copper, oxygen, and CCS in disulfide bond oxidation appears exclusive to yeast SOD1, and we find that a unique proline at position 144 in yeast SOD1 is responsible for this disulfide effect. CCS-dependent and -independent pathways also exhibit differential requirements for molecular oxygen. CCS activation of SOD1 requires oxygen, whereas the CCS-independent pathway is able to activate SOD1s even under anaerobic conditions. In this manner, Cu,Zn-SOD from metazoans may retain activity over a wide range of physiological oxygen tensions.Oxygen is essential for aerobic respiration, but reactive byproducts of oxygen metabolism, such as the superoxide anion, can damage cellular molecules, including proteins, DNA, and lipids (13). SOD1s (copper- and zinc-containing superoxide dismutases) provide the primary defense against superoxide damage by catalytically removing it through a disproportionation reaction (4). This reaction involves redox cycling at the copper active site (5). SOD1s require several post-translational modifications to form an active molecule. Copper and zinc are bound by the enzyme, and an intramolecular disulfide bond is formed between two conserved cysteine residues. Although the zinc ion and disulfide bond are not directly involved in the disproportionation reaction, these modifications are required for proper stability and formation of the active site (610). The presence of an intramolecular disulfide bond is intriguing, given the fact that the cytosol favors reduced thiols.The activity of SOD1s in vivo is largely controlled through the aforementioned post-translational modifications. Most of what is currently known about activation of SOD1 in vivo has emerged through studies of the bakers'' yeast Saccharomyces cerevisiae SOD1. Here insertion of the catalytic copper requires the action of the copper chaperone for SOD3 (CCS) (11). CCS physically interacts with SOD1 to deliver the copper ion and catalyze the disulfide bond formation in an oxygen-dependent manner (1215). In fact, S. cerevisiae SOD1 (ySOD1) is completely dependent on CCS for insertion of the catalytic copper and oxidation of the disulfide bond (11, 15, 16).Although ySOD1 is dependent on CCS for activity, other eukaryotic SOD1s are not. Mouse and human SOD1 (hSOD1), when expressed in CCS−/− mouse fibroblasts and in ccs1Δ yeast, still retain some SOD1 activity (1719). Moreover, the genome for the nematode Caenorhabditis elegans does not contain a CCS-like gene, yet harbors several Cu,Zn-SODs. Previous studies with C. elegans SOD-1 (wSOD-1) have shown that this SOD is activated completely independently of CCS (20). Together, these studies present a strong case for a second SOD1 activation mechanism independent of CCS.There must be inherent differences in SOD1 sequences that dictate whether the enzyme uses CCS or the CCS-independent pathway or both. Through targeted mutagenesis, sequences near the C terminus have been previously identified as being important (19). Yeast SOD1 contains dual prolines at positions 142 and 144, which when mutated in combination allow for CCS-independent activation. Conversely, hSOD1 and wSOD-1 contain non-proline residues at these positions, and if dual prolines are introduced, then CSS-independent activation is blocked (19, 20). How this pair of prolines influences SOD1 activation is not understood.It is interesting that nature has developed two activation mechanisms for such a key enzyme in oxidative stress protection, and these are not likely to be redundant. It was previously predicted that the two pathways draw upon distinct sources of copper (19), since the addition of the catalytic copper ion is limiting for enzyme activation. However, since disulfide oxidation is also limiting for enzyme activity, it is possible that the two pathways diverge at this level. In the current study, we investigate the requirements and regulation of the CCS-dependent and -independent SOD1 activation pathways. Our results strongly indicate that the two pathways do not diverge at the level of upstream copper transporter sources or the kinetics of copper incorporation into SOD1 but rather at the level of disulfide bond formation. Copper is required for CCS-mediated disulfide bond oxidation in yeast SOD1, whereas SOD1s that can be activated without CCS show no such requirement for copper in disulfide oxidation. Moreover, oxygen is required for enzyme activation through CCS, but the CCS-independent pathway is able to bypass the need for molecular oxygen. This allows for significant SOD1 activity to be found at a variety of oxygen concentrations by utilizing two activation pathways.  相似文献   

10.
《Free radical research》2013,47(1):383-390
lsozymes of CuZn-superoxide dismutase (SOD) were purified from angiosperms (spinach and rice), fern (horsetail) and green alga (Spirogyra). Occurrence of CuZn-SOD was confirmed by its purification in the group of green algae which shows the phragmoplast type of cell division. Purified CuZn-SODS are divided to chloroplast and cytosol types by their cellular localization and immunological properties. Their amino acid compositions, absorption spectra, CD spectra, and sensitivity to hydrogen peroxide also are distinguished from each other. All organisms including Spirogyra contain both types of isozyme. Thus, the divergence of the two types of CuZn-SOD isozyme occurred immediately after its acquisition by the most evolved green algae.

Amino acid sequences of amino-terminal regions of CuZn-SOD isozyrnes from spinach, rice and horsetail were determined and compared with those of CuZn-SODS from other plants. The chloroplast and cytosol isozymes of CuZn-SOD show each characteristic sequences. Sequence differences among the cytosol CuZn-SODS are greater than those among the chloroplast CuZn-SODS. These observations indicate that each type of isozyme had independently evolved after the acquisition of CuZn-SOD.  相似文献   

11.
采用PCR技术 ,从蜡样芽胞杆菌M2 2基因组DNA扩增到长 132 0bp的基因片段 .该片段含编码 179个氨基酸残基的开放阅读框 ,推定蛋白序列与报道的BacillusanthracisCu ,Zn SOD序列有96 %同源性 ,其中N端 16个氨基酸残基推定为信号肽序列 .将Cu ,Zn SOD编码区插入载体pET 2 2b(+ )构建表达载体pET 2 2b sodC ,转化E .coliBL2 1(DE3) ,IPTG诱导融合蛋白表达 .SDS PAGE显示 ,融合蛋白表观分子质量约 2 4kD ,占菌体裂解液中总蛋白的 2 1 3% .将此表达载体转入SOD缺陷型大肠杆菌PN132 ,赋予了该菌株对paraquat的抗性 .NBT光抑制法测定SOD活性显示 ,与PN132无SOD活性相比 ,重组子在IPTG诱导前SOD活性极低 (1 79U/mg) ,诱导后活性高达 6 9 76U/mg .非变性电泳结果显示 ,该酶活性不同程度地受到 5mmol LH2 O2 和 5mmol LKCN的抑制  相似文献   

12.
Oxidative stress is one of the most important factors in reducing adult hippocampal neurogenesis in the adult brain. In this study, we observed the effects of Cu,Zn-superoxide dismutase (SOD1) on lipid peroxidation, cell proliferation, and neuroblast differentiation in the mouse dentate gyrus using malondialdehyde (MDA), Ki67, and doublecortin (DCX), respectively. We constructed an expression vector, PEP-1, fused PEP-1 with SOD1, and generated PEP-1-SOD1 fusion protein. We administered PEP-1 and 100 or 500 μg PEP-1-SOD1 intraperitoneally once a day for 3 weeks and sacrificed at 30 min after the last administrations. PEP-1 administration did not change the MDA levels compared to those in the vehicle-treated group, while PEP-1-SOD1 treatment significantly reduced MDA levels compared to the vehicle-treated group. In the PEP-1-treated group, the number of Ki67-positive nuclei was similar to that in the vehicle-treated group. In the 100 μg PEP-1-SOD1-treated group, the number of Ki67-positive nuclei was slightly decreased; however, in the 500 μg PEP-1-SOD1-treated group, Ki67-positive nuclei were decreased to 78.5% of the vehicle-treated group. The number of DCX-positive neuroblasts in the PEP-1-treated group was similar to that in the vehicle-treated group. However, the arborization of DCX-positive neuroblasts was significantly decreased in both the 100 and 500 μg PEP-1-SOD1-treated groups compared to that in the vehicle-treated group. The number of DCX-positive neuroblasts with tertiary dendrites was markedly decreased in the 500 μg PEP-1-SOD1-treated group. These results suggest that a SOD1 supplement to healthy mice may not be necessary to modulate cell proliferation and neuroblast differentiation in the dentate gyrus.  相似文献   

13.
根据Genbank中乳酸克鲁维酵母(Kluyveromyces lactis)的Cu/Zn-SOD基因序列设计引物,通过PCR扩增得到Cu/Zn-SOD基因。在PGK1启动子驱动下,将该基因与荧光报告基因GFP融合,分别构建重组质粒YEplac195-PSGA和YCplac33-PSGA,并转化酿酒酵母(Saccharomyces cerevisiae)W303α菌株。通过菌落PCR和荧光显微观察证实乳酸克鲁维酵母(Kluyveromyces lactis)的Cu/Zn-SOD基因在W303α中成功表达。将获得的阳性转化子在添加20mmol/L百草枯的发酵培养基中进行发酵,SOD的比活力和总活力分别是不添加百草枯培养基中发酵菌体的6.7倍和4.7倍。通过热激胁迫处理进一步探讨Cu/Zn-SOD对宿主sod1Δ酿酒酵母菌株EG118耐受力的影响,结果显示抗热击能力的顺序为EG118(YEplac195-PSGA)EG118(YCplac33-PSGA)EG118。以上结果为发酵工业中防止菌体老化和增强菌体的发酵能力提供一定的理论指导,也为后续的Cu/Zn-SOD体外分子定向进化改造奠定必要的基础。  相似文献   

14.
In the present study, we investigated the ability of Cu, Zn-superoxide dismutase (SOD1) to improve the therapeutic potential of adipose tissue-derived mesenchymal stem cells (Ad-MSCs) against ischemic damage in the spinal cord. Animals were divided into four groups: the control group, vehicle (PEP-1 peptide and artificial cerebrospinal fluid)-treated group, Ad-MSC alone group, and Ad-MSC-treated group with PEP-1-SOD1. The abdominal aorta of the rabbit was occluded for 30 min in the subrenal region to induce ischemic damage, and immediately after reperfusion, artificial cerebrospinal fluid or Ad-MSCs (2?×?105) were administered intrathecally. In addition, PEP-1 or 0.5 mg/kg PEP-1-SOD1 was administered intraperitoneally to the Ad-MSC-treated rabbits. Motor behaviors and NeuN-immunoreactive neurons were significantly decreased in the vehicle-treated group after ischemia/reperfusion. Administration of Ad-MSCs significantly ameliorated the changes in motor behavior and NeuN-immunoreactive neuronal survival. In addition, the combination of PEP-1-SOD1 and Ad-MSCs further increased the ameliorative effects of Ad-MSCs in the spinal cord after ischemia. Furthermore, the administration of Ad-MSCs with PEP-1-SOD1 decreased lipid peroxidation and maintained levels of antioxidants such as SOD1 and glutathione peroxidase compared to the Ad-MSC alone group. These results suggest that combination therapy using Ad-MSCs and PEP-1-SOD1 strongly protects neurons from ischemic damage by modulating the balance of lipid peroxidation and antioxidants.  相似文献   

15.
Liver cell-free extracts of fish (Mugil sp.) from polluted environments show new Cu, Zn-SOD isoenzymes when analyzed by polyacrylamide gel electrophoresis or isoelectrofocusing followed by in situ staining for SOD activity. The most active isoenzymes, with pI 6.1 and 5.1, were present both in control and problem samples while the isoenzymes of intermediate pI value showed significant differences. Fish from control areas showed three intermediate isoenzymes with pI 5.7, 5.5 and 5.4 (the last one quite faint) while polluted animals showed three bands of pI 5.9, 5.45 and 5.35, this last very intense. To further characterize their utility as biomarkers, Cu, Zn-SOD isoenzymes from polluted fish livers were purified to homogeneity. Five superoxide dismutase peaks were purified, named thereafter I (pI 6.1) to V (pI 5.1) respectively. Isoenzymes I and V displayed the highest specific activity. Upon incubation with moderate H2O2 concentrations, pure isoenzyme I yielded more acidic bands with pI 5.5, 5.45 and 5.35, this last being predominant. The pure isoenzyme V generated only a new band of pI 5.0. Concomitant with oxidation, the activity of peaks I and V was lost in a H2O2 concentration-dependent manner. The pattern of the new acidic bands generated upon the oxidixing treatment of isoenzyme I closely resembles that observed in crude extracts from polluted animals.  相似文献   

16.
Cu,Zn-superoxide dismutase (SOD1) is a copper- and zinc-dependent enzyme. The main function of SOD1 is believed to be the scavenging and detoxification of superoxide radicals. Nevertheless, the last 30 years have seen a rapid accumulation of evidence indicating that SOD1 may also act as a peroxidase, an alternative function that was implicated in the onset and progression of familial amyotrophic lateral sclerosis. Although SOD1 peroxidase activity and its dependence on carbon dioxide have been well described, the molecular basis of the SOD1 peroxidase cycle remains obscure, because none of the proposed catalytic intermediates have so far been identified. In view of recent observations, we hypothesized that the SOD1 peroxidase cycle relies on two steps: 1) reduction of SOD-Cu(II) by hydrogen peroxide followed by 2) oxidation of SOD-Cu(I) by peroxymonocarbonate, the product of the spontaneous reaction of bicarbonate with hydrogen peroxide, to produce SOD-Cu(II) and carbonate radical anion. This hypothesis has been investigated through electron paramagnetic resonance and nuclear magnetic resonance to provide direct evidence for a peroxycarbonate-driven, SOD1-catalyzed carbonate radical production. The results gathered herein indicate that peroxymonocarbonate () is a key intermediate in the SOD1 peroxidase cycle and identify this species as the precursor of carbonate radical anions.Cytosolic Cu,Zn-superoxide dismutase (SOD1)2 is a metal-dependent enzyme capable of accelerating the rate of spontaneous superoxide dismutation into O2 and H2O2 through the redox cycling of its copper ion (1, 2). SOD1 is widely distributed in mammalian cells and tissues and has been demonstrated to be located in the cytosol and in the intermembrane space of the mitochondria (see Ref. 3 and references therein). Because of that, SOD1 is believed to be a major player in the first line defense against reactive oxygen species, in particular superoxide anion.In addition to its dismutase activity, SOD1 possesses a well described but incompletely understood peroxidase activity which is dependent on hydrogen peroxide and markedly stimulated by small oxidizable anions such as nitrite and the ubiquitous carbon dioxide (3-12). The peroxidase activity of SOD1 has been proposed to impact the onset and progression of familial amyotrophic lateral sclerosis, a severely debilitating fatal disease characterized by the selective death of motor neurons (13-18). Although several reports exist in the literature indicating the formation of SOD1 aggregates and accumulation as a potential cause in the pathology progression, conflicting hypotheses are still under debate concerning the mechanisms that lead to the formation of SOD1-protein aggregates (19-21). Although some support the suggestion that free radical-induced covalent cross-links among SOD1 amino acids play a fundamental role in aggregate formation (22, 23), others support the view that metal loss from the enzyme structure leads to an unstable apo-form of SOD1 with increased capacity to form aggregates (24, 25). A detailed understanding of the SOD1 peroxidase cycle is essential to unraveling the mechanisms through which SOD1 aggregates are produced.The SOD1 peroxidase cycle is initiated when SOD1-Cu(II) is reduced by H2O2 or its deprotonated form (12), the peroxide anion (HOO-), to SOD1-Cu(I). This latter species is subsequently oxidized to a hypervalent intermediate (proposed to be either SOD1-Cu(III), SOD1-Cu(II)-·OH, or SOD1-Cu=O) (8, 9) that remains to be characterized. The reduction of this hypervalent intermediate by small anions is supposed to close the cycle, leading to the native enzyme and diffusible highly reactive radicals derived from the anionic substrates (6, 10).During its peroxidase cycle, a considerable fraction of SOD1 is inactivated due to the oxidation of the copper-binding histidines to oxohistidine, presumably by the hypervalent intermediate, in a process that can be prevented by the presence of reducing substrates and, in their absence, unavoidably leads to copper loss (26). Although this process is well described for the heme-dependent peroxidase cycle, current literature data (9, 27-30) and the fact that the proposed SOD1-bound hypervalent copper states (Cu(III), Cu(II)=O, and Cu(II)/.OH) have never been characterized suggested to us that an alternative mechanism may take place, leading to production from and H2O2 by the enzyme, a process that does not involve copper oxidation beyond the thermodynamically stable Cu(II) form. In the presence of , a significant fraction of H2O2 is promptly converted to through the perhydration of CO2 (27, 28, 31, 32). The peroxo bond in peroxymonocarbonate can be cleaved by reduced metals to produce and H2O (30 33) (Reactions 1-5),where Reactions 1 and 2 represent SOD1 reduction, Reactions 3 and 4 represent SOD1 oxidation, and Reaction 5 represents peroxycarbonate formation.Interestingly, studies employing molecular modeling of the SOD1 active site indicate that and H2O2 gain access to the SOD1 active site, where they react to produce in close proximity to the copper ion (29). This interaction of with Cu(I) may result in production.On the basis of these new data, we hypothesized that SOD1-Cu(I), which is the predominant form of SOD1 exposed to excess hydrogen peroxide (8, 9), is oxidized back to the native form of the enzyme by more efficiently than by H2O2 itself or HOO-. The latter two oxidations would slowly produce .OH radicals (or the equivalent SOD1-Cu(III), SOD1-Cu(II)=O, or Cu(II)/·OH) in the enzyme active site, leading to the observed inactivation of SOD1 (see Scheme 1). Here we present data that strongly support this hypothesis; they indicate that is a key substrate for reduced SOD1, which mediates SOD1-Cu(I) reoxidation back to the resting SOD1-Cu(II) severalfold faster than H2O2 itself and, in doing so, serves as the carbonate radical anion precursor.Open in a separate windowSCHEME 1.Schematic representation of the peroxidase catalytic cycle of Cu,Zn-SOD in the presence of /CO2. Native Cu,Zn-SOD is reduced by the peroxide anion, which gains access to the copper through the enzyme''s anion channel. Reduced Cu,Zn-SOD is reoxidized by the peroxycarbonate anion (), which is in equilibrium with H2O2//CO2, leading to carbonate radical anion production. Superoxide anion (), the product of HOO--induced SOD1 reduction, can oxidize SOD1-Cu(I) back to its resting SOD-Cu(II) state at diffusion-limited rates; however, it can alternatively reduce another molecule of SOD1-Cu(II) to SOD1-Cu(I), considerably accelerating the rate of SOD1-Cu(II) reduction by H2O2. Whether will act as a reductant of SOD1-Cu(II) or an oxidant of SOD1-Cu(I) will depend on the ratio of SOD1-Cu(II)/SOD1-Cu(I) at a given time, because the rate constants for the reaction of with both SOD1 states are close to the diffusion limits.  相似文献   

17.
The neonatal Fc receptor, FcRn, is responsible for the long half-life of IgG molecules in vivo and is a potential therapeutic target for the treatment of autoimmune diseases. A family of peptides comprising the consensus motif GHFGGXY, where X is preferably a hydrophobic amino acid, was shown previously to inhibit the human IgG:human FcRn protein-protein interaction (Mezo, A. R., McDonnell, K. A., Tan Hehir, C. A., Low, S. C., Palombella, V. J., Stattel, J. M., Kamphaus, G. D., Fraley, C., Zhang, Y., Dumont, J. A., and Bitonti, A. J. (2008) Proc. Natl. Acad. Sci. U.S.A., 105, 2337–2342). Herein, the x-ray crystal structure of a representative monomeric peptide in complex with human FcRn was solved to 2.6 Å resolution. The structure shows that the peptide binds to human FcRn at the same general binding site as does the Fc domain of IgG. The data correlate well with structure-activity relationship data relating to how the peptide family binds to human FcRn. In addition, the x-ray crystal structure of a representative dimeric peptide in complex with human FcRn shows how the bivalent ligand can bridge two FcRn molecules, which may be relevant to the mechanism by which the dimeric peptides inhibit FcRn and increase IgG catabolism in vivo. Modeling of the peptide:FcRn structure as compared with available structural data on Fc and FcRn suggest that the His-6 and Phe-7 (peptide) partially mimic the interaction of His-310 and Ile-253 (Fc) in binding to FcRn, but using a different backbone topology.  相似文献   

18.
Yeast FLP recombinase was used in a binary transgenic system (“FLP-OUT”) to allow induced overexpression of catalase and/or Cu/Zn-superoxide dismutase (Cu/ZnSOD) in adult Drosophila melanogaster. Expression of FLP recombinase was driven by the heat-inducible hsp70 promoter. Once expressed, FLP catalyzed the rearrangement and activation of a target construct in which expression of catalase or Cu/ZnSOD cDNAs was driven by the constitutive actin5C promoter. In this way a brief heat pulse (120 or 180 min, total) of young adult flies activated transgene expression for the rest of the life span. FLP-OUT allows the effects of induced transgene expression to be analyzed in control (no heat pulse) and experimental (heat pulse) populations with identical genetic backgrounds. Under the conditions used, the heat pulse itself always had neutral or slightly negative effects on the life span. Catalase overexpression significantly increased resistance to hydrogen peroxide but had neutral or slightly negative effects on the mean life span. Cu/ZnSOD overexpression extended the mean life span up to 48%. Simultaneous overexpression of catalase with Cu/ZnSOD had no added benefit, presumably due to a preexisting excess of catalase. The data suggest that oxidative damage is one rate-limiting factor for the life span of adult Drosophila. Finally, experimental manipulation of the genetic background demonstrated that the life span is affected by epistatic interactions between the transgene and allele(s) at other loci.  相似文献   

19.
The conditions were found for obtaining trimeric, dimeric, and monomeric forms of the Escherichia coli inorganic pyrophosphatase from its native hexameric form. Interconversions of the oligomers were studied, and rate constants for their dissociation and association were determined. All forms were found to be catalytically active, with the activity decreasing in the following order: hexamer–trimer–dimer–monomer. The activity of trimeric and dimeric forms was high enough to study and to compare their catalytic properties. The monomeric form of the enzyme was unstable.  相似文献   

20.
His-Val-His and His-Val-Gly-Asp are two naturally occurring peptide sequences, present at the active site of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). We have already studied the interaction of His-Val-His=A (copper binding site) with Cu(II) and of His-Val-Gly-Asp=B (zinc binding site) with Zn(II). As a continuation of this work and for comparison purposes we have also studied the interaction of Zn(II) with His-Val-His and Cu(II) with His-Val-Gly-Asp using both potentiometric and spectroscopic methods (visible, EPR, NMR). The stoichiometry, stability constants and solution structure of the complexes formed have been determined. Histamine type of coordination is observed for/ZnAH/2+, /ZnA/+, /ZnA2H/+ and/ZnA2/ in acidic pH while deprotonation of coordinated water molecules is observed at higher pH. /CUB/ species is characterized by the formation of a macrochelate and histamine type coordination. Its stability results in the suppression of amide deprotonation which occurs at high pH resulting in the formation of the highly distorted from square planar geometry 4N complex/CuBH-3/3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号