首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Real-time NMR spectroscopy developed to a generally applicable method to follow protein folding reactions. It combines the access to high resolution data with kinetic experiments allowing very detailed insights into the development of the protein structure during different steps of folding. The present review concentrates mainly on the progress of real-time NMR during the last 5 years. Starting from simple 1D experiments, mainly changes of the chemical shifts and line widths of the resonances have been used to analyze the different states populated during the folding reactions. Today, we have a broad spectrum of 1D, 2D, and even 3D NMR methods focusing on different characteristics of the folding polypeptide chains. More than 20 proteins have been investigated so far by these time-resolved experiments and the main results and conclusions are discussed in this report. Real-time NMR provides comprehensive contributions for joining experiment and theory within the 'new view' of protein folding.  相似文献   

2.
The equilibrium between alternative folded states of a globular protein, staphylococcal nuclease, has been investigated by using 1H NMR. Magnetization-transfer experiments have revealed the existence of a related structural heterogeneity of the unfolded state, and quantitative analysis of a series of these experiments has permitted the kinetics of folding and interconversion of the different states to be explored. A model based on cis/trans isomerism at the peptide bond preceding Pro-117 has been developed to account for the results. This model, recently supported by a protein-engineering experiment [Evans et al. (1987) Nature (London) 329, 266], has been used to interpret the kinetic data, providing insight into the nature of the folding processes. The predominance of the cis-proline form in the folded state is shown to derive from a large favorable enthalpy term resulting from more effective overall folding interactions. The kinetics of folding and isomerization are shown to occur on similar time scales, such that more than one pathway between two states may be significant. It has been possible, however, to compare the direct folding and unfolding rates within the cis- and trans-proline-containing populations, with results suggesting that the specific stabilization of the cis peptide bond is effective only at a late stage in the folding process.  相似文献   

3.
Proteins are involved in virtually every biological process and in order to function, it is necessary for these polypeptide chains to fold into the unique, native conformation. This folding process can take place rapidly. NMR line shape analyses and transverse relaxation measurements allow protein folding studies on a microsecond-to-millisecond time scale. Together with an overview of current achievements within this field, we present millisecond protein folding studies by NMR of the cold shock protein CspB from Bacillus subtilis.  相似文献   

4.
5.
Membrane proteins are vital for biological function, and their action is governed by structural properties critically depending on their interactions with the membranes. This has motivated considerable interest in studies of membrane protein folding and unfolding. Here the structural changes induced by unfolding of an integral membrane protein, namely TFE-induced unfolding of KcsA solubilized by the n-dodecyl β-d-maltoside (DDM) surfactant is investigated by the recently introduced GPS-NMR (Global Protein folding State mapping by multivariate NMR) (Malmendal et al., PlosONE 5, e10262 (2010)) along with dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). GPS-NMR is used as a tool for fast analysis of the protein unfolding processes upon external perturbation, and DLS and SAXS are used for further structural characterization of the unfolding states. The combination allows addressing detergent properties and protein conformations at the same time. The mapping of the states reveals that KcsA undergoes a series of rearrangements which include expansion of the tetramer in several steps followed by dissociation into monomers at 29% TFE. Supplementary studies of DDM and TFE in the absence of KcsA suggest that the disintegration of the tetramer at 29% TFE is caused by TFE dissolving the surrounding DDM rim. Above 34% TFE, KcsA collapses to a new structure that is fully formed at 44% TFE.  相似文献   

6.
Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.  相似文献   

7.
The N-terminal 17 residues of ubiquitin have been shown by 1H NMR to fold autonomously into a beta-hairpin structure in aqueous solution. This structure has a specific, native-like register, though side-chain contacts differ in detail from those observed in the intact protein. An autonomously folding hairpin has previously been identified in the case of streptococcal protein G, which is structurally homologous with ubiquitin, but remarkably, the two are not in topologically equivalent positions in the fold. This suggests that the organization of folding may be quite different for proteins sharing similar tertiary structures. Two smaller peptides have also been studied, corresponding to the isolated arms of the N-terminal hairpin of ubiquitin, and significant differences from simple random coil predictions observed in the spectra of these subfragments, suggestive of significant limitation of the backbone conformational space sampled, presumably as a consequence of the strongly beta-structure favoring composition of the sequences. This illustrates the ability of local sequence elements to express a propensity for beta-structure even in the absence of actual sheet formation. Attempts were made to estimate the population of the folded state of the hairpin, in terms of a simple two-state folding model. Using published "random coil" values to model the unfolded state, and values derived from native ubiquitin for the putative unique, folded state, it was found that the apparent population varied widely for different residues and with different NMR parameters. Use of the spectra of the subfragment peptides to provide a more realistic model of the unfolded state led to better agreement in the estimates that could be obtained from chemical shift and coupling constant measurements, while making it clear that some other approaches to population estimation could not give meaningful results, because of the tendency to populate the beta-region of conformational space even in the absence of the hairpin structure.  相似文献   

8.
Understanding the mechanism of folding of small proteins requires characterization of their starting unfolded states and any partially unfolded states populated during folding. Here, we review what is known from NMR about these states of Im7, a 4-helix bundle protein that folds via an on-pathway intermediate, and show that there is an alignment of non-native structure in urea-unfolded Im7 with the helices of native Im7 that is a consequence of hydrophobic helix-promoting residues also promoting cluster-formation in the unfolded protein. We suggest that this kind of alignment is present in other proteins and is relevant to how native state topology determines folding rates.  相似文献   

9.
The volumetric properties associated with protein folding transitions reflect changes in protein packing and hydration of the states that participate in the folding reaction. Here, NMR spin relaxation techniques are employed to probe the folding-unfolding kinetics of two SH3 domains as a function of pressure so that the changes in partial molar volumes along the folding pathway can be measured. The two domains fold with rates that differ by approximately 3 orders of magnitude, so their folding dynamics must be probed using different NMR relaxation experiments. In the case of the drkN SH3 domain that folds via a two-state mechanism on a time scale of seconds, nitrogen magnetization exchange spectroscopy is employed, while for the G48M mutant of the Fyn SH3 domain where the folding occurs on the millisecond time scale (three-step reaction), relaxation dispersion experiments are utilized. The NMR methodology is extremely sensitive to even small changes in equilibrium and rate constants, so reliable estimates of partial molar volumes can be obtained using low pressures (1-120 bar), thus minimizing perturbations to any of the states along the folding reaction coordinate. The volumetric data that were obtained are consistent with a similar folding mechanism for both SH3 domains, involving early chain compaction to states that are at least partially hydrated. This work emphasizes the role of NMR spin relaxation in studying dynamic processes over a wide range of time scales.  相似文献   

10.
Kedem K  Chew LP  Elber R 《Proteins》1999,37(4):554-564
The Unit-vector RMS (URMS) is a new technique to compare protein chains and to detect similarities of chain segments. It is limited to comparison of C(alpha) chains. However, it has a number of unique features that include exceptionally weak dependence on the length of the chain and efficient detection of substructure similarities. Two molecular dynamics simulations of proteins in the neighborhood of their native states are used to test the performance of the URMS. The first simulation is of a solvated myoglobin and the second is of the protein MHC. In accord with previous studies the secondary structure elements (helices or sheets) are found to be moving relatively rigidly among flexible loops. In addition to these tests, folding trajectories of C peptides are analyzed, revealing a folding nucleus of seven amino acids.  相似文献   

11.
Molecular dynamics (MD) simulation is an important tool for understanding bio-molecules in microscopic temporal/spatial scales. Besides the demand in improving simulation techniques to approach experimental scales, it becomes more and more crucial to develop robust methodology for precisely and objectively interpreting massive MD simulation data. In our previous work [J Phys Chem B 114, 10266 (2010)], the trajectory mapping (TM) method was presented to analyze simulation trajectories then to construct a kinetic transition network of metastable states. In this work, we further present a top-down implementation of TM to systematically detect complicate features of conformational space. We first look at longer MD trajectory pieces to get a coarse picture of transition network at larger time scale, and then we gradually cut the trajectory pieces in shorter for more details. A robust clustering algorithm is designed to more effectively identify the metastable states and transition events. We applied this TM method to detect the hierarchical structure in the conformational space of alanine-dodeca-peptide from microsecond to nanosecond time scales. The results show a downhill folding process of the peptide through multiple pathways. Even in this simple system, we found that single common-used order parameter is not sufficient either in distinguishing the metastable states or predicting the transition kinetics among these states.  相似文献   

12.
Src homology 3 (SH3) domains are small modules that are thought to fold via a two-state mechanism, without the accumulation of significant populations of intermediate states. Relaxation dispersion NMR studies of the folding of G48V and G48M mutants of the Fyn SH3 domain have established that, at least for these modules, folding proceeds through the formation of a transient on-pathway intermediate with an equilibrium population of 1-2% that can be readily detected [Korzhnev, D. M., et al. (2004) Nature 430, 586-590]. To investigate the generality of this result, we present an (15)N relaxation dispersion NMR study of a pair of additional SH3 domains, including a G48V mutant of a stabilized Abp1p SH3 domain that shares 36% sequence identity with the Fyn SH3 module, and a A39V/N53P/V55L mutant Fyn SH3 domain. A transient folding intermediate is detected for both of the proteins studied here, and the dispersion data are well fit to a folding model of the form F <--> I <--> U, where F, I, and U correspond to folded, intermediate, and unfolded states, respectively. The temperature dependencies of the folding/unfolding rate constants were obtained so that the thermodynamic properties of each of F, I, and U could be established. The detection of I states in folding pathways of all SH3 domains examined to date via relaxation dispersion NMR spectroscopy indicates that such intermediates may well be a conserved feature in the folding of such domains in general but that their transient nature along with their low population makes detection difficult using more well-established approaches to the study of folding.  相似文献   

13.
Intrinsically disordered proteins (IDPs) lack a stable tertiary structure, but their short binding regions termed Pre-Structured Motifs (PreSMo) can form transient secondary structure elements in solution. Although disordered proteins are crucial in many biological processes and designing strategies to modulate their function is highly important, both experimental and computational tools to describe their conformational ensembles and the initial steps of folding are sparse. Here we report that discrete molecular dynamics (DMD) simulations combined with replica exchange (RX) method efficiently samples the conformational space and detects regions populating α-helical conformational states in disordered protein regions. While the available computational methods predict secondary structural propensities in IDPs based on the observation of protein-protein interactions, our ab initio method rests on physical principles of protein folding and dynamics. We show that RX-DMD predicts α-PreSMos with high confidence confirmed by comparison to experimental NMR data. Moreover, the method also can dissect α-PreSMos in close vicinity to each other and indicate helix stability. Importantly, simulations with disordered regions forming helices in X-ray structures of complexes indicate that a preformed helix is frequently the binding element itself, while in other cases it may have a role in initiating the binding process. Our results indicate that RX-DMD provides a breakthrough in the structural and dynamical characterization of disordered proteins by generating the structural ensembles of IDPs even when experimental data are not available.  相似文献   

14.
Mittermaier A  Korzhnev DM  Kay LE 《Biochemistry》2005,44(47):15430-15436
A major challenge to the study of protein folding is the fact that intermediate states along the reaction pathway are generally unstable and thus difficult to observe. Recently developed NMR relaxation dispersion experiments present an avenue to accessing such states, providing kinetic, thermodynamic, and structural information for intermediates with small (greater than or equal to approximately 1%) populations at equilibrium. We have employed these techniques to study the three-state folding reaction of the G48M Fyn SH3 domain. Using (13)C-, (1)H-, and (15)N-based methods, we have characterized backbone and side-chain interactions in the folded, unfolded, intermediate, and transition states, thereby mapping the energy landscape of the protein. We find that the intermediate, populated to approximately 1%, contains nativelike structure in a central beta-sheet, and is disordered at the amino and carboxy termini. The intermediate is stabilized by side-chain van der Waals contacts, yet (13)C chemical shifts indicate that methyl-containing residues remain disordered. This state has a partially structured backbone and a collapsed yet mobile hydrophobic core and thus closely resembles a molten globule. Nonpolar side-chain contacts are formed in the unfolded-intermediate transition state; these interactions are disrupted in the intermediate-folded transition state, possibly allowing side chains to rearrange as they adopt the native packing configuration. This work illustrates the power of novel relaxation dispersion experiments in characterizing excited states that are "invisible" in even the most sensitive of NMR experiments.  相似文献   

15.
Cao Y  Li H 《Biophysical journal》2011,101(8):2009-2017
Many proteins in living cells require cofactors to carry out their biological functions. To reach their functional states, these proteins need to fold into their unique three-dimensional structures in the presence of their cofactors. Two processes, folding of the protein and binding of cofactors, intermingle with each other, making the direct elucidation of the folding mechanism of proteins in the presence of cofactors challenging. Here we use single-molecule atomic force microscopy to directly monitor the folding and cofactor binding dynamics of an engineered metal-binding protein G6-53 at the single-molecule level. Using the mechanical stability of different conformers of G6-53 as sensitive probes, we directly identified different G6-53 conformers (unfolded, apo- and Ni2+-bound) populated along the folding pathway of G6-53 in the presence of its cofactor Ni2+. By carrying out single-molecule atomic force microscopy refolding experiments, we monitored kinetic evolution processes of these different conformers. Our results suggested that the majority of G6-53 folds through a binding-after-folding mechanism, whereas a small fraction follows a binding-before-folding pathway. Our study opens an avenue to utilizing force spectroscopy techniques to probe the folding dynamics of proteins in the presence of cofactors at the single-molecule level, and we anticipated that this method can be used to study a wide variety of proteins requiring cofactors for their function.  相似文献   

16.
Protein folding kinetic data have been obtained for the marginally stable N-terminal Src homology 3 domain of the Drosophila protein drk (drkN SH3) in an investigation of the hydrodynamic properties of its folding transition state. Due to the presence of NMR resonances of both folded and unfolded states at equilibrium, kinetic data can be derived from NMR magnetization transfer techniques under equilibrium conditions. Kinetic analysis as a function of urea (less than approximately 1 M) and glycerol enables determination of alpha values, measures of the energetic sensitivity of the transition state to the perturbation relative to the end states of the protein folding reaction (the folded and unfolded states). Both end states have previously been studied experimentally by NMR spectroscopic and other biophysical methods in great detail and under nondenaturing conditions. Combining these results with the kinetic folding data obtained here, we can characterize the folding transition state without requiring empirical models for the unfolded state structure. We are thus able to give a reliable measure of the solvent-accessible surface area of the transition state of the drkN SH3 domain (4730 +/- 360 A(2)) based on urea titration data. Glycerol titration data give similar results and additionally demonstrate that folding of this SH3 domain is dependent on solvent viscosity, which is indicative of at least partial hydration of the transition state. Because SH3 domains appear to fold by a common folding mechanism, the data presented here provide valuable insight into the transition states of the drkN and other SH3 domains.  相似文献   

17.
G-quadruplex structures can occur throughout the genome, including at telomeres. They are involved in cellular regulation and are potential drug targets. Human telomeric G-quadruplex structures can fold into a number of different conformations and show large conformational diversity. To elucidate the different G-quadruplex conformations and their dynamics, we investigated telomeric G-quadruplex folding using single molecule FRET microscopy in conditions where it was previously believed to yield low structural heterogeneity. We observed four FRET states in Na+ buffers: an unfolded state and three G-quadruplex related states that can interconvert between each other. Several of these states were almost equally populated at low to medium salt concentrations. These observations appear surprising as previous studies reported primarily one G-quadruplex conformation in Na+ buffers. Our results permit, through the analysis of the dynamics of the different observed states, the identification of a more stable G-quadruplex conformation and two transient G-quadruplex states. Importantly these results offer a unique view into G-quadruplex topological heterogeneity and conformational dynamics.  相似文献   

18.
Xu Y  Hyde T  Wang X  Bhate M  Brodsky B  Baum J 《Biochemistry》2003,42(29):8696-8703
Protein folding is determined by molecular features in the unfolded state, as well as the native folded structure. In the unfolded state, imino acids both restrict conformational space and present cis-trans isomerization barriers to folding. Because of its high proline and hydroxyproline content, the collagen triple-helix offers an opportunity to characterize the impact of imino acids on the unfolded state and folding kinetics. Here, NMR and CD spectroscopy are used to characterize the role of imino acids in a triple-helical peptide, T1-892, which contains an 18-residue sequence from type I collagen and a C-terminal (Gly-Pro-Hyp)(4) domain. The replacement of Pro or Hyp by an Ala in the (Gly-Pro-Hyp)(4) region significantly decreases the folding rate at low but not high concentrations, consistent with less efficient nucleation. To understand the molecular basis of the decreased folding rate, changes in the unfolded as well as the folded states of the peptides were characterized. While the trimer states of the peptides are all similar, NMR dynamics studies show monomers with all trans (Gly-Pro-Hyp)(4) are less flexible than monomers containing Pro --> Ala or Hyp --> Ala substitutions. Nucleation requires all trans bonds in the (Gly-Pro-Hyp)(4) domain and the constrained monomer state of the all trans nucleation domain in T1-892 increases its competency to initiate triple-helix formation and illustrates the impact of the unfolded state on folding kinetics.  相似文献   

19.
Denatured states of proteins, the starting points as well as the intermediates of folding in vivo, play important roles in biological function. In this context, we describe here urea unfolding and characterization of the denatured state of GTPase effector domain (GED) of dynamin created by 9.7 M urea. These are compared with similar data for guanidine induced denaturation reported earlier. The unfolding characteristics in the two cases, as measured by the optical probes, are significantly different, urea unfolding proceeding via an intermediate. The structural and motional characteristics, determined by NMR, of the two denatured states are also strikingly different. The urea-denatured state shows a combination of α- and β-preferences in contrast to the entirely β-preferences in the guanidine-denatured state. Higher 15N transverse relaxation rates suggest higher folding propensities in the urea-denatured state. The implications of these to GED folding are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号