首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inhabitants of arid ecosystems face severe nitrogen and water limitations. Inventive adaptations by organisms occupying such habitats are essential for survival. This study describes a tri-party symbiotic interaction between a plant (Salsola inermis), a beetle (Conorhynchus pistor), and a bacterium (Klebsiella pneumonia). The weevil survives by living within a mud structure affixed to the plant roots, thus benefiting from increased carbon and water, and refuge from predators and parasites. Active nitrogen-fixing bacteria harbored within the weevil''s gut mediate this interaction, by supplying nitrogen to the system, which eventually promotes seed development. We studied the correlation between the weevil''s existence and (i) root carbon and nitrogen content, (ii) soil water content and (iii) seed weight. Roots hosting weevils contained more nitrogen, heavier seeds and less carbon. In addition, water content was higher around the roots than in open spaces a short distance from the plant stem. Bacterial studies and nitrogen-fixation analyses, including molecular and chemical assays, indicated atmospheric nitrogen fixation in the larval stage and identified the bacterium. The coexistence of weevil and bacterial behavior coinciding with the plant''s life cycle was revealed here by a long period of field observations. Out of over 60,000 known weevils, this is the only report of a weevil living most of its life underground without harming plants. The unique tri-party interaction described herein shows the important ecological role of desert plant roots and provides an example of a sustainable consortium of living organisms coping with the challenging desert environment.  相似文献   

3.
Plant Glutathione S-Transferases, a Tale of Theta and Tau   总被引:2,自引:0,他引:2  
  相似文献   

4.
A continuous fluidized‐bed plant (PDU‐scale) for fast pyrolysis of lingnocellulosic biomass gives rise to bio‐oil yields of 65 wt.‐%. The average reactor gas residence time was 1.2 s only. The gas and charcoal yields were 15–20 wt.‐%, respectively. The bio oils were chemically characterized. The main monomeric products of the thermal degradation of carbohydrates are acetic acid, hydroxyacetaldehyde, hydroxypropanone, and levoglucosan. The process described in this paper can also be used for disposal of inorganic‐, metal‐organic‐, and chlorine‐organic contaminated waste‐wood. Inorganic compounds of wood preservatives are concentrated in the charcoal fraction and can be separated easily. Chlorine‐organic wood preservatives are mostly degraded. The process has been positively tested as a technique for disposal, recycling, and exploitation of industrial biomass waste (wood waste, grinding grit, fibre sludge, cocoa shell and modern composites like HPL). Bio oil from fast pyrolysis can be used for the production of energy and chemical feedstock. Research for these purposes is ongoing.  相似文献   

5.
Exogenous application of different plant growth regulators is a well-recognized strategy to alleviate stress-induced adverse effects on different crop plants by regulating a variety of physiobiochemical processes such as photosynthesis, chlorophyll biosynthesis, nutrient uptake, antioxidant metabolism, and protein synthesis, which are directly or indirectly involved in the mechanism of stress tolerance. Of various environmental factors, salinity, drought, and extreme temperature (low or high) considerably diminish plant growth and yield by modulating endogenous levels as well as signaling pathways of plant hormones. Of various plant hormones/regulators, a potential plant growth regulator, 5-aminolevulinic acid (ALA), is known to be effective in counteracting the injurious effects of various abiotic stresses in plants. Until now the mechanisms behind ALA regulation of growth under stress have not been fully elucidated. It is also not yet clear how far growth and yield in different crops can be promoted by exogenous application of ALA and whether this ALA-induced growth and yield promotion is cost-effective. Thus, in this review we discuss at length the effects of ALA in regulating growth and development in plants under a variety of abiotic stress conditions, including salinity, drought, and temperature stress. Furthermore, advances in the functional and regulatory interactions of this plant growth regulator with plant stress tolerance, as well as the effective mode of exogenous application of ALA in inducing stress tolerance in plants are also comprehensively discussed in this review. In the future, overaccumulation of ALA in plants through manipulation of gene(s) could enhance plant stress tolerance. Thus, genetic manipulation of plants with the goal of attaining increased synthesis/accumulation of ALA and hence improved stress tolerance under stress conditions is an important area for research.  相似文献   

6.
7.
8.
1. Life‐history traits of herbivores are shaped by the combination of various extrinsic and intrinsic variables. However, studies investigating the impact of both variables on insect behavioural phenotypes are rare, and research including the modulation of host plant quality by arbuscular mycorrhiza (AM) (extrinsic variable) and the herbivore developmental stage (intrinsic variable) on aphid behaviour is lacking. 2. To study the influences of extrinsic and intrinsic variables on aphid performance and behaviour, individuals of the generalist aphid pest Myzus persicae (Sulzer) were reared on Plantago lanceolata and Poa annua plants that were either non‐mycorrhized (NM) or mycorrhized (AM). Aphid performance was monitored over 2 weeks. Behavioural traits of nymphs were recorded twice during development after removing individuals from their feeding sites and placing them in an unknown environment (‘open field’), causing disturbance. Plant quality was determined by measuring the water content and leaf mass per area (LMA). 3. Differences in body mass of nymphs at day 6 dependent on plant species and treatment were compensated by the individuals within 4 days. Behavioural traits, considered as activity and exploration, were affected by the interaction between extrinsic and intrinsic variables (activity and exploration) and changed over ontogeny (activity). Independent of AM, a lower water content and LMA were recorded in P. annua leaves. 4. Overall, this study demonstrates that extrinsic and intrinsic variables need to be considered in combination and behavioural traits should be studied repeatedly during insect ontogeny to understand the complexity of microbe‐modulated plant–herbivore interactions.  相似文献   

9.
Human-induced changes in land use lead to major changes in plant community composition which have strong effects on ecosystem processes. Here, we tested the hypothesis that changes in traits of living plants induced by such changes resulted in changes in the quality and decay properties of the litter produced by the different communities. This was done in the context of a secondary succession following land abandonment in the Mediterranean region of Southern France. During the course of succession, species with high specific leaf area (the ratio of leaf area to leaf mass), low leaf dry matter content (the ratio of leaf dry mass to leaf fresh mass) and high leaf nitrogen concentration were progressively replaced by species with opposite characteristics. Accordingly, the initial litter concentrations of carbon (C) and nitrogen (N) decreased, while their C:N ratio and their hemicellulose concentration increased with time after abandonment. Early-successional communities had faster rates of litter decay and N release from litter, but these differences damped out with decomposition time. Nitrogen release from litter was related to initial litter chemical composition, particularly to its N concentration. This also held for litter decay rate, but only during the first 18 months of decomposition. Community functional parameters (i.e. trait values weighed according to the relative abundance of species) were tightly linked to initial litter N concentration, and thereby to litter decay and N loss rates. The strongest correlations were found with leaf dry matter content, which therefore appears as a powerful marker of litter properties. This provides further evidence that characteristics of living leaves persist in litter, and that some ecosystem processes can be inferred from plant functional traits. Responsible Editor: Alfonso Escudero  相似文献   

10.
Using RAPD technique, the DNA diversity of Cephalotaxus mannii Hook. f., its genetic diversity pattern,the reasons for its endangered position and conservative approaches were studied. The results show that: 1. The genetic diversity of C. mannii collected from five localities in Hainan is low, and its adaptability to environmental change is weak. 2. The differences of genetic diversity between intra and inter populations are great, and the major variation distributes within the population (DNA diversity is 85.1%). 3. The excessive lumbering, man made destruction, violent typhoon, edible value of the seeds and genetic drift were the main reasons for the low level genetic diversity of C. mannii and its endangered position. 4. The difference of the micro environment and other random factors affecting the population should also be taken into full consideration in the study and in protection of such occasionally scattered plants. 5. Enforced measures should be taken to protect the present population, enlarge the population and lower the loss rate of its gene. Mt. Limulin should be chosen as a conservative spot because of its high genetic diversity and less destruction of the forest. Meanwhile, the protection of other populations should be enforced. 6. The differences within and between the populations are great based on different primers used. The change of proportions in polymorphic loci between the populations is more than that between the primers.  相似文献   

11.
珍稀濒危植物海南粗榧种群遗传多样性研究   总被引:11,自引:0,他引:11  
利用RAPD技术对珍稀濒危植物海南粗榧(Cephalotaxus manniiHook.f.)遗传多样性水平,分布、濒危原因及物种保护等问题进行了探讨。结果表明:1、海南粗榧在海南岛的5个取样地点表现出低水平的遗传多样性,对环境变化物适应能力不强;2、海南粗榧种群内和种群间的遗传多样性所占比例有很大差异,绝大部分变异分布于种群内(DAN多样性为85.1%);种群间仅有较低程度的分化;3、人为砍伐,植被破坏,台风、被食用遗传漂变是海南粗榧遗传多样性低水平的主要原因,也是物种濒危的主要原因;4、对于呈零星分布的濒危植物海南粗榧的研究与保护,应充分考虑个体小环境之间的差异。考虑影响小种群的随机因素;5、应采取有力措施,就地保护现有种群,并寻求适当的方法迅速扩展种群,降低基因丧失率;选择遗传多样性较高且破坏相对较小的黎母岭种群作为保护重点;同时应加强对其他种群的保护与管理;6、海南粗榧种群内,种群音质遗传多样性在不同引物之间有较大差别。多态性位点百分率则是种群间的变化大于引物间的变化。  相似文献   

12.
Endogenous gibberellins in a parasitic plant, Aeginetia indica L., and its host, Miscanthus sinensis Andress (eulalia) were analyzed. Gibberellins of the early-non-hydroxylation pathway and their putative metabolites were identified as the major endogenous gibberellins from both types of A. indica parasitizing M. sinensis and parasitizing Oryza sativa L. (rice). Members of both the early-non- and early-13-hydroxylation pathways were detected in the host M. sinensis. Since the early-13-hydroxylation pathway has been reported to be the major pathway operating in vegetative tissues of O. sativa, these results suggest that A. indica can biosynthesize gibberellins independent of its hosts.  相似文献   

13.
Nobel PS 《Plant physiology》1976,58(4):576-582
The water relations and photosynthesis of Agave deserti Engelm., a plant exhibiting Crassulacean acid metabolism, were measured in the Colorado desert. Although no natural stomatal opening of A. deserti occurred in the summer of 1975, it could be induced by watering. The resistance for water vapor diffusion from a leaf (RWV) became less than 20 sec cm−1 when the soil water potential at 10 cm became greater than −3 bars, as would occur after a 7-mm rainfall. As a consequence of its shallow root system (mean depth of 8 cm), A. deserti responded rapidly to the infrequent rains, and the succulent nature of its leaves allowed stomatal opening to continue for up to 8 days after the soil became drier than the plant. When the leaf temperature at night was increased from 5 to 20 C, RWV increased 5-fold, emphasizing the importance of cool nighttime temperatures for gas exchange by this plant. Although most CO2 uptake occurred at night, a secondary light-dependent rise in CO2 influx generally occurred after dawn. The transpiration ratio (mass of water transpired/mass of CO2 fixed) had extremely low values of 18 for a winter day, and approximately 25 for an entire year.  相似文献   

14.
水杉愈伤组织诱导及植株再生   总被引:2,自引:0,他引:2  
通过愈伤组织诱导器官发生途径, 建立了水杉(Metasequoia glyptostroboides)的植株再生体系, 探讨了不同外植体 (种胚、幼叶切块、茎段、根段)和植物生长调节剂对不定芽直接再生和愈伤组织诱导器官发生的影响。结果表明: 以种胚、无菌苗叶片、茎段和根作为外植体, 在MS补加2,4-D、NAA和6-BA不同组合的培养基上都能诱导得到愈伤组织, 其中种胚诱导愈伤组织效果最好, 诱导率可达100%, 茎诱导效果次之, 诱导率为97.1%。诱导愈伤组织效果较好的培养基有:MS+1.0 mg·L–1 2,4-D + 0.5 mg·L–1 6-BA、MS + 0.1 mg·L–1 6-BA + 1.0 mg·L–1 NAA、MS + 0.5 mg·L–1 6-BA+1.0 mg·L–1 NAA、MS+1.0 mg·L–1 6-BA+1.0 mg·L–1 NAA、MS+0.5 mg·L–1 6-BA+2.0 mg·L–1 NAA、MS+1.0 mg·L–1 6-BA + 2.0 mg·L–1 NAA和MS + 0.5 mg·L–1 2,4-D + 0.5 mg·L–1 NAA。以愈伤组织在MS培养基上植株再生效果最好, 再生率为62.5%。  相似文献   

15.
匡廷云 ,女 ,植物生理生物化学家 ,中国科学院植物研究所研究员 ,中国科学院院士。1 956年毕业于北京农业大学土壤农业化学系。至 1 962年在苏联国立莫斯科大学获生物学博士学位。 1 981~ 1 982年在美国密执安州立大学美国能源部植物实验室做访问学者。 1 962年至今 ,曾任中国科学院植物研究所助理研究员、副研究员、研究员、副所长 ;现任中国科学院生物学部副主任 ,中国植物学会理事长、中国植物生理学会名誉理事长、北京植物生理学会理事长、《植物学报》名誉主编。兼任生物大分子国家重点实验室学术委员会副主任、生物膜与膜生物工程国…  相似文献   

16.
17.
The conservation of plants has not generated the sense of urgency—or the funding—that drives the conservation of animals, although plants are far more important for us. There are an estimated 500,000 species of land plants (angiosperms, gymnosperms, ferns, lycophytes, and bryophytes), with diversity strongly concentrated in the humid tropics. Many species are still unknown to science. Perhaps a third of all land plants are at risk of extinction, including many that are undescribed, or are described but otherwise data deficient. There have been few known global extinctions so far, but many additional species have not been recorded recently and may be extinct. Although only a minority of plant species have a specific human use, many more play important roles in natural ecosystems and the services they provide, and rare species are more likely to have unusual traits that could be useful in the future. The major threats to plant diversity include habitat loss, fragmentation, and degradation, overexploitation, invasive species, pollution, and anthropogenic climate change. Conservation of plant diversity is a massive task if viewed globally, but the combination of a well-designed and well-managed protected area system and ex situ gap-filling and back-up should work anywhere. The most urgent needs are for the completion of the global botanical inventory and an assessment of the conservation status of the 94% of plant species not yet evaluated, so that both in and ex situ conservation can be targeted efficiently. Globally, the biggest conservation gap is in the hyperdiverse lowland tropics and this is where attention needs to be focused.  相似文献   

18.
Arbuscular-mycorrhizal (AM) fungi stabilize the soil and enhance plant growth by alleviating nutrient and drought stress. Their contributions to agriculture are well known, but their role in desert ecosystems has received less attention. The AM status of perennial plants in disturbed and undisturbed plots were investigated in the Sonoran Desert near La Paz, Baja California Sur, Mexico to determine if AM fungi contribute to resource-island stability and plant establishment. All perennial plants (46 species) in the study plots were AM, but root colonization varied widely (<10 to> 70%). Roots of plants that established in greatest numbers in plant-free zones (colonizers) of disturbed areas were highly AM. Plants with trace (<10%) root colonization (cacti of the tribe Pachycereae: Pachycereus pringlei, Machaerocereus gummosus, and Lemaireocereus thurberi; and Agave datilyo) established preferentially in association with nurse trees. The pachycereid cacti grew under Prosopis articulata and A. datilyo under Olneya tesota canopies. Of the nine species of trees and arborescent shrubs in the area, the mature (>20 yr) nurse-legumes P. articulata and O. tesota supported the largest number of under-story plants. Younger plants had only occasional associates. AM propagule densities in plant-free areas were lower than under plant canopies (40 vs. 280 propagules/kg soil). Occurrence of soil mounds (islands) under plants owing to soil deposition was related to the nature of the canopies and to the AM status of the roots. Island soils were enmeshed with AM-fungal hyphae, especially in the upper layer (approximately 10 cm). Seedlings of P. pringlei, growing in a screenhouse for six months in soil collected under P. articulata, had a biomass ten times greater than plants growing in bare-area soil. The results are consistent with the proposition that AM fungi contributed to the plant-soil system of our study area by: (1) helping to stabilize windborne soil that settles under dense plant canopies; (2) enhancing the establishment of colonizer plants in bare soils of disturbed areas; and (3) influencing plant associations through differences in the mycotrophic status of the associates.  相似文献   

19.
Mathematical representations of the cellular organization anddimensions of Spongiophyton Krusel, a Middle Devonian thallophytewere projected by means of a computer to simulate patterns ofdevelopment and organization. Extrapolation of the cellularpatterns observed on the surface of the fossil may be comparedwith those derived from living plants of which the ontogenycan be directly observed. Spongiophyton is compared in thisrespect with the growth of Protosalvinia (an Upper Devonianplant of enigmatic affinity), Pellia (a thallose liverwort)and Cutleria (a brown alga). The growth pattern of Spongiophytondeveloped by computer shows a closer similarity to that of thepseudoparenchymatous alga Cutleria than to the truly parenchymatousPellia or the fossil Protosalvinia. Computer simulations ofthe growth process throw light on the affinity of Spongiophytonwhich cannot be derived from direct observation of the fossil.Broader applications of computer simulations of tissue organizationand gross morphology are suggested with regard to the studyof living and fossil plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号