首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
建立新甲型H1N1流感病毒小鼠致死模型,为研究致病性、宿主适应性以及疫苗保护性提供动物模型,并寻找病毒在适应宿主过程中影响毒力和适应性的关键位点。将新甲型H1N1流感病毒A/四川/SWL1/2009 H1N1在小鼠中连续传15代,各代次毒株均在MDCK细胞上增殖后进行测序,根据序列分析结果选择6个传代毒株感染小鼠,连续监测14 d体重和死亡情况;并对第14代和15代病毒在噬斑实验纯化后克隆和测序分析。原代病毒不致死BABL/C小鼠,经动物体内连续传代适应宿主动物后,其毒力增强,具体表现为所选的6个传代毒株中第7、11、15代毒株可以100%致死试验小鼠;分析这6个传代毒株的全基因组表明这些毒株的部分氨基酸位点发生突变。新甲型H1N1流感病毒经小鼠体内连续传代后,建立了小鼠致死模型,病毒毒力增强可能与某些氨基酸位点的改变有关。  相似文献   

2.
Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses.  相似文献   

3.
4.
5.
The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.The recent emergence of swine-origin H1N1 influenza A virus (pandemic H1N1/09) in humans has heightened awareness of how the burden of morbidity and mortality due to influenza is associated with the appearance of new genetic variants (5) and of the genetic and epidemiological determinants of viral transmission (8). The emergence of pandemic H1N1/09 is also unprecedented in recorded history as it means that three antigenically distinct lineages of influenza A virus—pandemic H1N1/09 and the seasonal H1N1 and H3N2 viruses— currently cocirculate within human populations.Although the presence of multiple subtypes of influenza A virus may place an additional burden on public health resources, it also provides a unique opportunity to compare the patterns and dynamics of evolution in these viruses on a similar time scale. Indeed, one of the most interesting secondary effects of the current H1N1/09 pandemic has been an increased vigilance for cases of influenza-like illness and hence an intensified sampling of seasonal H1N1 and H3N2 viruses during the typical influenza “off-season” (i.e., spring-summer) in the northern hemisphere. Because the influenza season in the northern hemisphere generally runs from November through March, with a usual peak in January or February, influenza viruses sampled outside of this period are of special interest.The current model for the global spatiotemporal dynamics of influenza A virus is that the northern and southern hemispheres represent ecological “sinks” for this virus, with little ongoing viral transmission during the summer months (9). In contrast, more continual viral transmission occurs within the tropical “source” population (13) that is most likely centered on an intense transmission network in east and southeast Asia (10). However, the precise epidemiological and evolutionary reasons for this major geographic division, and for the seasonality of influenza A virus in general, remain uncertain (1, 4). Evidence for this “sink-source” ecological model is that viruses sampled from successive seasons in localities such as New York State do not usually form linked clusters on phylogenetic trees, indicating that they are not connected by direct transmission through the summer months (7). Similar conclusions can be drawn for the United States as a whole and point to multiple introductions of phylogenetically distinct lineages during the winter (6), followed by complex patterns of spatial diffusion (14). However, despite the growing epidemiological and phylogenetic data supporting this model, it is also evident that there is relatively little sequence data from seasonal influenza viruses that are sampled from April to October in the northern hemisphere. Hence, it is uncertain whether extended chains of transmission can occur during this time period, even though this may have an important bearing on our understanding of influenza seasonality.To address these issues, we examined the evolutionary behavior of seasonal H1N1 and H3N2 viruses as they cocirculated during a single time period—(late) April to June 2009—within a single locality (New York State). Not only are levels of influenza virus transmission in the northern hemisphere usually very low during this time period, but in this particular season the human host population was also experiencing the emerging epidemic of pandemic H1N1/09.  相似文献   

6.

Background

The mortality burden of the 2009 A/H1N1 pandemic remains unclear in many countries due to delays in reporting of death statistics. We estimate the age- and cause-specific excess mortality impact of the pandemic in France, relative to that of other countries and past epidemic and pandemic seasons.

Methods

We applied Serfling and Poisson excess mortality approaches to model weekly age- and cause-specific mortality rates from June 1969 through May 2010 in France. Indicators of influenza activity, time trends, and seasonal terms were included in the models. We also reviewed the literature for country-specific estimates of 2009 pandemic excess mortality rates to characterize geographical differences in the burden of this pandemic.

Results

The 2009 A/H1N1 pandemic was associated with 1.0 (95% Confidence Intervals (CI) 0.2–1.9) excess respiratory deaths per 100,000 population in France, compared to rates per 100,000 of 44 (95% CI 43–45) for the A/H3N2 pandemic and 2.9 (95% CI 2.3–3.7) for average inter-pandemic seasons. The 2009 A/H1N1 pandemic had a 10.6-fold higher impact than inter-pandemic seasons in people aged 5–24 years and 3.8-fold lower impact among people over 65 years.

Conclusions

The 2009 pandemic in France had low mortality impact in most age groups, relative to past influenza seasons, except in school-age children and young adults. The historical A/H3N2 pandemic was associated with much larger mortality impact than the 2009 pandemic, across all age groups and outcomes. Our 2009 pandemic excess mortality estimates for France fall within the range of previous estimates for high-income regions. Based on the analysis of several mortality outcomes and comparison with laboratory-confirmed 2009/H1N1 deaths, we conclude that cardio-respiratory and all-cause mortality lack precision to accurately measure the impact of this pandemic in high-income settings and that use of more specific mortality outcomes is important to obtain reliable age-specific estimates.  相似文献   

7.
The emergence of the pandemic 2009 H1N1 influenza A virus in humans and subsequent discovery that it was of swine influenza virus lineages raised concern over the safety of pork. Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that pork harvested from pandemic influenza A H1N1 infected swine is safe to consume when following standard meat hygiene practices.  相似文献   

8.

Background

The current spread of pandemic influenza A(H1N1)v virus necessitates an intensified surveillance of influenza virus infections worldwide. So far, in many laboratories routine diagnostics were limited to generic influenza virus detection only. To provide interested laboratories with real-time PCR assays for type and subtype identification, we present a bundle of PCR assays with which any human influenza A and B virus can be easily identified, including assays for the detection of the pandemic A(H1N1)v virus.

Principal Findings

The assays show optimal performance characteristics in their validation on plasmids containing the respective assay target sequences. All assays have furthermore been applied to several thousand clinical samples since 2007 (assays for seasonal influenza) and April 2009 (pandemic influenza assays), respectively, and showed excellent results also on clinical material.

Conclusions

We consider the presented assays to be well suited for the detection and subtyping of circulating influenza viruses.  相似文献   

9.
一种新型H5N1禽流感病毒血凝素抗原快速检测试剂的建立   总被引:2,自引:1,他引:2  
利用5株广谱特异性抗H5亚型血凝素单克隆抗体和酶联免疫渗滤技术成功地建立了一种适于现场检测H5亚型禽流感病毒血凝素蛋白的抗原快速检测试剂H5-HA(Ag)Dot-ELISA。该试剂对41株代表当前亚洲地区流行的各种遗传变异亚系H5N1禽流感病毒检测均为阳性,对多数毒株的分析灵敏度优于0.1个血凝滴度(HA titer),其中部分优于0.01个血凝滴度;比较该试剂与早期开发的同类ELISA试剂,发现前者对后者未能检出的H5N1新变异株检测均为阳性;利用该试剂和商品化Directigen Flu A(BD)试剂检测两株H5N1病毒株,提示前者灵敏度高于后者;该试剂对一株H5N1病毒的检测灵敏度与标准RT-PCR相当;该试剂对24株非H5亚型病毒检测均为阴性,显示出良好特异性。以上结果提示,此研究建立的H5N1病毒抗原快速检测试剂在H5禽流感现场检测上具有较好的应用前景。  相似文献   

10.
A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome seq...  相似文献   

11.
Very limited evidence has been reported to show human adaptive immune responses to the 2009 pandemic H1N1 swine-origin influenza A virus (S-OIV). We studied 17 S-OIV peptides homologous to immunodominant CD4 T epitopes from hemagglutinin (HA), neuraminidase (NA), nuclear protein (NP), M1 matrix protein (MP), and PB1 of a seasonal H1N1 strain. We concluded that 15 of these 17 S-OIV peptides would induce responses of seasonal influenza virus-specific T cells. Of these, seven S-OIV sequences were identical to seasonal influenza virus sequences, while eight had at least one amino acid that was not conserved. T cells recognizing epitopes derived from these S-OIV antigens could be detected ex vivo. Most of these T cells expressed memory markers, although none of the donors had been exposed to S-OIV. Functional analysis revealed that specific amino acid differences in the sequences of these S-OIV peptides would not affect or partially affect memory T-cell responses. These findings suggest that without protective antibody responses, individuals vaccinated against seasonal influenza A may still benefit from preexisting cross-reactive memory CD4 T cells reducing their susceptibility to S-OIV infection.The outbreak of H1N1 swine-origin influenza A virus (S-OIV) in April 2009 has raised a new threat to public health (5, 6). This novel virus (with A/California/04/09 H1N1 as a prototypic strain) not only replicated more efficiently but also caused more severe pathological lesions in the lungs of infected mice, ferrets, and nonhuman primates than a currently circulating human H1N1 virus (9). Similarly, human patients with influenza-like illness who tested negative for S-OIV had a milder clinical course than those who tested positive (13). Another major concern is the lack of immune protection against S-OIV in the human population. Initial serum analysis indicated that cross-reactive antibodies to this novel viral strain were detected in only one-third of people over 60 years of age, while humoral immune responses in the population under 60 years of age were rarely detected (3, 8). In addition, vaccination with recent seasonal influenza vaccines induced little or no cross-reactive antibody responses to S-OIV in any age group (3, 8).Only a few studies address whether preexisting seasonal influenza A virus-specific memory T cells cross-react with antigenic peptides derived from S-OIV (7). In the absence of preexisting cross-reactive neutralizing antibodies, it is likely that T-cell-mediated cellular immunity contributes to viral clearance and reduces the severity of symptoms, although virus-specific T cells cannot directly prevent the establishment of infection (10). Greenbaum and colleagues recently compared published T-cell epitopes for seasonal influenza viruses with S-OIV antigens (Ags) using a computational approach (7). Several seasonal H1N1 epitopes were found to be identical to S-OIV sequences. This implies that seasonal flu-specific memory T cells circulating in the peripheral blood of vaccinated and/or previously infected individuals are able to recognize their S-OIV homologues.The first objective of this study was to determine the extent of cross-reactivity of seasonal H1N1 influenza A virus-specific CD4 T cells with S-OIV epitopes, especially those less conserved peptide sequences. We chose 17 immunodominant DR4-restricted T-cell epitopes derived from a seasonal H1N1 strain, compared the binding of these epitopes and their S-OIV homologous peptides to DR4, tested the ability of S-OIV peptides to drive seasonal influenza virus-specific T-cell proliferation in vitro, and estimated the frequency of S-OIV cross-reactive T cells in the periphery of noninfected donors. We found that most homologous S-OIV peptides were able to activate seasonal H1N1 virus-specific CD4 T cells. The second objective was to compare the antigen dosage requirement to activate those T cells. By assessing the alternations in the functional avidities (of T cells to the cognate peptide and S-OIV homologue) due to amino acid differences in S-OIV peptides, we showed how those cross-reactive CD4 T cells differentially responded to the antigenic peptides derived from seasonal H1N1 virus or S-OIV. This study leads to the conclusion that previous exposure to seasonal H1N1 viral antigens will generate considerable levels of memory CD4 T cells cross-reactive with S-OIV.  相似文献   

12.
The emergence of a novel A(H1N1) strain in 2009 was the first influenza pandemic of the genomic age, and unprecedented surveillance of the virus provides the opportunity to better understand the evolution of influenza. We examined changes in the nucleotide coding regions and the amino acid sequences of the hemagglutinin (HA), neuraminidase (NA), and nucleoprotein (NP) segments of the A(H1N1)pdm09 strain using publicly available data. We calculated the nucleotide and amino acid hamming distance from the vaccine strain A/California/07/2009 for each sequence. We also estimated Pepitope–a measure of antigenic diversity based on changes in the epitope regions–for each isolate. Finally, we compared our results to A(H3N2) strains collected over the same period. Our analysis found that the mean hamming distance for the HA protein of the A(H1N1)pdm09 strain increased from 3.6 (standard deviation [SD]: 1.3) in 2009 to 11.7 (SD: 1.0) in 2013, while the mean hamming distance in the coding region increased from 7.4 (SD: 2.2) in 2009 to 28.3 (SD: 2.1) in 2013. These trends are broadly similar to the rate of mutation in H3N2 over the same time period. However, in contrast to H3N2 strains, the rate of mutation accumulation has slowed in recent years. Our results are notable because, over the course of the study, mutation rates in H3N2 similar to that seen with A(H1N1)pdm09 led to the emergence of two antigenic drift variants. However, while there has been an H1N1 epidemic in North America this season, evidence to date indicates the vaccine is still effective, suggesting the epidemic is not due to the emergence of an antigenic drift variant. Our results suggest that more research is needed to understand how viral mutations are related to vaccine effectiveness so that future vaccine choices and development can be more predictive.  相似文献   

13.
Natural killer (NK) cells are the effectors of innate immunity and are recruited into the lung 48 h after influenza virus infection. Functional NK cell activation can be triggered by the interaction between viral hemagglutinin (HA) and natural cytotoxicity receptors NKp46 and NKp44 on the cell surface. Recently, novel subtypes of influenza viruses, such as H5N1 and 2009 pandemic H1N1, transmitted directly to the human population, with unusual mortality and morbidity rates. Here, the human NK cell responses to these viruses were studied. Differential activation of heterogeneous NK cells (upregulation of CD69 and CD107a and gamma interferon [IFN-γ] production as well as downregulation of NKp46) was observed following interactions with H5N1, 1918 H1N1, and 2009 H1N1 pseudotyped particles (pps), respectively, and the responses of the CD56dim subset predominated. Much stronger NK activation was triggered by H5N1 and 1918 H1N1 pps than by 2009 H1N1 pps. The interaction of pps with NK cells and subsequent internalization were mediated by NKp46 partially. The NK cell activation by pps showed a dosage-dependent manner, while an increasing viral HA titer attenuated NK activation phenotypes, cytotoxicity, and IFN-γ production. The various host innate immune responses to different influenza virus subtypes or HA titers may be associated with disease severity.Influenza is a contagious, acute respiratory disease caused by influenza viruses and has caused substantial human morbidity and mortality over the past century (24, 27). The 1918-1919 pandemic caused by influenza virus type A H1N1 was responsible for an estimated 50 million deaths (21). In recent years, novel subtype influenza viruses, such as H5N1 and the 2009 pandemic H1N1, have been transmitted directly from animals to the human population. These infections were characterized by unusually high rates of severe respiratory disease and mortality among young patients (8, 18). Various genetic shifts have occurred in these viruses, allowing them to evade the host protective effects of specific antihemagglutinin (HA) or antineuraminidase (NA) antibodies (27). Therefore, host innate immunity in the early phase of infection, which includes a variety of pattern recognition molecules, inflammatory cytokines, and immune cells, such as macrophages and natural killer (NK) cells, plays a critical role in host defense.NK cells are bone marrow-derived, large, granular lymphocytes and are key effector cells in innate immunity for host defense against invading infectious pathogens and malignant transformation through cytolytic activity and production of cytokines, such as gamma interferon (IFN-γ) (10, 28, 43, 51). In humans, NK cells account for approximately 10% of all blood lymphocytes and are identified by their expression of the CD56 surface antigen and their lack of CD3. Two distinct subsets of human NK cells have been defined according to the cell surface density of CD56 expression (10). The majority (∼90% in blood) of human NK cells are CD56dim, and a minor population (∼10% in blood) is CD56bright. These NK subsets are functionally distinct, with the immunoregulatory CD56bright cells producing abundant cytokines and the cytotoxic CD56dim cells probably functioning as efficient effectors of natural and antibody-dependent target cell lysis (11).Many lines of evidence suggest that NK cells can be functionally activated by the interaction between natural cytotoxicity receptors (NCRs) on the cell surface and influenza virus HA protein or stress-induced proteins from infected cells (2, 13, 33, 44, 46). On the other hand, influenza virus is able to evade host immunity by infecting NK cells and triggering cell apoptosis or by attenuating NK cell lysis of H3N2-infected cells, owing to alterations in HA binding properties (35, 39). The infiltration of macrophages and lymphocytes into the lung and strong inflammatory responses were detected in H5N1 and the 1918 and 2009 pandemic H1N1 infections. Nevertheless, little is known about the precise roles of NK cells in these infections.In this study, the responses of NK cells to 1918 H1N1, 2009 H1N1, and H5N1 influenza A viruses were evaluated using three strains of influenza A virus pseudotyped particles (pps). Our findings may aid in understanding the pathogenicity of influenza viruses and its correlation with clinical severity.  相似文献   

14.

Background

2009 pandemic influenza A/H1N1 (A(H1N1)pdm09) was first detected in the United States in April 2009 and resulted in a global pandemic. We conducted a serologic survey to estimate the cumulative incidence of A(H1N1)pdm09 through the end of 2009 when pandemic activity had waned in the United States.

Methods

We conducted a pair of cross sectional serologic surveys before and after the spring/fall waves of the pandemic for evidence of seropositivity (titer ≥40) using the hemagglutination inhibition (HI) assay. We tested a baseline sample of 1,142 serum specimens from the 2007–2008 National Health and Nutrition Examination Survey (NHANES), and 2,759 serum specimens submitted for routine screening to clinical diagnostic laboratories from ten representative sites.

Results

The age-adjusted prevalence of seropositivity to A(H1N1)pdm09 by year-end 2009 was 36.9% (95%CI: 31.7–42.2%). After adjusting for baseline cross-reactive antibody, pandemic vaccination coverage and the sensitivity/specificity of the HI assay, we estimate that 20.2% (95%CI: 10.1–28.3%) of the population was infected with A(H1N1)pdm09 by December 2009, including 53.3% (95%CI: 39.0–67.1%) of children aged 5–17 years.

Conclusions

By December 2009, approximately one-fifth of the US population, or 61.9 million persons, may have been infected with A(H1N1)pdm09, including around half of school-aged children.  相似文献   

15.
It is clinically important to be able to detect influenza A/H1N1 virus using a fast, portable, and accurate system that has high specificity and sensitivity. To achieve this goal, it is necessary to develop a highly specific primer set that recognizes only influenza A viral genes and a rapid real-time PCR system that can detect even a single copy of the viral gene. In this study, we developed and validated a novel fluidic chip-type real-time PCR (LabChip real-time PCR) system that is sensitive and specific for the detection of influenza A/H1N1, including the pandemic influenza strain A/H1N1 of 2009. This LabChip real-time PCR system has several remarkable features: (1) It allows rapid quantitative analysis, requiring only 15 min to perform 30 cycles of real-time PCR. (2) It is portable, with a weight of only 5.5 kg. (3) The reaction cost is low, since it uses disposable plastic chips. (4) Its high efficiency is equivalent to that of commercially available tube-type real-time PCR systems. The developed disposable LabChip is an economic, heat-transferable, light-transparent, and easy-to-fabricate polymeric chip compared to conventional silicon- or glass-based labchip. In addition, our LabChip has large surface-to-volume ratios in micro channels that are required for overcoming time consumed for temperature control during real-time PCR. The efficiency of the LabChip real-time PCR system was confirmed using novel primer sets specifically targeted to the hemagglutinin (HA) gene of influenza A/H1N1 and clinical specimens. Eighty-five human clinical swab samples were tested using the LabChip real-time PCR. The results demonstrated 100% sensitivity and specificity, showing 72 positive and 13 negative cases. These results were identical to those from a tube-type real-time PCR system. This indicates that the novel LabChip real-time PCR may be an ultra-fast, quantitative, point-of-care-potential diagnostic tool for influenza A/H1N1 with a high sensitivity and specificity.  相似文献   

16.
Influenza virus defective interfering (DI) particles are naturally occurring noninfectious virions typically generated during in vitro serial passages in cell culture of the virus at a high multiplicity of infection. DI particles are recognized for the role they play in inhibiting viral replication and for the impact they have on the production of infectious virions. To date, influenza virus DI particles have been reported primarily as a phenomenon of cell culture and in experimentally infected embryonated chicken eggs. They have also been isolated from a respiratory infection of chickens. Using a sequencing approach, we characterize several subgenomic viral RNAs from human nasopharyngeal specimens infected with the influenza A(H1N1)pdm09 virus. The distribution of these in vivo-derived DI-like RNAs was similar to that of in vitro DIs, with the majority of the defective RNAs generated from the PB2 (segment 1) of the polymerase complex, followed by PB1 and PA. The lengths of the in vivo-derived DI-like segments also are similar to those of known in vitro DIs, and the in vivo-derived DI-like segments share internal deletions of the same segments. The presence of identical DI-like RNAs in patients linked by direct contact is compatible with transmission between them. The functional role of DI-like RNAs in natural infections remains to be established.  相似文献   

17.
The 1957 A/H2N2 influenza virus caused an estimated 2 million fatalities during the pandemic. Since viruses of the H2 subtype continue to infect avian species and pigs, the threat of reintroduction into humans remains. To determine factors involved in the zoonotic origin of the 1957 pandemic, we performed analyses on genetic sequences of 175 newly sequenced human and avian H2N2 virus isolates and all publicly available influenza virus genomes.  相似文献   

18.
19.
20.
While few children and young adults have cross-protective antibodies to the pandemic H1N1 2009 (pdmH1N1) virus, the illness remains mild. The biological reasons for these epidemiological observations are unclear. In this study, we demonstrate that the bulk memory cytotoxic T lymphocytes (CTLs) established by seasonal influenza viruses from healthy individuals who have not been exposed to pdmH1N1 can directly lyse pdmH1N1-infected target cells and produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Using influenza A virus matrix protein 1 (M158-66) epitope-specific CTLs isolated from healthy HLA-A2+ individuals, we further found that M158-66 epitope-specific CTLs efficiently killed both M158-66 peptide-pulsed and pdmH1N1-infected target cells ex vivo. These M158-66-specific CTLs showed an effector memory phenotype and expressed CXCR3 and CCR5 chemokine receptors. Of 94 influenza A virus CD8 T-cell epitopes obtained from the Immune Epitope Database (IEDB), 17 epitopes are conserved in pdmH1N1, and more than half of these conserved epitopes are derived from M1 protein. In addition, 65% (11/17) of these epitopes were 100% conserved in seasonal influenza vaccine H1N1 strains during the last 20 years. Importantly, seasonal influenza vaccination could expand the functional M158-66 epitope-specific CTLs in 20% (4/20) of HLA-A2+ individuals. Our results indicated that memory CTLs established by seasonal influenza A viruses or vaccines had cross-reactivity against pdmH1N1. These might explain, at least in part, the unexpected mild pdmH1N1 illness in the community and also might provide some valuable insights for the future design of broadly protective vaccines to prevent influenza, especially pandemic influenza.Since its first identification in North America in April 2009, the novel pandemic H1N1 2009 (pdmH1N1) virus has been spreading in humans worldwide, giving rise to the first pandemic in the 21st century (13, 18). The pdmH1N1 virus contains a unique gene constellation, with its NA and M gene segments being derived from the Eurasian swine lineage while the other gene segments originated from the swine triple-reassortant H1N1 lineage. The triple-reassortant swine viruses have in turn derived the HA, NP, and NS gene segments from the classical swine lineage (20). The 1918 pandemic virus gave rise to both the seasonal influenza H1N1 and the classical swine H1N1 virus lineages (41). Evolution in different hosts during the subsequent 90 years has led to increasing antigenic differences between recent seasonal H1N1 viruses and swine H1 viruses (42). Thus, younger individuals have no antibodies that cross neutralize pdmH1N1, while those over 65 years of age are increasingly likely to have cross-neutralizing antibodies to pdmH1N1 (10, 25).Currently available seasonal influenza vaccines do not induce cross-reactive antibodies against this novel virus in any age group (10, 25). In animal models, it has been shown that pdmH1N1 replicated more efficiently and caused more severe pathological lesions than the current seasonal influenza virus (28). However, most patients with pdmH1N1 virus infection show a mild illness comparable to seasonal influenza (9, 42). The incidence of severe cases caused by pdmH1N1 was not significantly higher than that caused by human seasonal influenza viruses (43). These findings imply that seasonal influenza A virus-specific memory T cells preexisting in previously infected individuals may have cross-protection to this novel pdmH1N1.Cross-reactivity of influenza A virus-specific T-cell immunity against heterosubtypic strains which are serologically distinct has been demonstrated (5, 29, 33, 47). Humans who have not been exposed to avian influenza A (H5N1) virus do have cross-reactive memory CD4 and CD8 T cells to a wide range of H5N1 peptides (33, 47). More recently, one study also showed that some seasonal influenza A virus-specific memory T cells in individuals without exposure to prior pdmH1N1 infection can recognize pdmH1N1 (24). However, the results in most of these studies were determined by the gamma interferon (IFN-γ) responses to influenza virus peptides. Although the recalled IFN-γ response is commonly used to detect memory CD4 and CD8 T cells, the activated T cells that bind major histocompatibility complex (MHC)-presented peptide are not necessarily capable of lysing the target cells (6). In addition, the peptides, but not the whole virus, may not be able to fully represent the human cross-response against the virus as a whole. Therefore, in addition to cytokine production, the demonstration of direct antigen-specific cytotoxicity of cytotoxic T lymphocytes (CTLs) against both peptide-pulsed and virus-infected target cells is needed for better understanding of human CTL responses against pdmH1N1 virus.In this study, using bulk memory CTLs and epitope-specific CTLs established by seasonal influenza A viruses and epitope-specific peptide from healthy individuals, respectively, we evaluated their cross-cytotoxicity and cytokine responses to pdmH1N1. We also examined the expression of chemokine receptors CXCR3 and CCR5, which could help CTLs to migrate to the site of infection. In addition, to understand whether the seasonal influenza vaccines have benefit for people who have not been exposed to pdmH1N1, we further examined the ability of seasonal influenza vaccines to induce the conserved M158-66 epitope-specific CTLs in HLA-A2-seropositive healthy individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号