首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genomic DNA extracts from four sites at Kilauea Volcano were used as templates for PCR amplification of the large subunit (coxL) of aerobic carbon monoxide dehydrogenase. The sites included a 42-year-old tephra deposit, a 108-year-old lava flow, a 212-year-old partially vegetated ash-and-tephra deposit, and an approximately 300-year-old forest. PCR primers amplified coxL sequences from the OMP clade of CO oxidizers, which includes isolates such as Oligotropha carboxidovorans, Mycobacterium tuberculosis, and Pseudomonas thermocarboxydovorans. PCR products were used to create clone libraries that provide the first insights into the diversity and phylogenetic affiliations of CO oxidizers in situ. On the basis of phylogenetic and statistical analyses, clone libraries for each site were distinct. Although some clone sequences were similar to coxL sequences from known organisms, many sequences appeared to represent phylogenetic lineages not previously known to harbor CO oxidizers. On the basis of average nucleotide diversity and average pairwise difference, a forested site supported the most diverse CO-oxidizing populations, while an 1894 lava flow supported the least diverse populations. Neither parameter correlated with previous estimates of atmospheric CO uptake rates, but both parameters correlated positively with estimates of microbial biomass and respiration. Collectively, the results indicate that the CO oxidizer functional group associated with recent volcanic deposits of the remote Hawaiian Islands contains substantial and previously unsuspected diversity.  相似文献   

2.
A series of sites were established on Hawaiian volcanic deposits ranging from about 18 to 300 years old. Three sites occurred in areas that supported tropical rain forests; the remaining sites were in areas that supported little or no plant growth. Sites >26 years old consumed atmospheric CO and hydrogen at rates ranging from about 0.2 to 5 mg of CO m−2 day−1 and 0.1 to 4 mg of H2 m−2 day−1, respectively. Respiration, measured as CO2 production, for a subset of the sites ranged from about 40 to >1,400 mg of CO2 m−2 day−1. CO and H2 accounted for about 13 to 25% of reducing equivalent flow for all but a forested site, where neither substrate appeared significant. Based on responses to chloroform fumigation, hydrogen utilization appeared largely due to microbial uptake. In contrast to results for CO and hydrogen, methane uptake occurred consistently only at the forest site. Increasing deposit age was generally accompanied by increasing concentrations of organic matter and microbial biomass, measured as phospholipid phosphate. Exoenzymatic activities (acid and alkaline phosphatases and α- and β-glucosidases) were positively correlated with deposit age in spite of considerable variability within sites. The diversity of substrates utilized in Biolog Ecoplate assays also increased with deposit age, possibly reflecting changes in microbial community complexity.  相似文献   

3.
Acyl-homoserine lactone (acyl-HSL) quorum sensing is common to many Proteobacteria including a clinical isolate of Burkholderia cepacia. The B. cepacia isolate produces low levels of octanoyl-HSL. We have examined an environmental isolate of Burkholderia vietnamiensis. This isolate produced several acyl-HSLs. The most abundant species was decanoyl-HSL. Decanoyl-HSL in B. vietnamiensis cultures reached concentrations in excess of 20 microM. We isolated a B. vietnamiensis DNA fragment containing a gene for the synthesis of decanoyl-HSL (bviI) and an open reading frame that codes for a putative signal receptor (bviR). A B. vietnamiensis bviI mutant did not produce detectable levels of decanoyl-HSL.  相似文献   

4.
5.
The majority of isolates of Burkholderia cepacia, an important opportunistic pathogen associated with cystic fibrosis, can be classified into two types on the basis of flagellin protein size. Electron microscopic analysis indicates that the flagella of strains with the larger flagellin type (type I) are wider in diameter. Flagellin genes representative of both types were cloned and sequenced to design oligonucleotide primers for PCR amplification of the central variable domain of B. cepacia flagellin genes. PCR-restriction fragment length polymorphism analysis of amplified B. cepacia flagellin gene products from 16 strains enabled flagellin type classification on the basis of product size and revealed considerable differences in sequence, indicating that the flagellin gene is a useful biomarker for epidemiological and phylogenetic studies of this organism.Burkholderia cepacia (formerly Pseudomonas cepacia; a member of the rRNA group II pseudomonads) has emerged as an increasingly important opportunistic pathogen, particularly in relation to patients suffering from cystic fibrosis (CF) (15). Acquisition of B. cepacia, often occurring after lengthy colonization with Pseudomonas aeruginosa, can lead to the rapid deterioration or death of CF patients, and this organism appears to be transmissible between patients (14). There is considerable evidence that some strains of B. cepacia are more virulent than others and that the outcome of colonization by a particular strain can vary from rapidly fatal septicemia to maintenance of stable respiratory function (16). A number of factors have been implicated in the greater virulence of some strains. These include adhesion to respiratory mucin (31, 32) and the presence of cable pili (33).Motility in B. cepacia is by means of polar flagella. Flagella, each consisting of a flagellin filament, hook, and basal body, have been implicated as invasive virulence factors for a number of bacteria (28), including P. aeruginosa (11). Unlike P. aeruginosa, which appears to sit in microcolonies in the viscid mucus, leading to progressive lung damage with episodes of acute debilitating exacerbation, some strains of B. cepacia cause rapidly fatal pneumonia in CF patients (15), suggesting that they may have the ability to move through the mucus. Because of their location on the outside of bacterial cells, flagellins have been targeted in vaccine design. Brett et al. (4) demonstrated that flagellin-specific antisera were capable of protecting diabetic rats from challenge with strains of Burkholderia pseudomallei (another member of rRNA group II). In a recent study, an O-polysaccharide moiety of B. pseudomallei was covalently linked to the flagellin protein from the same strain. O-polysaccharide–flagellin conjugates elicited a high-level immunoglobulin G response capable of protecting diabetic rats from challenge with a heterologous strain of B. pseudomallei (5).Two distinct flagellin protein molecular mass groups in B. cepacia have been reported by Montie and Stover (23). In this previous study, type I flagellins were reported as having a molecular mass of 31 kDa while the molecular mass of type II flagellins was reported as 44 to 46 kDa. This early study, using a limited number of isolates, suggested that with regard to flagellin, B. cepacia is analogous to another CF pathogen, P. aeruginosa, in which two flagellin antigenic types distinguishable by protein or gene size are found (43). Several representatives of the heterologous a-type and homologous b-type fliC loci of P. aeruginosa (encoding flagellins) have been sequenced (37). In addition, PCR amplification of flagellin genes coupled with restriction fragment length polymorphism (RFLP) analysis can be used as a method for differentiating between clinical isolates of P. aeruginosa (7, 43). In this paper we report the development of a similar approach to the study of populations of B. cepacia and discuss the divergence of a highly variable gene, the flagellin gene (fliC), within populations of B. cepacia.  相似文献   

6.
7.
C. Y. Wu  J. Mote-Jr.    M. D. Brennan 《Genetics》1990,125(3):599-610
Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavior of the different Adh genes in a homogeneous background. Accordingly, the Adh gene from Drosophila grimshawi was introduced into the germ line of Drosophila melanogaster by means of P element-mediated transformation, and transformants carrying this gene were compared to transformants carrying the Adh genes from Drosophila affinidisjuncta and Drosophila hawaiiensis. The results indicate that the D. affinidisjuncta and D. grimshawi genes have relatively higher levels of expression and broader tissue distribution of expression than the D. hawaiiensis gene in larvae. All three genes are expressed at similar overall levels in adults, with differences in tissue distribution of enzyme activity corresponding to the pattern in the donor species. However, certain systematic differences between Adh gene expression in transformants and in the Hawaiian Drosophila are noted along with tissue-specific position effects in some cases. The implications of these findings for the understanding of evolved regulatory variation are discussed.  相似文献   

8.
A new real-time PCR method is presented that detects and quantifies three tetracycline resistance (Tcr) genes [tet(O), tet(W), and tet(Q)] in mixed microbial communities resident in feedlot lagoon wastewater. Tcr gene real-time TaqMan primer-probe sets were developed and optimized to quantify the Tcr genes present in seven different cattle feedlot lagoons, to validate the method, and to assess whether resistance gene concentrations correlate with free-tetracycline levels in lagoon waters. The method proved to be sensitive across a wide range of gene concentrations and provided consistent and reproducible results from complex lagoon water samples. The log10 of the sum of the three resistance gene concentrations was correlated with free-tetracycline levels (r2 = 0.50, P < 0.001; n = 18), with the geometric means of individual resistance concentrations ranging from 4- to 8.3-fold greater in lagoon samples with above-median tetracycline levels (>1.95 μg/liter by enzyme-linked immunosorbent assay techniques) than in below-median lagoon samples. Of the three Tcr genes tested, tet(W) and tet(Q) were more commonly found in lagoon water samples. Successful development of this real-time PCR assay will permit other studies quantifying Tcr gene numbers in environmental and other samples.  相似文献   

9.
10.
Transposon-directed insertion site sequencing was used to identify genes required by Burkholderia thailandensis to survive in plant/soil microcosms. A total of 1,153 genetic loci fulfilled the criteria as being likely to encode survival characteristics. Of these, 203 (17.6 %) were associated with uptake and transport systems; 463 loci (40.1 %) coded for enzymatic properties, 99 of these (21.4 %) had reduction/oxidation functions; 117 (10.1 %) were gene regulation or sensory loci; 61 (5.3 %) encoded structural proteins found in the cell envelope or with enzymatic activities related to it, distinct from these, 46 (4.0 %) were involved in chemotaxis and flagellum, or pilus synthesis; 39 (3.4 %) were transposase enzymes or were bacteriophage-derived; and 30 (2.6 %) were involved in the production of antibiotics or siderophores. Two hundred and twenty genes (19.1 %) encoded hypothetical proteins or those of unknown function. Given the importance of motility and pilus formation in microcosm persistence the nature of the colonization of the rhizosphere was examined by confocal microscopy. Wild type B. thailandensis expressing red fluorescent protein was inoculated into microcosms. Even though the roots had been washed, the bacteria were still present but they were motile with no attachment having taken place, perhaps being retained in a biofilm.  相似文献   

11.
12.
13.
Burkholderia sp. strain SJ98 has the chemotactic activity towards nitroaromatic and chloronitroaromatic compounds. Recently our group published draft genome of strain SJ98. In this study, we further sequence and annotate the genome of stain SJ98 to exploit the potential of this bacterium. We specifically annotate its chemotaxis genes and methyl accepting chemotaxis proteins. Genome of Burkholderia sp. SJ98 was annotated using PGAAP pipeline that predicts 7,268 CDSs, 52 tRNAs and 3 rRNAs. Our analysis based on phylogenetic and comparative genomics suggest that Burkholderia sp. YI23 is closest neighbor of the strain SJ98. The genes involved in the chemotaxis of strain SJ98 were compared with genes of closely related Burkholderia strains (i.e. YI23, CCGE 1001, CCGE 1002, CCGE 1003) and with well characterized bacterium E. coli K12. It was found that strain SJ98 has 37 che genes including 19 methyl accepting chemotaxis proteins that involved in sensing of different attractants. Chemotaxis genes have been found in a cluster along with the flagellar motor proteins. We also developed a web resource that provides comprehensive information on strain SJ98 that includes all analysis data (http://crdd.osdd.net/raghava/genomesrs/burkholderia/).  相似文献   

14.
15.
Glycosylation of proteins is known to impart novel physical properties and biological roles to proteins from both eukaryotes and prokaryotes. In this study, gel-based glycoproteomics were used to identify glycoproteins of the potential biothreat agent Burkholderia pseudomallei and the closely related but nonpathogenic B. thailandensis. Top-down and bottom-up mass spectrometry (MS) analyses identified that the flagellin proteins of both species were posttranslationally modified by novel glycans. Analysis of proteins from two strains of each species demonstrated that B. pseudomallei flagellin proteins were modified with a glycan with a mass of 291 Da, while B. thailandensis flagellin protein was modified with related glycans with a mass of 300 or 342 Da. Structural characterization of the B. thailandensis carbohydrate moiety suggests that it is an acetylated hexuronic acid. In addition, we have identified through mutagenesis a gene from the lipopolysaccharide (LPS) O-antigen biosynthetic cluster which is involved in flagellar glycosylation, and inactivation of this gene eliminates flagellar glycosylation and motility in B. pseudomallei. This is the first report to conclusively demonstrate the presence of a carbohydrate covalently linked to a protein in B. pseudomallei and B. thailandensis, and it suggests new avenues to explore in order to examine the marked differences in virulence between these two species.  相似文献   

16.
Leaves and roots of 19 species and six subspecies of Hawaiian Bidens were examined for polyacetylenes. Eleven C13 hydrocarbons, aromatic and thiophenyl derivatives, one C14 tetrahydropyran and three C17 hydrocarbons were isolated all identified. All can be derived from a common precursor, oleic acid. Polyacetylenes were not detected in the leaves of 13 taxa although they are found in the roots of all. The occurrence of 2-[2-phenyl-ethyne-1-yl]-5 acetoxymethyl thiopene in Bidens has not been previously reported. Its ubiquitous presence is consistent with other evidence that the Hawaiian species are all derived from a single ancestral immigrant to the islands. Most taxa could be distinguished by their complement of polyacetylenes in roots and leaves. No variation was found to occur within taxa except in B. torta, in which each population had a unique array of polyacetylenes. Above the species level there appeared to be no taxonomically significant pattern to the distribution of polyacetylenes in this group.  相似文献   

17.
Clermontia earina H. St. John, C. mannii H. St. John and C. oblongifolia Gaud. f. glabra H. St. John, all from Hawaii, are described as new.  相似文献   

18.
Microbes have evolved many strategies to adapt to changes in environmental conditions and population structures, including cooperation and competition. One apparently competitive mechanism is contact dependent growth inhibition (CDI). Identified in Escherichia coli, CDI is mediated by Two-Partner Secretion (TPS) pathway proteins, CdiA and CdiB. Upon cell contact, the toxic C-terminus of the TpsA family member CdiA, called the CdiA-CT, inhibits the growth of CDI(-) bacteria. CDI(+) bacteria are protected from autoinhibition by an immunity protein, CdiI. Bioinformatic analyses indicate that CDI systems are widespread amongst α, β, and γ proteobacteria and that the CdiA-CTs and CdiI proteins are highly variable. CdiI proteins protect against CDI in an allele-specific manner. Here we identify predicted CDI system-encoding loci in species of Burkholderia, Ralstonia and Cupriavidus, named bcpAIOB, that are distinguished from previously-described CDI systems by gene order and the presence of a small ORF, bcpO, located 5' to the gene encoding the TpsB family member. A requirement for bcpO in function of BcpA (the TpsA family member) was demonstrated, indicating that bcpAIOB define a novel class of TPS system. Using fluorescence microscopy and flow cytometry, we show that these genes are expressed in a probabilistic manner during culture of Burkholderia thailandensis in liquid medium. The bcpAIOB genes and extracellular DNA were required for autoaggregation and adherence to an abiotic surface, suggesting that CDI is required for biofilm formation, an activity not previously attributed to CDI. By contrast to what has been observed in E. coli, the B. thailandensis bcpAIOB genes only mediated interbacterial competition on a solid surface. Competition occurred in a defined spatiotemporal manner and was abrogated by allele-specific immunity. Our data indicate that the bcpAIOB genes encode distinct classes of CDI and TPS systems that appear to function in sociomicrobiological community development.  相似文献   

19.
Real-time PCR assays were developed for the enumeration of plasmid-mediated quinolone resistance (PMQR) determinants, such as the qnrA, qnrB, and qnrS genes, in different water samples and chicken feces. The results indicate that the developed assays are specific and sensitive for the quantification of qnr genes in complex samples.  相似文献   

20.
MicroRNAs (miRNAs) are endogenous small non coding RNAs acting as negative regulators. miRNA are involved in lung development and pulmonary diseases. Measurement of their levels by qPCR is directly influenced by the stability of normalization gene(s), which can be affected by the experimental conditions. The developing lung is a changing tissue and one normalization gene showing stability on one developmental day may be modulated over time. Moreover, some developmental events are affected by sex, which also has to be considered. In this study, we compared stability of five putative control genes in the lung between sexes from the pseudoglandular to the alveolar stages and in adult lungs. Expression of sno135, sno142, sno202, sno234, and sno251 was studied by qPCR in male and female lung samples collected at seven time points from GD 15.5 to PN 30. Cq values of sno251 showed the highest variation across the different developmental stages, while sno234 was the most stable gene. Gene expression stability was studied by geNorm, NormFinder and BestKeeper. Our data showed that ranking of genes based on expression stability changed according to developmental time and sex. sno135/sno234 and sno142/sno234 were proposed as best combinations of normalization genes when both sexes and all the studied developmental stages are considered. Normalization of let7-a RNA levels with different pairs of control genes proposed by geNorm and NormFinder gave similar data, while the use of less stable genes introduced a statistically significant difference on PN 0. In conclusion, variations in stability of normalization gene expression are observed over time and according to sex during lung development. Best pairs of normalization genes are presented for specific developmental stages, and for the period extending from the pseudoglandular to the alveolar stages. The use of normalization genes selected for their expression stability is essential in lung development studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号