首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Vesicular stomatitis virus (VSV) has long been regarded as a promising recombinant vaccine platform and oncolytic agent but has not yet been tested in humans because it causes encephalomyelitis in rodents and primates. Recent studies have shown that specific tropisms of several viruses could be eliminated by engineering microRNA target sequences into their genomes, thereby inhibiting spread in tissues expressing cognate microRNAs. We therefore sought to determine whether microRNA targets could be engineered into VSV to ameliorate its neuropathogenicity. Using a panel of recombinant VSVs incorporating microRNA target sequences corresponding to neuron-specific or control microRNAs (in forward and reverse orientations), we tested viral replication kinetics in cell lines treated with microRNA mimics, neurotoxicity after direct intracerebral inoculation in mice, and antitumor efficacy. Compared to picornaviruses and adenoviruses, the engineered VSVs were relatively resistant to microRNA-mediated inhibition, but neurotoxicity could nevertheless be ameliorated significantly using this approach, without compromise to antitumor efficacy. Neurotoxicity was most profoundly reduced in a virus carrying four tandem copies of a neuronal mir125 target sequence inserted in the 3′-untranslated region of the viral polymerase (L) gene.Vesicular stomatitis virus (VSV) is a nonsegmented, negative-strand rhabdovirus widely used as a vaccine platform as well as an anticancer therapeutic. While VSV is predominantly a pathogen of livestock (34), it has a very broad species tropism. The cellular tropism of VSV is determined predominantly at postentry steps, since the G glycoprotein of the virus mediates entry into most tissues in nearly all animal species (10).Though viral entry can take place in nearly all cell types, in vivo models of VSV infection have revealed that the virus is highly sensitive to the innate immune response, limiting its pathogenesis (4). VSV is intensively responsive to type I interferon (IFN), as the double-stranded RNA (dsRNA)-dependent PKR (2), the downstream effector of pattern recognition receptors MyD88 (32), and other molecules mediate shutdown of viral translation and allow the adaptive immune response to clear the virus. The vulnerability of the virus to the type I IFN response, typically defective in many cancers, has been exploited to generate tumor-selective replication (49), such that the virus is now poised to enter phase I trials. However, the virus remains potently neurotoxic, causing lethal encephalitis not only in rodent models (7, 22, 53) but also in nonhuman primates (25).VSV very often infiltrates the central nervous system (CNS) through infection of the olfactory nerves (41). When administered intranasally, the virus replicates rapidly in the nasal epithelium and is transmitted to olfactory neurons, from which it then moves retrograde axonally to the brain and replicates robustly, causing neuropathogenesis. While intranasal inoculation does cause neuropathy in mice, neurotoxicity following viral administration also occurs when the virus is delivered intravascularly (47), intraperitoneally (42), and (not surprisingly) intracranially (13). Previously, other groups have modified the VSV genome to be more sensitive to cellular IFNs (49) and have actually encoded IFN in the virus (36). However, the former can result in attenuation of the virus, such that it has reduced anticancer potential, while the latter still results in lethal encephalitis (unpublished results). In order to mitigate the effects of VSV infection on the brain without perturbing the potent oncolytic activity of the virus, we utilized a microRNA (miRNA) targeting paradigm, whereby viral replication is restricted in the brain without altering the tropism of the virus for other tissues.To redirect the tissue tropism of anticancer therapeutics, we (26) and others (11, 14, 55) have previously exploited the tissue-specific expression of cellular miRNAs. miRNAs are ∼22-nucleotide (nt) regulatory RNAs that regulate a diverse and expansive array of cellular activities. Through recognition of sequence-complementary target elements, miRNAs can either translationally suppress or catalytically degrade both cellular (6) and viral (50) RNAs. We have determined that cellular miRNAs can potentially regulate numerous steps of a virus life cycle and that this regulation of the virus by endogenous miRNAs can then abrogate toxicities of replication-competent viruses (27; E. J. Kelly et al., unpublished data).miRNAs are known to be highly upregulated in many different tissues, including (but not limited to) muscle (40), lung (44), liver (15, 44), spleen (44, 46), and kidney (51). In addition, the brain has a number of upregulated miRNAs, with each different subtype of cell having a unique miRNA profile. miR-125 is highly upregulated in all cells in the brain (neurons, astrocytes, and glia cells), while miR-124 is found predominantly in neuronal cells (48). Glial cells and glioblastomas are thought to have decreased expression of miR-128 compared to neurons (17), while miR-134 is particularly abundant in dendrites of neurons in the hippocampus (43). In addition to these miRNAs, the tumor suppressor miRNA let-7 and miRs 9, 26, and 29 (51) are also found to be enriched in the brain, with expression varying not only between different cell types and regions of the brain but also temporally (48).MicroRNAs have previously been exploited to modulate the tissue tropism of nonreplicating lentiviral vectors (8, 9), as well as curbing known toxicities of replication-competent picornaviruses (5, 26), adenoviruses (11), herpes simplex virus 1 (33), and influenza A virus (39). In addition, a recombinant VSV encoding a tumor suppressor target was found to be responsive to sequence-complementary miRNAs in vitro, possibly by affecting expression of the matrix (M) protein (14), and evidence from Dicer-deficient mice suggests that endogenously expressed microRNA targets within the P and L genes of VSV could restrict enhanced pathogenicity of the virus (37). However, in vivo protection from neuropathogenesis by this means has not been demonstrated for VSV.Here we evaluate the efficiencies of different brain-specific miRNAs for shutting down gene expression and extensively characterize the ability of miRNA targeting to attenuate the neurotoxicity of vesicular stomatitis virus in vivo. We constructed and evaluated recombinant VSVs with miRNA target (miRT) insertions at different regions of the viral genome, with special focus upon those affecting viral L expression. In addition, we looked at the regulatory efficiency of different brain-specific miRNAs and the impact of miRT orientation on VSV replication and determined the impact of the virus on oncolytic activity in vivo.  相似文献   

3.
Membrane glycoproteins of alphavirus play a critical role in the assembly and budding of progeny virions. However, knowledge regarding transport of viral glycoproteins to the plasma membrane is obscure. In this study, we investigated the role of cytopathic vacuole type II (CPV-II) through in situ electron tomography of alphavirus-infected cells. The results revealed that CPV-II contains viral glycoproteins arranged in helical tubular arrays resembling the basic organization of glycoprotein trimers on the envelope of the mature virions. The location of CPV-II adjacent to the site of viral budding suggests a model for the transport of structural components to the site of budding. Thus, the structural characteristics of CPV-II can be used in evaluating the design of a packaging cell line for replicon production.Semliki Forest virus (SFV) is an enveloped alphavirus belonging to the family Togaviridae. This T=4 icosahedral virus particle is approximately 70 nm in diameter (30) and consists of 240 copies of E1/E2 glycoprotein dimers (3, 8, 24). The glycoproteins are anchored in a host-derived lipid envelope that encloses a nucleocapsid, made of a matching number of capsid proteins and a positive single-stranded RNA molecule. After entry of the virus via receptor-mediated endocytosis, a low-pH-induced fusion of the viral envelope with the endosomal membrane delivers the nucleocapsid into the cytoplasm, where the replication events of SFV occur (8, 19, 30). Replication of the viral genome and subsequent translation into structural and nonstructural proteins followed by assembly of the structural proteins and genome (7) lead to budding of progeny virions at the plasma membrane (18, 20). The synthesis of viral proteins shuts off host cell macromolecule synthesis, which allows for efficient intracellular replication of progeny virus (7). The expression of viral proteins leads to the formation of cytopathic vacuolar compartments as the result of the reorganization of cellular membrane in the cytoplasm of an infected cell (1, 7, 14).Early studies using electron microscopy (EM) have characterized the cytopathic vacuoles (CPVs) in SFV-infected cells (6, 13, 14) and identified two types of CPV, namely, CPV type I (CPV-I) and CPV-II. It was found that CPV-I is derived from modified endosomes and lysosomes (18), while CPV-II is derived from the trans-Golgi network (TGN) (10, 11). Significantly, the TGN and CPV-II vesicles are the major membrane compartments marked with E1/E2 glycoproteins (9, 11, 12). Inhibition by monensin results in the accumulation of E1/E2 glycoproteins in the TGN (12, 26), thereby indicating the origin of CPV-II. While CPV-II is identified as the predominant vacuolar structure at the late stage of SFV infection, the exact function of this particular cytopathic vacuole is less well characterized than that of CPV-I (2, 18), although previous observations have pointed to the involvement of CPV-II in budding, because an associated loss of viral budding was observed when CPV-II was absent (9, 36).In this study, we characterized the structure and composition of CPV-II in SFV-infected cells in situ with the aid of electron tomography and immuno-electron microscopy after physical fixation of SFV-infected cells by high-pressure freezing and freeze substitution (21, 22, 33). The results revealed a helical array of E1/E2 glycoproteins within CPV-II and indicate that CPV-II plays an important role in intracellular transport of glycoproteins prior to SFV budding.  相似文献   

4.
In their vertebrate hosts, arboviruses such as Semliki Forest virus (SFV) (Togaviridae) generally counteract innate defenses and trigger cell death. In contrast, in mosquito cells, following an early phase of efficient virus production, a persistent infection with low levels of virus production is established. Whether arboviruses counteract RNA interference (RNAi), which provides an important antiviral defense system in mosquitoes, is an important question. Here we show that in Aedes albopictus-derived mosquito cells, SFV cannot prevent the establishment of an antiviral RNAi response or prevent the spread of protective antiviral double-stranded RNA/small interfering RNA (siRNA) from cell to cell, which can inhibit the replication of incoming virus. The expression of tombusvirus siRNA-binding protein p19 by SFV strongly enhanced virus spread between cultured cells rather than virus replication in initially infected cells. Our results indicate that the spread of the RNAi signal contributes to limiting virus dissemination.In animals, RNA interference (RNAi) was first described for Caenorhabditis elegans (27). The production or introduction of double-stranded RNA (dsRNA) in cells leads to the degradation of mRNAs containing homologous sequences by sequence-specific cleavage of mRNAs. Central to RNAi is the production of 21- to 26-nucleotide small interfering RNAs (siRNAs) from dsRNA and the assembly of an RNA-induced silencing complex (RISC), followed by the degradation of the target mRNA (23, 84). RNAi is a known antiviral strategy of plants (3, 53) and insects (21, 39, 51). Study of Drosophila melanogaster in particular has given important insights into RNAi responses against pathogenic viruses and viral RNAi inhibitors (31, 54, 83, 86, 91). RNAi is well characterized for Drosophila, and orthologs of antiviral RNAi genes have been found in Aedes and Culex spp. (13, 63).Arboviruses, or arthropod-borne viruses, are RNA viruses mainly of the families Bunyaviridae, Flaviviridae, and Togaviridae. The genus Alphavirus within the family Togaviridae contains several mosquito-borne pathogens: arboviruses such as Chikungunya virus (16) and equine encephalitis viruses (88). Replication of the prototype Sindbis virus and Semliki Forest virus (SFV) is well understood (44, 71, 74, 79). Their genome consists of a positive-stranded RNA with a 5′ cap and a 3′ poly(A) tail. The 5′ two-thirds encodes the nonstructural polyprotein P1234, which is cleaved into four replicase proteins, nsP1 to nsP4 (47, 58, 60). The structural polyprotein is encoded in the 3′ one-third of the genome and cleaved into capsid and glycoproteins after translation from a subgenomic mRNA (79). Cytoplasmic replication complexes are associated with cellular membranes (71). Viruses mature by budding at the plasma membrane (35).In nature, arboviruses are spread by arthropod vectors (predominantly mosquitoes, ticks, flies, and midges) to vertebrate hosts (87). Little is known about how arthropod cells react to arbovirus infection. In mosquito cell cultures, an acute phase with efficient virus production is generally followed by the establishment of a persistent infection with low levels of virus production (9). This is fundamentally different from the cytolytic events following arbovirus interactions with mammalian cells and pathogenic insect viruses with insect cells. Alphaviruses encode host response antagonists for mammalian cells (2, 7, 34, 38).RNAi has been described for mosquitoes (56) and, when induced before infection, antagonizes arboviruses and their replicons (1, 4, 14, 15, 29, 30, 32, 42, 64, 65). RNAi is also functional in various mosquito cell lines (1, 8, 43, 49, 52). In the absence of RNAi, alphavirus and flavivirus replication and/or dissemination is enhanced in both mosquitoes and Drosophila (14, 17, 31, 45, 72). RNAi inhibitors weakly enhance SFV replicon replication in tick and mosquito cells (5, 33), posing the questions of how, when, and where RNAi interferes with alphavirus infection in mosquito cells.Here we use an A. albopictus-derived mosquito cell line to study RNAi responses to SFV. Using reporter-based assays, we demonstrate that SFV cannot avoid or efficiently inhibit the establishment of an RNAi response. We also demonstrate that the RNAi signal can spread between mosquito cells. SFV cannot inhibit cell-to-cell spread of the RNAi signal, and spread of the virus-induced RNAi signal (dsRNA/siRNA) can inhibit the replication of incoming SFV in neighboring cells. Furthermore, we show that SFV expression of a siRNA-binding protein increases levels of virus replication mainly by enhancing virus spread between cells rather than replication in initially infected cells. Taken together, these findings suggest a novel mechanism, cell-to-cell spread of antiviral dsRNA/siRNA, by which RNAi limits SFV dissemination in mosquito cells.  相似文献   

5.
Cytosolic chaperones are a diverse group of ubiquitous proteins that play central roles in multiple processes within the cell, including protein translation, folding, intracellular trafficking, and quality control. These cellular proteins have also been implicated in the replication of numerous viruses, although the full extent of their involvement in viral replication is unknown. We have previously shown that the heat shock protein 40 (hsp40) chaperone encoded by the yeast YDJ1 gene facilitates RNA replication of flock house virus (FHV), a well-studied and versatile positive-sense RNA model virus. To further explore the roles of chaperones in FHV replication, we examined a panel of 30 yeast strains with single deletions of cytosolic proteins that have known or hypothesized chaperone activity. We found that the majority of cytosolic chaperone deletions had no impact on FHV RNA accumulation, with the notable exception of J-domain-containing hsp40 chaperones, where deletion of APJ1 reduced FHV RNA accumulation by 60%, while deletion of ZUO1, JJJ1, or JJJ2 markedly increased FHV RNA accumulation, by 4- to 40-fold. Further studies using cross complementation and double-deletion strains revealed that the contrasting effects of J domain proteins were reproduced by altering expression of the major cytosolic hsp70s encoded by the SSA and SSB families and were mediated in part by divergent effects on FHV RNA polymerase synthesis. These results identify hsp70 chaperones as critical regulators of FHV RNA replication and indicate that cellular chaperones can have both positive and negative regulatory effects on virus replication.The compact genomes of viruses relative to those of other infectious agents restrict their ability to encode all proteins required to complete their replication cycles. To circumvent this limitation, viruses often utilize cellular factors or processes to complete essential steps in replication. One group of cellular proteins frequently targeted by viruses are cellular chaperones, which include a diverse set of heat shock proteins (hsps) that normally facilitate cellular protein translation, folding, trafficking, and degradation (18, 64). The connection between viruses and cellular chaperones was originally identified in bacteria, where the Escherichia coli hsp40 and hsp70 homologues, encoded by dnaJ and dnaK, respectively, were identified as bacterial genes essential for bacteriophage λ DNA replication (62). Research over the past 30 years has further revealed the importance of cellular chaperones in viral replication, such that the list of virus-hsp connections is now quite extensive and includes viruses from numerous families with diverse genome structures (4, 6, 7, 16, 19, 20, 23, 25, 40, 41, 44, 51, 54, 60). These studies have demonstrated the importance of cellular chaperones in multiple steps of the viral life cycle, including entry, viral protein translation, genome replication, encapsidation, and virion release. However, the list of virus-hsp connections is likely incomplete. Further studies to explore this particular host-pathogen interaction will shed light on virus replication mechanisms and pathogenesis, and potentially highlight targets for novel antiviral agents.To study the role of cellular chaperones in the genome replication of positive-sense RNA viruses, we use flock house virus (FHV), a natural insect pathogen and well-studied member of the Nodaviridae family. The FHV life cycle shares many common features with other positive-sense RNA viruses, including the membrane-specific targeting and assembly of functional RNA replication complexes (37, 38), the exploitation of various cellular processes and host factors for viral replication (5, 23, 60), and the induction of large-scale membrane rearrangements (24, 28, 38, 39). FHV virions contain a copackaged bipartite genome consisting of RNA1 (3.1 kb) and RNA2 (1.4 kb), which encode protein A, the viral RNA-dependent RNA polymerase, and the structural capsid protein precursor, respectively (1). During active genome replication, FHV produces a subgenomic RNA3 (0.4 kb), which encodes the RNA interference inhibitor protein B2 (12, 29, 32). These viral characteristics make FHV an excellent model system to study many aspects of positive-sense RNA virus biology.In addition to the benefits of a simple genome, FHV is able to establish robust RNA replication in a wide variety of genetically tractable eukaryotic hosts, including Drosophila melanogaster (38), Caenorhabditis elegans (32), and Saccharomyces cerevisiae (46). The budding yeast S. cerevisiae has been an exceptionally useful model host to study the mechanisms of viral RNA replication complex assembly and function with FHV (31, 37, 39, 45, 53, 55, 56, 60) as well as other positive-sense RNA viruses (11). The facile genetics of S. cerevisiae, along with the vast array of well-defined cellular and molecular tools and techniques, make it an ideal eukaryotic host for the identification of cellular factors required for positive-sense RNA virus replication. Furthermore, readily available yeast libraries with deletions and regulated expression of individual proteins have led to the completion of several high-throughput screens to provide a global survey of host factors that impact virus replication (26, 42, 52). An alternative approach with these yeast libraries that reduces the inherently high false-negative rates associated with high-throughput screens is to focus on a select set of host genes associated with a particular cellular pathway, process, or location previously implicated in virus replication.We have utilized such a targeted approach and focused on examining the impact of cytosolic chaperones on FHV RNA replication. Previously, we have shown that the cellular chaperone hsp90 facilitates protein A synthesis in Drosophila cells (5, 23), and the hsp40 encoded by the yeast YDJ1 gene facilitates FHV RNA replication in yeast, in part through effects on both protein A accumulation and function (60). In this report, we further extend these observations by examining FHV RNA accumulation in a panel of yeast strains with deletions of known or hypothesized cytosolic chaperones. We demonstrate that cytosolic chaperones can have either suppressive or enhancing effects on FHV RNA accumulation. In particular, related hsp70 members encoded by the SSA and SSB yeast chaperone families have marked and dramatically divergent effects on both genomic and subgenomic RNA accumulation and viral polymerase synthesis. These results highlight the complexities of the host-pathogen interactions that influence positive-sense RNA virus replication and identify the hsp70 family of cytosolic chaperones as key regulators of FHV replication.  相似文献   

6.
The ectopic overexpression of Bcl-2 restricts both influenza A virus-induced apoptosis and influenza A virus replication in MDCK cells, thus suggesting a role for Bcl-2 family members during infection. Here we report that influenza A virus cannot establish an apoptotic response without functional Bax, a downstream target of Bcl-2, and that both Bax and Bak are directly involved in influenza A virus replication and virus-induced cell death. Bak is substantially downregulated during influenza A virus infection in MDCK cells, and the knockout of Bak in mouse embryonic fibroblasts yields a dramatic rise in the rate of apoptotic death and a corresponding increase in levels of virus replication, suggesting that Bak suppresses both apoptosis and the replication of virus and that the virus suppresses Bak. Bax, however, is activated and translocates from the cytosol to the mitochondria; this activation is required for the efficient induction of apoptosis and virus replication. The knockout of Bax in mouse embryonic fibroblasts blocks the induction of apoptosis, restricts the infection-mediated activation of executioner caspases, and inhibits virus propagation. Bax knockout cells still die but by an alternative death pathway displaying characteristics of autophagy, similarly to our previous observation that influenza A virus infection in the presence of a pancaspase inhibitor leads to an increase in levels of autophagy. The knockout of Bax causes a retention of influenza A virus NP within the nucleus. We conclude that the cell and virus struggle to control apoptosis and autophagy, as appropriately timed apoptosis is important for the replication of influenza A virus.The pathology of influenza A virus infection usually arises from acute lymphopenia and inflammation of the lungs and airway columnar epithelial cells (23, 38). Influenza A virus induces apoptotic death in infected epithelial, lymphocyte, and phagocytic cells, and apoptosis is a source of tissue damage during infection (3, 22, 33) and increased susceptibility to bacterial pathogens postinfection (31). While the induction of apoptosis by influenza A virus has been well documented (4, 19-21, 28, 33, 37), the mechanisms of this interaction are not well understood. Two viral proteins, NS1 and PB1-F2, have been associated with viral killing of cells. NS1, originally characterized as being proapoptotic (34), was later identified as being an interferon antagonist, inhibiting the activation of several key antiviral responses and restricting the apoptotic response to infection (1, 10, 15, 18, 35, 39, 46). In contrast, PB1-F2 induces apoptosis primarily by localizing to the outer mitochondrial membrane, promoting cytochrome c release, and triggering the apoptotic cascade (43). This effect, however, is typically restricted to infected monocytes, leading to the hypothesis that PB1-F2 induces apoptosis specifically to clear the landscape of immune responders (5, 44). Although PB1-F2 activity does not directly manipulate virus replication or virus-induced apoptosis, PB1-F2 localization to the mitochondrial membrane during infection potentiates the apoptotic response in epithelial and fibroblastic cells through tBID signaling with proapoptotic Bcl-2 family protein members Bax and Bak (22, 43, 44).The Bcl-2 protein family consists of both pro- and antiapoptotic members that regulate cytochrome c release during mitochondrion-mediated apoptosis through the formation of pore-like channels in the outer mitochondrial membrane (12, 16). During the initiation of mitochondrion-mediated apoptosis, cytoplasmic Bid is cleaved to form tBID. This, in turn, activates proapoptotic Bax and Bak (40), which drive cytochrome c release and subsequent caspase activation. Bak is constitutively associated with the mitochondrial membrane, whereas inactive Bax is primarily cytosolic, translocating to the outer mitochondrial membrane only after activation (6). The activation of Bax and Bak results in homo- and heterodimer formation at the outer mitochondrial membrane, generating pores that facilitate mitochondrial membrane permeabilization and cytochrome c release (14, 17), leading to caspase activation and the apoptotic cascade (8). Antiapoptotic members of the Bcl-2 protein family, including Bcl-2, inhibit the activation of proapoptotic Bax and Bak primarily by sequestering inactive Bax and Bak monomers via interactions between their BH3 homology domains (7).Bcl-2 expression has been linked to decreased viral replication rates (26). Bcl-2 overexpression inhibits influenza A virus-induced cell death and reduces the titer and spread of newly formed virions (29). The activation of caspase-3 in the absence of sufficient Bcl-2 is critical to the influenza A virus life cycle. Both Bcl-2 expression and the lack of caspase activation during infection lead to the nuclear accumulation of influenza virus ribonucleoprotein (RNP) complexes, thereby leading to the improper assembly of progeny virions and a marked reduction in titers of infectious virus (26, 41, 42, 45).Here we show that influenza A virus induces mitochondrion-mediated (intrinsic-pathway) apoptosis signaled specifically through Bax and that this Bax signaling is essential for the maximum efficiency of virus propagation. In contrast, Bak expression is strongly downregulated during infection. Cells lacking Bak (while expressing Bax) display a much more severe apoptotic phenotype in response to infection and produce infectious virions at a higher rate than the wild type (WT), suggesting that Bak, which can suppress viral replication, is potentially downregulated by the virus. Our results indicate essential and opposing roles for Bax and Bak in both the response of cells to influenza A virus infection and the ability of the virus to maximize its own replicative potential.  相似文献   

7.
Plant viral infection and spread depends on the successful introduction of a virus into a cell of a compatible host, followed by replication and cell-to-cell transport. The movement proteins (MPs) p8 and p9 of Turnip crinkle virus are required for cell-to-cell movement of the virus. We have examined the membrane association of p9 and found that it is an integral membrane protein with a defined topology in the endoplasmic reticulum (ER) membrane. Furthermore, we have used a site-specific photo-cross-linking strategy to study the membrane integration of the protein at the initial stages of its biosynthetic process. This process is cotranslational and proceeds through the signal recognition particle and the translocon complex.Cell-to-cell transport of plant virus requires the virally encoded movement proteins (MPs). These proteins specialize in the translocation of the viral genome or, in some cases, the virions from the replication/encapsidation site to adjacent cells. This process takes place through the plasmodesmata (PD), the small pores formed by prolongations of the endoplasmic reticulum (ER) membranes trapped within the center of the plasma membrane-lined cytoplasmic cylinder that connect plant cells. MPs belong to different protein families with unique functional and structural characteristics. The most studied MP is p30 from the Tobacco mosaic virus, a 30-kDa RNA-binding protein (4) with two putative transmembrane (TM) segments (2) that has so far been considered an integral membrane protein (13, 42). At an early stage of infection, p30 associates with the ER network (18, 59). Given that the ER is continuous through PD, it was suggested that the movement complex transports cell to cell via the PD. On the other hand, passage through the connecting structure largely remains a mystery, although it seems reasonable that the process again occurs in close juxtaposition to the ER-derived membrane (desmotubule) that runs through the PD (12, 35). Many other plant viruses have a cell-to-cell transport system based not on one but on two (double-gene block [DGB]) or even three (triple-gene block [TGB]) MPs. In some of these cases it has been shown that at least one MP is closely associated with the ER membrane (28, 34, 41, 50, 55). Thus, it has been assumed that other MPs associate similarly with membranes.The targeting and insertion of an integral membrane protein can occur either posttranslationally, in which the protein is completely synthesized on cytosolic ribosomes before being inserted, or cotranslationally, in which protein synthesis and integration into the ER membrane are coupled. In the latter case, the targeting of the ribosome-mRNA-nascent chain complex to the membrane depends on the signal recognition particle (SRP) and its interaction with the membrane-bound SRP receptor (11), which is located in close proximity to the translocon. The translocon, a multiprotein complex composed of the Sec61α, -β, and -γ subunits (16) and the translocating chain-associated membrane protein (TRAM) (15) in eukaryotic cells, facilitates the translocation of soluble proteins into the ER lumen and the insertion of integral membrane proteins into the lipid bilayer (24).Plant virus infection depends on the proper targeting and association or insertion of the movement proteins with or into the ER membrane. In this report, we investigate the insertion into, topology of, and targeting to the membrane of the p9 MP from Turnip crinkle virus (TCV). This is a positive-sense single-stranded RNA virus that belongs to the Carmovirus genus and thus to the DGB. Its 4-kb genome encodes five open reading frames (ORFs) (3, 17). Translation of the first two yields p28 and p88, both implicated in viral RNA synthesis. In the central region, two overlapping ORFs encode the small proteins p8 and p9, which have been shown to be involved in cell-to-cell movement (6, 17, 31). The RNA-binding protein p8 (17, 58) overlaps the distal 3′ region of the replicase p88. The 3′ region of the genome encodes the viral coat protein p38, and its 5′ end overlaps p9 (3).A strong interaction with the membrane is expected for p9 due to the close similarities in the genomic arrangement of TCV (57) with other carmoviruses, like Carnation mottle virus (CarMV) and Melon necrotic spot virus (MNSV). Both CarMV and MNSV have two small MPs, one an RNA-binding protein (39, 53, 54) and the other a cotranslationally inserted integral membrane protein (34, 47, 55). In this study, we present evidence of the integration of TCV p9 into ER-derived microsomal membranes. Using an in vitro translation system based on a model integral membrane protein, we have been able to identify two membrane-spanning domains. Additionally, the membrane topology of the p9 MP was analyzed in vitro and found to have an N terminus (N-t)/C terminus (C-t) luminal orientation. Finally, using a site-directed photo-cross-linking approach, we demonstrated that the mechanism of p9 insertion into the ER membrane involves SRP and the translocon.  相似文献   

8.
Influenza A virus buds through the apical plasma membrane, forming enveloped virus particles that can take the shape of pleomorphic spheres or vastly elongated filaments. For either type of virion, the factors responsible for separation of viral and cell membranes are not known. We find that cellular Rab11 (a small GTP-binding protein involved in endocytic recycling) and Rab11-family interacting protein 3 ([FIP3] which plays a role in membrane trafficking and regulation of actin dynamics) are both required to support the formation of filamentous virions, while Rab11 is additionally involved in the final budding step of spherical particles. Cells transfected with Rab11 GTP-cycling mutants or depleted of Rab11 or FIP3 content by small interfering RNA treatment lost the ability to form virus filaments. Depletion of Rab11 resulted in up to a 100-fold decrease in titer of spherical virus released from cells. Scanning electron microscopy of Rab11-depleted cells showed high densities of virus particles apparently stalled in the process of budding. Transmission electron microscopy of thin sections confirmed that Rab11 depletion resulted in significant numbers of abnormally formed virus particles that had failed to pinch off from the plasma membrane. Based on these findings, we see a clear role for a Rab11-mediated pathway in influenza virus morphogenesis and budding.Influenza A virus is a highly infectious respiratory pathogen, causing 3 to 5 million severe cases yearly while the recent H1N1 pandemic has spread to over 200 countries and resulted in over 15,000 WHO-confirmed deaths since its emergence in March 2009 (57). Influenza virus particles are enveloped structures that contain nine identified viral polypeptides. The lipid envelope is derived by budding from the apical plasma membrane and contains the viral integral membrane proteins hemagglutinin (HA) and neuraminidase (NA) as well as the M2 ion channel. Internally, virus particles contain a matrix protein (M1), small quantities of the NS2/NEP polypeptide, and eight genomic segments of negative-sense RNA that are separately encapsidated into ribonucleoprotein (RNP) particles by the viral nucleoprotein (NP) and tripartite polymerase complex (PB1, PB2, and PA). M1 is thought to form a link between the RNPs and the cytoplasmic tails of the viral membrane proteins though M2 may also play a role (39). The minimal viral protein requirements for budding are disputed; while initial studies suggested that M1 was the main driver of budding (21, 34), more recent work proposes that the glycoproteins HA and NA are responsible (8).Further complicating the analysis of influenza A virus budding is the observation that most strains of the virus form two distinct types of virions: spherical particles approximately 100 nm in diameter and much longer filamentous particles up to 30 μm in length (38). Of the viral proteins, M1 is the primary determinant of particle shape (3, 17) although other virus genes also play a role. It is also likely that host factors are involved in the process as cells with fully differentiated apical and basolateral membranes produce more filaments than nonpolarized cell types (42). While it is tempting to speculate that virus morphology and budding are regulated by the same cellular process, the fact that spherical budding occurs in the absence of an intact actin cytoskeleton while filament formation does not (42, 48) indicates some level of divergence in the mechanisms responsible for spherical and filamentous virion morphogenesis.The means by which viral and cellular membranes are separated are also unclear. Unlike many other enveloped viruses, including retroviruses (19, 36, 52) and herpes simplex virus (12), influenza A virus does not utilize the cellular endosomal sorting complex required for transport (ESCRT) pathway (5, 8). However, recent reports indicate that some viruses, including human cytomegalovirus (HCMV) (32), the hantavirus Andes virus (44), and respiratory syncytial virus (RSV) may employ a Rab11-mediated pathway during assembly and/or budding (4, 51). The Rab family of small GTPases is involved in targeting vesicle trafficking, mediating a wide range of downstream processes including endosomal trafficking and membrane fusion/fission events (reviewed in references 53 and 58). Rab11 is involved in trafficking proteins and vesicles between the trans-Golgi network (TGN), recycling endosome, and the plasma membrane (9, 49, 50) as well as playing a role in actin remodeling, cytokinesis, and abscission (27, 41, 55). Apical recycling endosome (ARE) trafficking is of particular interest in the context of viral infection as other negative-sense RNA viruses have been shown to assemble and/or traffic virion components through the ARE prior to final assembly and budding at the plasma membrane (4, 44, 51). Rab11 function is modulated and targeted through interactions with Rab11 family interacting proteins (Rab11-FIPs) that direct it to specific subcellular locations (23, 25, 26) by binding to actin or microtubule-based motor proteins (24, 26, 47). While Rab11-FIPs recognize both isoforms of Rab11 (a and b [Rab11a/b]) through a conserved amphipathic α-helical motif, they differ in their ability to bind either the GTP-bound form of Rab11 (FIP1, FIP3, FIP4, and Rip11) or both the GTP and GDP-bound forms (FIP2) (23, 30). FIP1 and FIP2 have been implicated in RSV budding (4, 51) while FIP4 is important for trafficking of HCMV components (32). FIP3 has not previously been linked with virus budding but plays an important role in both cell motility and cytokinesis, regulating actin dynamics and endosomal membrane trafficking (29, 55).In light of the normal cellular functions of Rab11 and its effectors and of their reported involvement in the budding of other viruses, we examined the role of this cellular pathway in influenza virus budding. We find that Rab11-FIP3 is essential for filamentous but not spherical virion formation while Rab11 is required for both forms of virus budding.  相似文献   

9.
The endosomal sorting complex required for transport (ESCRT) machinery controls the incorporation of cargo into intraluminal vesicles of multivesicular bodies. This machinery is used during envelopment of many RNA viruses and some DNA viruses, including herpes simplex virus type 1. Other viruses mature independent of ESCRT components, instead relying on the intrinsic behavior of viral matrix and envelope proteins to drive envelopment. Human cytomegalovirus (HCMV) maturation has been reported to proceed independent of ESCRT components (A. Fraile-Ramos et al. Cell. Microbiol. 9:2955-2967, 2007). A virus complementation assay was used to evaluate the role of dominant-negative (DN) form of a key ESCRT ATPase, vacuolar protein sorting-4 (Vps4DN) in HCMV replication. Vps4DN specifically inhibited viral replication, whereas wild-type-Vps4 had no effect. In addition, a DN form of charged multivesicular body protein 1 (CHMP1DN) was found to inhibit HCMV. In contrast, DN tumor susceptibility gene-101 (Tsg101DN) did not impact viral replication despite the presence of a PTAP motif within pp150/ppUL32, an essential tegument protein involved in the last steps of viral maturation and release. Either Vps4DN or CHMP1DN blocked viral replication at a step after the accumulation of late viral proteins, suggesting that both are involved in maturation. Both Vps4A and CHMP1A localized in the vicinity of viral cytoplasmic assembly compartments, sites of viral maturation that develop in CMV-infected cells. Thus, ESCRT machinery is involved in the final steps of HCMV replication.Cellular endosomal sorting complex required for transport (ESCRT) machinery controls the evolutionarily conserved process (33) of membrane budding that is normally a component of cytokinesis (6, 46), endosome sorting and multivesicular body (MVB) formation (28). After the initial characterization in retroviruses, many enveloped viruses have been shown to rely on this machinery during envelopment and release from cells (1, 18, 35, 40, 47, 69). Other viruses, such as influenza virus, mature independent of ESCRT machinery and are believed to use an alternative virus-intrinsic pathway (7). The core of the ESCRT machinery consists of five multiprotein complexes (ESCRT-0, -I, -II, and -III and Vps4-Vta1) (27). Vacuolar protein sorting-4 (Vps4) is a critical ATPase that functions downstream of most ESCRT components. Based on sensitivity to dominant-negative (DN) inhibitors of protein function, replication of several RNA viruses, as well as of the DNA virus herpes simplex virus type 1 (HSV-1) (5, 10), have been shown to rely on Vps4 in a manner that is analogous to the formation of MVBs (endosomal compartments containing intraluminal vesicles) (10, 45). Evidence based exclusively on small interfering RNA (siRNA) methods suggested cytomegalovirus (CMV) maturation was independent of ESCRT components, although the maturation of this virus remained MVB associated (16).ESCRT machinery facilitates envelopment and release at cytoplasmic membranes and recruits cargo for sorting via any of three alternative pathways that converge on a Vps4-dependent downstream step: (i) a tumor susceptibility gene-101 (Tsg101)-dependent pathway, (ii) an apoptosis linked gene-2 interacting protein X (ALIX)-dependent pathway, and (iii) a pathway that relies on a subset of Nedd4-like HECT E3 ubiquitin ligases (35). The involvement of ESCRT in viral envelopment and egress was first observed in human immunodeficiency virus (HIV) (18, 19, 40, 60) and has been extended to equine infectious anemia virus (34, 40, 52, 60), Rous sarcoma virus (29, 70, 71), Mason-Pfizer monkey virus (20, 72), rabies virus (24), Ebola virus (23), hepatitis B virus (68), vaccinia virus (25), HSV-1 (5, 10), and several other RNA and DNA viruses (7). Structural proteins in most of these viruses carry late (L) domains characterized by conserved amino acid motifs (PTAP, PPXY, and YXXL) that mediate protein-protein interactions and facilitate recruitment of ESCRT components to facilitate virus budding. The introduction of mutations in these motifs leads to defects in viral maturation and release from cells (40).Vps4 controls the release of ESCRT complexes from membranes (18, 40). Inhibition of Vps4A and Vps4B using Vps4ADN reduces levels of viral maturation mediated by L domains (47). For this reason, inhibition by a Vps4DN is considered the gold standard test to establish the role of ESCRT machinery in maturation of any virus (7). Tsg101, a component of ESCRT-I, normally functions to deliver ubiquitinated transmembrane proteins to MVBs (35). HIV-1 p6 Gag PTAP domain interacts with Tsg101 (18) and directs viral cores (capsids) to sites of viral envelopment (39). Upon disruption of HIV-1 PTAP domain, particle release becomes dependent on auxiliary factors, including an ALIX-binding YXXL domain within p6 Gag (60). A minimal amino-terminal L domain of Tsg101 functions as a DN inhibitor of PTAP-mediated viral budding without inhibiting Tsg101-independent PPXY- or YXXL-dependent pathways (40). The murine leukemia virus PPXY domain recruits a subset of Nedd4-like HECT E3 ubiquitin ligases (WWP1, WWP2, and Itch) (36) that in turn recruit ESCRT-III components (35). The YXXL L domain binds to the cellular protein ALIX (60). ALIX binds to Tsg101 (38) and also with ESCRT-III protein CHMP-4B (60), thus linking ESCRT-I and ESCRT-III. Green fluorescent protein (GFP)-, red fluorescent protein, or yellow fluorescent protein (YFP)-fused CHMPs are general DN inhibitors of all natural CHMP-associated activities and cause the formation of aberrant endosomal compartments that sequester ESCRT complexes (26, 31, 60). Through the use of these DN constructs, the recruitment and assembly of ESCRT components can be inhibited to specifically disrupt different steps of the ESCRT pathway.The best evidence supporting involvement of ESCRT machinery in the life cycle of herpesviruses comes from the inhibition of HSV-1 envelopment by Vps4DN (10), as well as by CHMP3DN (5), together with the association of HSV-1 maturation with MVB. It was recently reported that HHV-6 also induces MVB formation that controls viral egress via an exosomal release pathway (45). After losing primary envelope acquired at the nuclear membrane, Human CMV (HCMV) undergoes a secondary, or final, envelopment step within a cytoplasmic assembly compartments (AC) (59). Secondary envelopment is thought to occur within early endosomal compartments based on diverse observations: (i) purified virions and dense bodies have a lipid composition that is similar to this compartment (64); (ii) the AC of HCMV-infected fibroblasts contain endosomal markers (11); and (iii) a number of HCMV envelope proteins, including US28 (14), UL33, US27 (15), and gB (9), colocalize with endosomal markers in infected cells. A model of HCMV egress via early endosomes has been proposed (11).The approach that we have used here employed human foreskin fibroblasts (HFs) and restricted viral replication to cells that expressed the DN or wild-type (WT) component of the ESCRT pathway by including a requirement that transfected cells complement replication of virus. Confirming expression of both DN and complementing protein in transfected cells by epifluorescence microscopy ensured that an overwhelming majority of cells coexpressed these proteins. The results were scored as inhibition of viral spread to adjacent cells as well as demonstration of late gene expression in the transfected and/or infected cell. Viral progeny is released within 48 to 72 h from CMV-infected cells (44), reducing the likelihood that nonspecific or long-term toxicity of DN-ESCRT proteins would impact our analysis. This assay has been effectively used earlier for both immediate-early gene (54) and late gene (2, 62) mutants, and similar complementation assay results have been reported in diverse systems (8, 49, 73). This assay further provided an opportunity to determine when inhibition occurred relative to the viral replication cycle. Our data implicate ESCRT machinery late during HCMV maturation, which is consistent with a role in secondary envelopment and release.  相似文献   

10.
Bats are hosts to a variety of viruses capable of zoonotic transmissions. Because of increased contact between bats, humans, and other animal species, the possibility exists for further cross-species transmissions and ensuing disease outbreaks. We describe here full and partial viral genomes identified using metagenomics in the guano of bats from California and Texas. A total of 34% and 58% of 390,000 sequence reads from bat guano in California and Texas, respectively, were related to eukaryotic viruses, and the largest proportion of those infect insects, reflecting the diet of these insectivorous bats, including members of the viral families Dicistroviridae, Iflaviridae, Tetraviridae, and Nodaviridae and the subfamily Densovirinae. The second largest proportion of virus-related sequences infects plants and fungi, likely reflecting the diet of ingested insects, including members of the viral families Luteoviridae, Secoviridae, Tymoviridae, and Partitiviridae and the genus Sobemovirus. Bat guano viruses related to those infecting mammals comprised the third largest group, including members of the viral families Parvoviridae, Circoviridae, Picornaviridae, Adenoviridae, Poxviridae, Astroviridae, and Coronaviridae. No close relative of known human viral pathogens was identified in these bat populations. Phylogenetic analysis was used to clarify the relationship to known viral taxa of novel sequences detected in bat guano samples, showing that some guano viral sequences fall outside existing taxonomic groups. This initial characterization of the bat guano virome, the first metagenomic analysis of viruses in wild mammals using second-generation sequencing, therefore showed the presence of previously unidentified viral species, genera, and possibly families. Viral metagenomics is a useful tool for genetically characterizing viruses present in animals with the known capability of direct or indirect viral zoonosis to humans.Bats belong to one of the most diverse, abundant, and widely distributed group of mammals. More than 1,100 bat species belong to the order of Chiroptera, representing approximately 20% of all mammalian species (54). Most bat species feed on insects and other arthropods, while others feed on fruit nectar, bird or mammal blood, and small vertebrates such as fish, frogs, mice, and birds (30). Of the 47 species of bats reported in the United States, most of them are insectivorous (http://www.batcon.org/).Bats are considered the natural reservoir of a large variety of zoonotic viruses causing serious human diseases such as lyssaviruses, henipaviruses, severe acute respiratory syndrome coronavirus, and Ebola virus (6, 38, 46, 59, 63, 65). Characteristics of bats, including their genetic diversity, broad geological distribution, gregarious habits, high population density, migratory habits, and long life span (30, 58), likely endow them with the ability to host diverse viruses, some of which are also able to infect humans and other mammals (41, 63).More than 80 virus species have been isolated or detected in bats using nucleic acid-based methods (6, 38, 59, 65). Viruses that have been recently discovered in bats include astroviruses, adeno-associated viruses (AAVs), adenoviruses, herpesviruses, and polyomavirus (8, 9, 13, 31, 32, 35, 37, 39, 40, 42, 61, 62, 68). For example, it was recently reported that a newly identified adenovirus isolated from bat guano was capable of infecting various vertebrate cell lines, including those of humans, monkeys, dogs, and pigs (35). With increasing human populations in previously wild areas, contact of bats with humans and with wild and domestic animals has increased, providing greater opportunities for cross-species transmissions of potentially pathogenic bat viruses. To better understand the range of viruses carried by bats, we undertook an initial characterization of the guano viromes of several common bat species in the United States.The development of massively parallel sequencing technology makes is possible to reveal uncultured viral assemblages within biological or environmental samples (11, 28). To date, this approach has been used to characterize viruses in equine feces (7), human blood (5), tissue (14), human feces (3, 4, 15, 45, 60, 67), and human respiratory secretions (64), which in turn has facilitated the discovery of many novel viruses (18, 20, 25, 33, 47, 50). In the present study, we analyzed the viruses present in guano from several bat species in California and Texas, using sequence-independent PCR amplification, pyrosequencing, and sequence similarity searches.  相似文献   

11.
12.
Vaccinia virus A26 protein is an envelope protein of the intracellular mature virus (IMV) of vaccinia virus. A mutant A26 protein with a truncation of the 74 C-terminal amino acids was expressed in infected cells but failed to be incorporated into IMV (W. L. Chiu, C. L. Lin, M. H. Yang, D. L. Tzou, and W. Chang, J. Virol 81:2149-2157, 2007). Here, we demonstrate that A27 protein formed a protein complex with the full-length form but not with the truncated form of A26 protein in infected cells as well as in IMV. The formation of the A26-A27 protein complex occurred prior to virion assembly and did not require another A27-binding protein, A17 protein, in the infected cells. A26 protein contains six cysteine residues, and in vitro mutagenesis showed that Cys441 and Cys442 mediated intermolecular disulfide bonds with Cys71 and Cys72 of viral A27 protein, whereas Cys43 and Cys342 mediated intramolecular disulfide bonds. A26 and A27 proteins formed disulfide-linked complexes in transfected 293T cells, showing that the intermolecular disulfide bond formation did not depend on viral redox pathways. Finally, using cell fusion from within and fusion from without, we demonstrate that cell surface glycosaminoglycan is important for virus-cell fusion and that A26 protein, by forming complexes with A27 protein, partially suppresses fusion.Vaccinia virus, the prototype of the Orthopoxvirus genus of the family Poxviridae, infects many cell lines and animals (13) and produces several forms of infectious particles, among which the intracellular mature virus (IMV) is the most abundant form inside cells. The IMV can be wrapped with additional Golgi membrane, transported through microtubules, and released from cells as extracellular enveloped viruses (10). The IMV has evolved to enter host cells through plasma membrane fusion (1, 3, 12, 29, 47) or endocytosis (11, 48). Recently, Mercer et al. reported that IMV entered HeLa cells through apoptotic mimicry and macropinocytosis (32), and Huang et al. reported that IMV enters into HeLa cells through a dynamin-dependent fluid-phase endocytosis that required the cellular protein VPEF (22).The IMV contains more than 75 viral proteins. Of these, more than 10 viral envelope proteins are known to be involved in vaccinia virus entry into cells (6, 34, 55). Vaccinia virus contains at least five attachment proteins, with H3, A27, and D8 binding to cell surface glycosaminoglycans (GAGs) (7, 21, 28), A26 protein binding to the extracellular matrix protein laminin (5), and L1 protein binding to unidentified cell surface molecules (14). A27 protein also binds to the viral A17 protein through its C-terminal region (35, 50), and it was recently shown that the coexpression of A17 and A27 proteins resulted in cell fusion in transiently transfected 293T cells (27). In this study, we demonstrate the formation through disulfide bonds of complexes between two viral attachment proteins, A26 and A27, and we determine the cysteine residues that are critical for these disulfide bonds. We also address the biological role of the A26-A27 protein complex formation in cell fusion regulation.  相似文献   

13.
14.
15.
The cell-to-cell transport of plant viruses depends on one or more virus-encoded movement proteins (MPs). Some MPs are integral membrane proteins that interact with the membrane of the endoplasmic reticulum, but a detailed understanding of the interaction between MPs and biological membranes has been lacking. The cell-to-cell movement of the Prunus necrotic ringspot virus (PNRSV) is facilitated by a single MP of the 30K superfamily. Here, using a myriad of biochemical and biophysical approaches, we show that the PNRSV MP contains only one hydrophobic region (HR) that interacts with the membrane interface, as opposed to being a transmembrane protein. We also show that a proline residue located in the middle of the HR constrains the structural conformation of this region at the membrane interface, and its replacement precludes virus movement.Plant viruses encode movement proteins (MPs) that mediate the intra- and intercellular spread of the viral genome via plasmodesmata, membranous channels that traverse the walls of plant cells and enable intercellular transport and communication. There is a range of diversity in the number and type of viral proteins required for viral movement (21). Research on tobacco mosaic virus (TMV) has played a leading role in understanding MP activity (2). The genome of TMV encodes a single 30-kDa multidomain protein, the namesake of the 30K superfamily (7). Viral RNA is associated with the membrane of the endoplasmic reticulum (ER) and microtubules in the presence of this MP (23, 30).A large number of plant viruses have 30K MPs, which share common abilities, including binding nucleic acids, localizing and increasing the size exclusion limit of plasmodesmata, and interacting with the ER membrane. A topological model has been proposed in which the TMV MP has two putative transmembrane (TM) helices, both the N and C termini oriented toward the cytoplasm, and a short loop exposed in the ER lumen (4). There is less experimental information for other 30K MPs, but they are likely to have some membrane interaction.Direct experimental evidence of the integration of MPs into the membrane has been obtained only for small hydrophobic MPs that do not belong to the 30K superfamily. There are two TM segments in the p9 protein of carnation mottle virus (41), whereas the p6 protein of beet yellow virus (29) and the p7B protein of melon necrotic spot virus (22) have a single TM segment. In viruses with genomes that include three partially overlapping open reading frames, termed the triple-gene block (TGB), all three TGB proteins are required for movement where the two smaller proteins, TGBp2 and TGBp3, are also TM proteins (24). Furthermore, cross-linking experiments with carnation mottle virus p9 protein demonstrated that its membrane insertion occurs cotranslationally in a signal recognition particle-dependent manner and throughout the cellular membrane integration components, the translocon (33, 34).Prunus necrotic ringspot virus (PNRSV) is a tripartite, positive-strand RNA virus in the genus Ilarvirus of the family Bromoviridae. RNAs 1 and 2 encode the polymerase proteins P1 and P2, respectively. RNA 3 is translated into a single 30K-type MP. The coat protein is translated from a subgenomic RNA 4 produced during virus replication.The present study tackled the association of the PNRSV MP with biological membranes. The in vitro translation of model integral membrane protein constructs in the presence of microsomal membranes demonstrated that the hydrophobic region (HR) of the PNRSV MP did not span the membranes. Different biochemical and biophysical experiments suggested that the protein is tightly associated with, but does not traverse, the membrane, leaving both its N- and C-terminal hydrophilic regions facing the cytosol. Finally, a mutational analysis of the HR revealed that both the helicity and hydrophobicity of the region are essential for viral cell-to-cell movement.  相似文献   

16.
In animal models of infection, glycoprotein E (gE) is required for efficient herpes simplex virus type 1 (HSV-1) spread from the inoculation site to the cell bodies of innervating neurons (retrograde direction). Retrograde spread in vivo is a multistep process, in that HSV-1 first spreads between epithelial cells at the inoculation site, then infects neurites, and finally travels by retrograde axonal transport to the neuron cell body. To better understand the role of gE in retrograde spread, we used a compartmentalized neuron culture system, in which neurons were infected in the presence or absence of epithelial cells. We found that gE-deleted HSV-1 (NS-gEnull) retained retrograde axonal transport activity when added directly to neurites, in contrast to the retrograde spread defect of this virus in animals. To better mimic the in vivo milieu, we overlaid neurites with epithelial cells prior to infection. In this modified system, virus infects epithelial cells and then spreads to neurites, revealing a 100-fold retrograde spread defect for NS-gEnull. We measured the retrograde spread defect of NS-gEnull from a variety of epithelial cell lines and found that the magnitude of the spread defect from epithelial cells to neurons correlated with epithelial cell plaque size defect, indicating that gE plays a similar role in both types of spread. Therefore, gE-mediated spread between epithelial cells and neurites likely explains the retrograde spread defect of gE-deleted HSV-1 in vivo.Herpes simplex virus type 1 (HSV-1) is an alphaherpesvirus that characteristically infects skin and mucosal surfaces before spreading to sensory neurons, where it establishes a lifelong persistent infection. The virus periodically returns to the periphery via sensory axons and causes recurrent lesions as well as asymptomatic shedding. This life cycle requires viral transport along axons in two directions: toward the neuron cell body (retrograde direction) and away from the neuron cell body (anterograde direction).Many studies of alphaherpesvirus neuronal spread have focused on pseudorabies virus (PRV), a virus whose natural host is the pig. Three PRV proteins, glycoprotein E (gE), gI, and Us9, have been shown to mediate anterograde neuronal spread both in animal models of infection and in cultured neurons. However, these three proteins are dispensable for retrograde spread (3, 8, 11, 12, 31, 46). In contrast, numerous animal models of infection have shown that HSV-1 gE is required for retrograde spread from the inoculation site to the cell bodies of innervating neurons (4, 9, 44, 56). In the murine flank model, wild-type (WT) virus replicates in the skin and then infects sensory neurons and spreads in a retrograde direction to the dorsal root ganglia (DRG). In this model, gE-deleted HSV-1 replicates in the skin but is not detected in the DRG (9, 44). This phenotype differs from gE-deleted PRV, which is able to reach the DRG at WT levels (8). Thus, unlike PRV, gE-deleted HSV-1 viruses have a retrograde spread defect in vivo.HSV-1 gE is a 552-amino-acid type I membrane protein found in the virion membrane as well as in the trans-Golgi and plasma membranes of infected cells (1). gE forms a heterodimer with another viral glycoprotein, gI. The gE/gI complex is important for HSV-1 immune evasion through its Fc receptor activity. gE/gI binds to the Fc domain of antibodies directed against other viral proteins, sequestering these antibodies and blocking antibody effector functions (27, 32, 40). Additionally, gE/gI promotes spread between epithelial cells. Viruses lacking either gE or gI form characteristically small plaques in cell culture and small inoculation site lesions in mice (4, 9, 18, 40, 58). In animal models, gE and gI also mediate viral spread in both anterograde and retrograde directions (4, 19, 44, 56).In order to better understand the role of gE in HSV-1 retrograde neuronal spread, we employed a compartmentalized neuron culture system that has been used to study directional neuronal spread of PRV and West Nile virus (12, 14, 45). In the Campenot chamber system, neurites are contained in a compartment that is separate from their corresponding cell bodies. Therefore, spread in an exclusively retrograde direction can be measured by infecting neurites and detecting spread to neuron cell bodies.HSV-1 replication requires retrograde transport of incoming viral genomes to the nucleus. In neurites, fusion between viral and cellular membranes occurs at the plasma membrane (43, 48). Upon membrane fusion, the capsid and a subset of tegument proteins (the inner tegument) dissociate from glycoproteins and outer tegument proteins, which remain at the plasma membrane (28, 38). Unenveloped capsids and the associated inner tegument proteins are then transported in the retrograde direction to the nucleus (7, 48, 49).For both neurons and epithelial cells, retrograde transport is dependent upon microtubules, ATP, the retrograde microtubule motor dynein, and the dynein cofactor dynactin (22, 34, 49, 52). Several viral proteins interact with components of the dynein motor complex (23, 39, 60). However, none of these proteins suggest a completely satisfactory mechanism by which viral retrograde transport occurs, either because they are not components of the complex that is transported to the nucleus (UL34, UL9, VP11/12) or because capsids lacking that protein retain retrograde transport activity (VP26) (2, 17, 21, 28, 37). This implies that additional viral proteins are involved in retrograde trafficking.We sought to better characterize the role of gE in retrograde spread and found that gE is dispensable for retrograde axonal transport; however, it promotes HSV-1 spread from epithelial cells to neurites. This epithelial cell-to-neuron spread defect provides a plausible explanation for the retrograde spread defect of gE-deleted HSV-1 in animal models of infection.  相似文献   

17.
Understanding the mechanisms underlying potential altered susceptibility to human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) individuals and the later clinical consequences of breakthrough infection can provide insight into strategies to control HIV-1 with an effective vaccine. From our Seattle ES cohort, we identified one individual (LSC63) who seroconverted after over 2 years of repeated unprotected sexual contact with his HIV-1-infected partner (P63) and other sexual partners of unknown HIV-1 serostatus. The HIV-1 variants infecting LSC63 were genetically unrelated to those sequenced from P63. This may not be surprising, since viral load measurements in P63 were repeatedly below 50 copies/ml, making him an unlikely transmitter. However, broad HIV-1-specific cytotoxic T-lymphocyte (CTL) responses were detected in LSC63 before seroconversion. Compared to those detected after seroconversion, these responses were of lower magnitude and half of them targeted different regions of the viral proteome. Strong HLA-B27-restricted CTLs, which have been associated with disease control, were detected in LSC63 after but not before seroconversion. Furthermore, for the majority of the protein-coding regions of the HIV-1 variants in LSC63 (except gp41, nef, and the 3′ half of pol), the genetic distances between the infecting viruses and the viruses to which he was exposed through P63 (termed the exposed virus) were comparable to the distances between random subtype B HIV-1 sequences and the exposed viruses. These results suggest that broad preinfection immune responses were not able to prevent the acquisition of HIV-1 infection in LSC63, even though the infecting viruses were not particularly distant from the viruses that may have elicited these responses.Understanding the mechanisms of altered susceptibility or control of human immunodeficiency virus type 1 (HIV-1) infection in highly exposed seronegative (ES) persons may provide invaluable information aiding the design of HIV-1 vaccines and therapy (9, 14, 15, 33, 45, 57, 58). In a cohort of female commercial sex workers in Nairobi, Kenya, a small proportion of individuals remained seronegative for over 3 years despite the continued practice of unprotected sex (12, 28, 55, 56). Similarly, resistance to HIV-1 infection has been reported in homosexual men who frequently practiced unprotected sex with infected partners (1, 15, 17, 21, 61). Multiple factors have been associated with the resistance to HIV-1 infection in ES individuals (32), including host genetic factors (8, 16, 20, 37-39, 44, 46, 47, 49, 59, 63), such as certain HLA class I and II alleles (41), as well as cellular (1, 15, 26, 55, 56), humoral (25, 29), and innate immune responses (22, 35).Seroconversion in previously HIV-resistant Nairobi female commercial sex workers, despite preexisting HIV-specific cytotoxic T-lymphocyte (CTL) responses, has been reported (27). Similarly, 13 of 125 ES enrollees in our Seattle ES cohort (1, 15, 17) have become late seroconverters (H. Zhu, T. Andrus, Y. Liu, and T. Zhu, unpublished observations). Here, we analyze the virology, genetics, and immune responses of HIV-1 infection in one of the later seroconverting subjects, LSC63, who had developed broad CTL responses before seroconversion.  相似文献   

18.
19.
Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.Lassa virus (LASV) is a member of the family Arenaviridae, of which Lymphocytic choriomeningitis virus (LCMV) is the prototype. Arenaviruses comprise more than 20 species, divided into the Old World and New World virus complexes (19). The Old World arenaviruses include the human pathogenic LASV strains, Lujo virus, which was first identified in late 2008 and is associated with an unprecedented high case fatality rate in humans, the nonhuman pathogenic Ippy, Mobala, and Mopeia viruses, and the recently described Kodoko virus (10, 30, 49). The New World virus complex contains, among others, the South American hemorrhagic fever-causing viruses Junín virus, Machupo virus, Guanarito virus, Sabiá virus, and the recently discovered Chapare virus (22).Arenaviruses contain a bisegmented single-stranded RNA genome encoding the polymerase L, matrix protein Z, nucleoprotein NP, and glycoprotein GP. The bipartite ribonucleoprotein of LASV is surrounded by a lipid envelope derived from the plasma membrane of the host cell. The matrix protein Z has been identified as a major budding factor, which lines the interior of the viral lipid membrane, in which GP spikes are inserted (61, 75). The glycoprotein is synthesized as precursor protein pre-GP-C and is cotranslationally cleaved by signal peptidase into GP-C and the signal peptide, which exhibits unusual length, stability, and topology (3, 27, 28, 33, 70, 87). Moreover, the arenaviral signal peptide functions as trans-acting maturation factor (2, 26, 33). After processing by signal peptidase, GP-C of both New World and Old World arenaviruses is cleaved by the cellular subtilase subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) into the distal subunit GP-1 and the membrane-anchored subunit GP-2 within the secretory pathway (5, 52, 63). For LCMV, it has been shown that GP-1 subunits are linked to each other by disulfide bonds and are noncovalently connected to GP-2 subunits (14, 24, 31). GP-1 is responsible for binding to the host cell receptor, while GP-2 mediates fusion between the virus envelope and the endosomal membrane at low pH due to a bipartite fusion peptide near the amino terminus (24, 36, 44). Sequence analysis of the LCMV GP-2 ectodomain revealed two heptad repeats that most likely form amphipathic helices important for this process (34, 86).In general, viral class I fusion proteins have triplets of α-helical structures in common, which contain heptad repeats (47, 73). In contrast, class II fusion proteins are characterized by β-sheets that form dimers in the prefusion status and trimers in the postfusion status (43). The class III fusion proteins are trimers that, unlike class I fusion proteins, were not proteolytically processed N-terminally of the fusion peptide, resulting in a fusion-active membrane-anchored subunit (39, 62). Previous studies with LCMV described a tetrameric organization of the glycoprotein spikes (14), while more recent data using a bacterially expressed truncated ectodomain of the LCMV GP-2 subunit pointed toward a trimeric spike structure (31). Due to these conflicting data regarding the oligomerization status of LCMV GP, it remains unclear to which class of fusion proteins the arenaviral glycoproteins belong.The state of oligomerization and the correct conformation of viral glycoproteins are crucial for membrane fusion during virus entry. The early steps of infection have been shown for several viruses to be dependent on the cholesterol content of the participating membranes (i.e., either the virus envelope or the host cell membrane) (4, 9, 15, 20, 21, 23, 40, 42, 53, 56, 76, 78, 79). In fact, it has been shown previously that entry of both LASV and LCMV is susceptible to cholesterol depletion of the target host cell membrane using methyl-β-cyclodextrin (MβCD) treatment (64, 71). Moreover, cholesterol not only plays an important role in the early steps during entry in the viral life cycle but also is critical in the virus assembly and release process. Several viruses of various families, including influenza virus, human immunodeficiency virus type 1 (HIV-1), measles virus, and Ebola virus, use the ordered environment of lipid raft microdomains. Due to their high levels of glycosphingolipids and cholesterol, these domains are characterized by insolubility in nonionic detergents under cold conditions (60, 72). Recent observations have suggested that budding of the New World arenavirus Junin virus occurs from detergent-soluble membrane areas (1). Assembly and release from distinct membrane microdomains that are detergent soluble have also been described for vesicular stomatitis virus (VSV) (12, 38, 68). At present, however, it is not known whether LASV requires cholesterol in its viral envelope for successful virus entry or whether specific membrane microdomains are important for LASV assembly and release.In this study, we first investigated the oligomeric state of the premature and mature LASV glycoprotein complexes. Since it has been shown for several membrane proteins that the oligomerization and conformation are dependent on cholesterol (58, 59, 76, 78), we further analyzed the dependence of the cholesterol content of the virus envelope on glycoprotein oligomerization and virus infectivity. Finally, we characterized the lipid membrane areas from which LASV is released.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号