首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While neuropathological features that define prion strains include spongiform degeneration and deposition patterns of PrPSc, the underlying mechanism for the strain-specific differences in PrPSc targeting is not known. To investigate prion strain targeting, we inoculated hamsters in the sciatic nerve with either the hyper (HY) or drowsy (DY) strain of the transmissible mink encephalopathy (TME) agent. Both TME strains were initially retrogradely transported in the central nervous system (CNS) exclusively by four descending motor tracts. The locations of HY and DY PrPSc deposition were identical throughout the majority of the incubation period. However, differences in PrPSc deposition between these strains were observed upon development of clinical disease. The differences observed were unlikely to be due to strain-specific neuronal tropism, since comparison of PrPSc deposition patterns by different routes of infection indicated that all brain areas were susceptible to prion infection by both TME strains. These findings suggest that prion transport and differential susceptibility to prion infection are not solely responsible for prion strain targeting. The data suggest that differences in PrPSc distribution between strains during clinical disease are due to differences in the length of time that PrPSc has to spread in the CNS before the host succumbs to disease.  相似文献   

2.
Most vertebrates have two nasal epithelia: the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). The apical surfaces of OE and VNE are covered with cilia and microvilli, respectively. In rodents, signal transduction pathways involve G alpha olf and G alpha i2/G alpha o in OE and VNE, respectively. Reeve's turtles (Geoclemys reevesii) live in a semiaquatic environment. The aim of this study was to investigate the localization of G proteins and the morphological characteristics of OE and VNE in Reeve's turtle. In-situ hybridization analysis revealed that both G alpha olf and G alpha o are expressed in olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs). Immunocytochemistry of G alpha olf/s and G alpha o revealed that these two G proteins were located at the apical surface, cell bodies, and axon bundles in ORNs and VRNs. Electron microscopic analysis revealed that ORNs had both cilia and microvilli on the apical surface of the same neuron, whereas VRNs had only microvilli. Moreover G alpha olf/s was located on only the cilia of OE, whereas G alpha o was not located on cilia but on microvilli. Both G alpha olf/s and G alpha o were located on microvilli of VNE. These results imply that, in Reeve's turtle, both G alpha olf/s and G alpha o function as signal transduction molecules for chemoreception in ORNs and VRNs.  相似文献   

3.
In this study, we investigated the role of damage to the nasal mucosa in the shedding of prions into nasal samples as a pathway for prion transmission. Here, we demonstrate that prions can replicate to high levels in the olfactory sensory epithelium (OSE) in hamsters and that induction of apoptosis in olfactory receptor neurons (ORNs) in the OSE resulted in sloughing off of the OSE from nasal turbinates into the lumen of the nasal airway. In the absence of nasotoxic treatment, olfactory marker protein (OMP), which is specific for ORNs, was not detected in nasal lavage samples. However, after nasotoxic treatment that leads to apoptosis of ORNs, both OMP and prion proteins were present in nasal lavage samples. The cellular debris that was released from the OSE into the lumen of the nasal airway was positive for both OMP and the disease-specific isoform of the prion protein, PrP(Sc). By using the real-time quaking-induced conversion assay to quantify prions, a 100- to 1,000-fold increase in prion seeding activity was observed in nasal lavage samples following nasotoxic treatment. Since neurons replicate prions to higher levels than other cell types and ORNs are the most environmentally exposed neurons, we propose that an increase in ORN apoptosis or damage to the nasal mucosa in a host with a preexisting prion infection of the OSE could lead to a substantial increase in the release of prion infectivity into nasal samples. This mechanism of prion shedding from the olfactory mucosa could contribute to prion transmission.  相似文献   

4.
Centrifugal spread of the prion agent to peripheral tissues is postulated to occur by axonal transport along nerve fibers. This study investigated the distribution of the pathological isoform of the protein (PrP(Sc)) in the tongues and nasal cavities of hamsters following intracerebral inoculation of the HY strain of the transmissible mink encephalopathy (TME) agent. We report that PrP(Sc) deposition was found in the lamina propria, taste buds, and stratified squamous epithelium of fungiform papillae in the tongue, as well as in skeletal muscle cells. Using laser scanning confocal microscopy, PrP(Sc) was localized to nerve fibers in each of these structures in the tongue, neuroepithelial taste cells of the taste bud, and, possibly, epithelial cells. This PrP(Sc) distribution was consistent with a spread of HY TME agent along both somatosensory and gustatory cranial nerves to the tongue and suggests subsequent synaptic spread to taste cells and epithelial cells via peripheral synapses. In the nasal cavity, PrP(Sc) accumulation was found in the olfactory and vomeronasal epithelium, where its location was consistent with a distribution in cell bodies and apical dendrites of the sensory neurons. Prion spread to these sites is consistent with transport via the olfactory nerve fibers that descend from the olfactory bulb. Our data suggest that epithelial cells, neuroepithelial taste cells, or olfactory sensory neurons at chemosensory mucosal surfaces, which undergo normal turnover, infected with the prion agent could be shed and play a role in the horizontal transmission of animal prion diseases.  相似文献   

5.
Prion strains are characterized by differences in the outcome of disease, most notably incubation period and neuropathological features. While it is established that the disease specific isoform of the prion protein, PrPSc, is an essential component of the infectious agent, the strain-specific relationship between PrPSc properties and the biological features of the resulting disease is not clear. To investigate this relationship, we examined the amplification efficiency and conformational stability of PrPSc from eight hamster-adapted prion strains and compared it to the resulting incubation period of disease and processing of PrPSc in neurons and glia. We found that short incubation period strains were characterized by more efficient PrPSc amplification and higher PrPSc conformational stabilities compared to long incubation period strains. In the CNS, the short incubation period strains were characterized by the accumulation of N-terminally truncated PrPSc in the soma of neurons, astrocytes and microglia in contrast to long incubation period strains where PrPSc did not accumulate to detectable levels in the soma of neurons but was detected in glia similar to short incubation period strains. These results are inconsistent with the hypothesis that a decrease in conformational stability results in a corresponding increase in replication efficiency and suggest that glia mediated neurodegeneration results in longer survival times compared to direct replication of PrPSc in neurons.  相似文献   

6.
ABSTRACT

Disease-related prion protein (PrPSc), which is a structural isoform of the host-encoded cellular prion protein, is thought to be a causative agent of transmissible spongiform encephalopathies. However, the specific role of PrPSc in prion pathogenesis and its relationship to infectivity remain controversial. A time-course study of prion-affected mice was conducted, which showed that the prion infectivity was not simply proportional to the amount of PrPSc in the brain. Centrifugation (20,000 ×g) of the brain homogenate showed that most of the PrPSc was precipitated into the pellet, and the supernatant contained only a slight amount of PrPSc. Interestingly, mice inoculated with the obtained supernatant showed incubation periods that were approximately 15 d longer than those of mice inoculated with the crude homogenate even though both inocula contained almost the same infectivity. Our results suggest that a small population of fine PrPSc may be responsible for prion infectivity and that large, aggregated PrPSc may contribute to determining prion disease duration.  相似文献   

7.
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrPSc accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrPSc in animals is controlled by the relationship between the rate of PrPSc formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrPSc formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrPSc and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrPSc formation and did not observe either a reduction in PrPSc abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.  相似文献   

8.
In most forms of prion disease, infectivity is present primarily in the central nervous system or immune system organs such as spleen and lymph node. However, a transgenic mouse model of prion disease has demonstrated that prion infectivity can also be present as amyloid deposits in heart tissue. Deposition of infectious prions as amyloid in human heart tissue would be a significant public health concern. Although abnormal disease-associated prion protein (PrPSc) has not been detected in heart tissue from several amyloid heart disease patients, it has been observed in the heart tissue of a patient with sporadic Creutzfeldt-Jakob Disease (sCJD), the most common form of human prion disease. In order to determine whether prion infectivity can be found in heart tissue, we have inoculated formaldehyde fixed brain and heart tissue from two sCJD patients, as well as prion protein positive fixed heart tissue from two amyloid heart disease patients, into transgenic mice overexpressing the human prion protein. Although the sCJD brain samples led to clinical or subclinical prion infection and deposition of PrPSc in the brain, none of the inoculated heart samples resulted in disease or the accumulation of PrPSc. Thus, our results suggest that prion infectivity is not likely present in cardiac tissue from sCJD or amyloid heart disease patients.  相似文献   

9.
Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform of prion protein, PrPSc, which leads to marked accumulation of PrPSc in brains, is a key pathogenic event in prion diseases, a group of fatal neurodegenerative disorders caused by prions. However, the exact mechanism of PrPSc accumulation in prion-infected neurons remains unknown. We recently reported a novel cellular mechanism to support PrPSc accumulation in prion-infected neurons, in which PrPSc itself promotes its accumulation by evading the cellular inhibitory mechanism, which is newly identified in our recent study. We showed that the VPS10P sorting receptor sortilin negatively regulates PrPSc accumulation in prion-infected neurons, by interacting with PrPC and PrPSc and trafficking them to lysosomes for degradation. However, PrPSc stimulated lysosomal degradation of sortilin, disrupting the sortilin-mediated degradation of PrPC and PrPSc and eventually evoking further accumulation of PrPSc in prion-infected neurons. These findings suggest a positive feedback amplification mechanism for PrPSc accumulation in prion-infected neurons.  相似文献   

10.
To analyze the mechanisms of perception and processing of pheromonal signals in vitro, we previously developed a new culture system for vomeronasal receptor neurons (VRNs), referred to as the vomeronasal pocket (VN pocket). However, very few VRNs were found to express the olfactory marker protein (OMP) and to have protruding microvilli in VN pockets, indicating that these VRNs are immature and that VN pockets are not appropriate for pheromonal recognition. To induce VRN maturation in VN pockets, we here attempted to coculture VN pockets with a VRN target-accessory olfactory bulb (AOB) neurons. At 3 weeks of coculture with AOB neurons, the number of OMP-immunopositive VRNs increased. By electron microscopy, the development of microvilli in VRNs was found to occur coincidentally with OMP expression in vitro. These results indicate that VRN maturation is induced by coculture with AOB neurons. The OMP expression of VRNs was induced not only by AOB neurons but also by neurons of other parts of the central nervous system (CNS). Thus, VRN maturation requires only CNS neurons. Since the maturation of VRNs was not induced in one-well separate cultures, the nonspecific induction of OMP expression by CNS neurons suggests the involvement of a direct contact effect with CNS in VRN maturation.  相似文献   

11.
During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res.  相似文献   

12.
13.
The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into the disease-associated, transmissible form (PrPSc). PrPC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrPC and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrPC glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. The current study demonstrates that undersialylated PrPC is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrPC. As a result, PMCAb-derived PrPSc was less sialylated than brain-derived PrPSc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrPC using sialidase was found to increase the rate of PrPSc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrPC reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrPC was also found to control PrPSc glycoform ratio. A decrease in PrPC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrPSc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrPC differed from that of spleen-derived PrPC. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrPC, suggesting that Neu1 is not responsible for desialylation of PrPC. The current work highlights previously unappreciated role of PrPC sialylation in prion diseases and opens multiple new research directions, including development of new therapeutic approaches.  相似文献   

14.
Prion diseases are transmissible neurodegenerative disorders that affect mammals, including humans. The central molecular event is the conversion of cellular prion glycoprotein, PrPC, into a plethora of assemblies, PrPSc, associated with disease. Distinct phenotypes of disease led to the concept of prion strains, which are associated with distinct PrPSc structures. However, the degree to which intra- and inter-strain PrPSc heterogeneity contributes to disease pathogenesis remains unclear. Addressing this question requires the precise isolation and characterization of all PrPSc subpopulations from the prion-infected brains. Until now, this has been challenging. We used asymmetric-flow field-flow fractionation (AF4) to isolate all PrPSc subpopulations from brains of hamsters infected with three prion strains: Hyper (HY) and 263K, which produce almost identical phenotypes, and Drowsy (DY), a strain with a distinct presentation. In-line dynamic and multi-angle light scattering (DLS/MALS) data provided accurate measurements of particle sizes and estimation of the shape and number of PrPSc particles. We found that each strain had a continuum of PrPSc assemblies, with strong correlation between PrPSc quaternary structure and phenotype. HY and 263K were enriched with large, protease-resistant PrPSc aggregates, whereas DY consisted primarily of smaller, more protease-sensitive aggregates. For all strains, a transition from protease-sensitive to protease-resistant PrPSc took place at a hydrodynamic radius (Rh) of 15 nm and was accompanied by a change in glycosylation and seeding activity. Our results show that the combination of AF4 with in-line MALS/DLS is a powerful tool for analyzing PrPSc subpopulations and demonstrate that while PrPSc quaternary structure is a major contributor to PrPSc structural heterogeneity, a fundamental change, likely in secondary/tertiary structure, prevents PrPSc particles from maintaining proteinase K resistance below an Rh of 15 nm, regardless of strain. This results in two biochemically distinctive subpopulations, the proportion, seeding activity, and stability of which correlate with prion strain phenotype.  相似文献   

15.
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrPSc, an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). Stable variations in PrPSc conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrPSc quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrPSc quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrPSc. To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrPSc tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrPSc aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrPSc quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.  相似文献   

16.
Prion neuroinvasion from peripheral tissues involves agent replication in the lymphoreticular system (LRS) prior to entry into the nervous system. This study investigated the role of the LRS in prion neuroinvasion from the oral and nasal mucosa in wild-type and immunodeficient mice and in hamsters infected with the HY and DY strains of the transmissible mink encephalopathy (TME) agent. Following inoculation at neural sites, all hosts were susceptible to prion disease and had evidence of prion infection in the brain, but infection of the LRS was found only in scrapie-infected wild-type mice and HY TME-infected hamsters. In the LRS replication-deficient models, prion neuroinvasion was not observed following intraperitoneal or oral inoculation. However, immunodeficient mice, which have impaired follicular dendritic cells, were susceptible to scrapie following intratongue and intranasal inoculation despite the absence of PrPSc in the tongue or the nasal cavity. For DY TME, hamsters were susceptible following intratongue but not intranasal inoculation and PrPSc was limited to nerve fibers of the tongue. These findings indicate that neuroinvasion from the tongue and nasal cavity can be independent of LRS infection but neuroinvasion was partially dependent on the strain of the prion agent and/or the host species. The paucity of PrPSc deposition in the oral and nasal mucosa from LRS replication-deficient hosts following neuroinvasion from these tissues suggests an infection of nerve fibers that is below the threshold of PrPSc detection and/or the transport of the prion agent along cranial nerves without agent replication.In natural and experimental prion infections originating in the periphery, prion agent replication in the lymphoreticular system (LRS) precedes agent entry and spread in the peripheral nervous system. In the LRS, follicular dendritic cells (FDCs) are the major target of prion infection, and blocking or reversing FDC maturation can prevent scrapie agent replication in the LRS (25, 26, 28, 30, 32). Other migrating cell populations may also influence the progression of experimental prion disease (27, 36). From the LRS, centripetal spread of the prion agent to the spinal cord or brain occurs by spread along nerve fibers of the peripheral nervous system. In the central nervous system, prion agent replication can induce neurodegeneration and disease after an incubation period that can last from weeks to years. For example, in lambs from flocks with endemic scrapie, agent replication is initially detected in the gut-associated lymphoid tissues prior to proximal and distal spread in the LRS, infection of peripheral nerves that innervate the LRS, and subsequent spread to the spinal cord (19, 42). In addition, scrapie agent infection of the vagal nerve, which innervates many peripheral organs including the digestive tract, results in axonal transport directly to the dorsal motor nucleus of the vagus in the brain stem (29, 41). The role of scrapie infection in the LRS in the latter pathway of neuroinvasion is unknown. A similar pathway of prion neuroinvasion occurs in mule deer experimentally infected with the chronic wasting disease agent with the exception that early infection is also established in the lymph nodes of the upper gastrointestinal tract (37, 38). Recent studies indicate that a similar pathway of neuroinvasion occurs in natural and experimental bovine spongiform encephalopathy (BSE) following oral exposure except that agent replication in the LRS is greatly reduced and appears restricted to portions of the gut-associated lymphoid tissues (13, 20, 39).There are natural prion diseases in sheep and cattle that do not exhibit the typical distribution of the prion agent in the brain and LRS that are presumably acquired via oral prion exposure (5, 33). The absence of the abnormal isoform of the prion protein, PrPSc, in the LRS and dorsal motor nucleus of the vagus in atypical scrapie and the H type or L type of BSE raises the question as to whether these cases are due to infection by an alternate route(s) other than ingestion or whether these cases have an etiology that is distinct from that of acquired prion diseases. Direct prion infection of nerve fibers or terminals in highly innervated tissues, such as the mucosa in the head, has been suggested to represent potential sites of prion agent entry that would not require prior agent replication in the LRS (4, 12, 31). The presence of scrapie or BSE infection in the retina, sensory fibers of the tongue, and nasal mucosa of sheep, goat, and/or cattle suggests that the eye, tongue, or nasal cavity could be alternate sites of prion agent entry into hosts (8, 11, 15, 16, 40). Experimental prion inoculation at these mucosal sites can cause prion disease and in some cases rapid neuroinvasion (4, 9, 17, 18). Another explanation for this distribution of infection is that centrifugal spread of the prion agent away from the brain and along cranial nerves could serve as a pathway for prion infection and accumulation in these mucosal tissues (4, 10, 43).In this work, we investigated the role of the LRS in prion neuroinvasion from the oral and nasal cavities. In order to investigate neuroinvasion following neural and extraneural routes of inoculation in which prion replication is blocked in the LRS, we used two rodent models for prion infection. In muMT mice, which lack mature B cells, and in lymphotoxin-α (LTα) null mice, FDCs do not undergo maturation, and as a result, these mice do not develop clinical disease following intraperitoneal inoculation of the scrapie agent but are susceptible following direct inoculation into the brain (23, 30). In a second model, the HY and DY strains of the transmissible mink encephalopathy (TME) agent were used to investigate neuroinvasion in Syrian hamsters. The HY and DY TME agents can replicate in the nervous system, but the DY TME agent does not replicate in the LRS, and therefore, the DY TME agent is not pathogenic following intraperitoneal (i.p.) inoculation (2, 3). Following intratongue (i.t.) or intranasal (i.n.) inoculation, prion neuroinvasion was independent of scrapie agent replication in the LRS of immunodeficient mice, but evidence for scrapie infection of peripheral nerve fibers or olfactory neurons at these mucosa was lacking. In hamsters, i.t. inoculation of the HY or DY TME agent resulted in PrPSc deposition in nerve fibers and prion disease, but only the HY TME agent caused disease following i.n. inoculation. These findings suggest that neuroinvasion from the oral and nasal mucosa in LRS replication-deficient rodents can be independent of LRS infection, but the paucity of PrPSc at these mucosal sites of exposure in immunodeficient mice and DY TME-infected hamsters suggests that neuroinvasion is due to either a low-level prion infection of the nervous system at the site of inoculation or transport of the prion agent in axons in the absence of agent replication at the site of prion entry. These findings indicate that these mucosal tissues may not exhibit early evidence of infection and therefore will prove difficult to identify as a portal for agent entry.  相似文献   

17.
The cellular prion protein (PrPC) is an N-glycosylated GPI-anchored protein usually present in lipid rafts with numerous putative functions. When it changes its conformation to a pathological isoform (then referred to as PrPSc), it is an essential part of the prion, the agent causing fatal and transmissible neurodegenerative prion diseases. There is growing evidence that toxicity and neuronal damage on the one hand and propagation/infectivity on the other hand are two distinct processes of the disease and that the GPI-anchor attachment of PrPC and PrPSc plays an important role in protein localization and in neurotoxicity. Here we review how the signal sequence of the GPI-anchor matters in PrPC localization, how an altered cellular localization of PrPC or differences in GPI-anchor composition can affect prion infection, and we discuss through which mechanisms changes on the anchorage of PrPC can modify the disease process.  相似文献   

18.
The implication of dendritic cells (DCs) in the peripheral spreading of prions has increased in the last few years. It has been recently described that DCs can transmit prions to primary neurons from the central nervous system. In order to improve the understanding of the earliest steps of prion peripheral neuroinvasion, we studied, using an in vitro model, the effect of exposing primary peripheral neurons to scrapie-infected lymphoid cells. Thanks to this system, there is evidence that bone marrow dendritic cells (BMDCs) are in connection with neurites of peripheral neurons via cytoplasmic extensions. BMDCs are competent to internalize prions independently from the expression of cellular prion protein (PrPC) and have the capacity to transmit detergent-insoluble, relatively proteinase K-resistant prion protein (PrPSc) to peripheral neurons after 96 h of coculture. Furthermore, we confirmed the special status of the peripheral nervous system in front of prion diseases. Contrary to central neurons, PrPSc infection does not disturb survival and neurite outgrowth. Our model demonstrates that PrPSc-loaded dendritic cells and peripheral nerve fibers that are included in neuroimmune interfaces can initiate and spread prion neuroinvasion.  相似文献   

19.
Infectious prions contain a self-propagating, misfolded conformer of the prion protein termed PrPSc. A critical prediction of the protein-only hypothesis is that autocatalytic PrPSc molecules should be infectious. However, some autocatalytic recombinant PrPSc molecules have low or undetectable levels of specific infectivity in bioassays, and the essential determinants of recombinant prion infectivity remain obscure. To identify structural and functional features specifically associated with infectivity, we compared the properties of two autocatalytic recombinant PrP conformers derived from the same original template, which differ by >105-fold in specific infectivity for wild-type mice. Structurally, hydrogen/deuterium exchange mass spectrometry (DXMS) studies revealed that solvent accessibility profiles of infectious and non-infectious autocatalytic recombinant PrP conformers are remarkably similar throughout their protease-resistant cores, except for two domains encompassing residues 91-115 and 144-163. Raman spectroscopy and immunoprecipitation studies confirm that these domains adopt distinct conformations within infectious versus non-infectious autocatalytic recombinant PrP conformers. Functionally, in vitro prion propagation experiments show that the non-infectious conformer is unable to seed mouse PrPC substrates containing a glycosylphosphatidylinositol (GPI) anchor, including native PrPC. Taken together, these results indicate that having a conformation that can be specifically adopted by post-translationally modified PrPC molecules is an essential determinant of biological infectivity for recombinant prions, and suggest that this ability is associated with discrete features of PrPSc structure.  相似文献   

20.
《朊病毒》2013,7(5):355-366
ABSTRACT

Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp?/? mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号