首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubules are cytoskeletal filaments that are dynamically assembled from α/β-tubulin heterodimers. The primary sequence and structure of the tubulin proteins and, consequently, the properties and architecture of microtubules are highly conserved in eukaryotes. Despite this conservation, tubulin is subject to heterogeneity that is generated in two ways: by the expression of different tubulin isotypes and by posttranslational modifications (PTMs). Identifying the mechanisms that generate and control tubulin heterogeneity and how this heterogeneity affects microtubule function are long-standing goals in the field. Recent work on tubulin PTMs has shed light on how these modifications could contribute to a “tubulin code” that coordinates the complex functions of microtubules in cells.

Introduction

Microtubules are key elements of the eukaryotic cytoskeleton that dynamically assemble from heterodimers of α- and β-tubulin. The structure of microtubules, as well as the protein sequences of α- and β-tubulin, is highly conserved in evolution, and consequently, microtubules look alike in almost all species. Despite the high level of conservation, microtubules adapt to a large variety of cellular functions. This adaptation can be mediated by a large panel of microtubule-associated proteins (MAPs), including molecular motors, as well as by mechanisms that directly modify the microtubules, thus either changing their biophysical properties or attracting subsets of MAPs that convey specific functions to the modified microtubules. Two different mechanism can generate microtubule diversity: the expression of different α- and β-tubulin genes, referred to as tubulin isotypes, and the generation of posttranslational modifications (PTMs) on α- and β-tubulin (Figs. 1 and and2).2). Although known for several decades, deciphering how tubulin heterogeneity controls microtubule functions is still largely unchartered. This review summarizes the current advances in the field and discusses new concepts arising.Open in a separate windowFigure 1.Tubulin heterogeneity generated by PTMs. (A) Schematic representation of the distribution of different PTMs of tubulin on the α/β-tubulin dimer with respect to their position in the microtubule lattice. Acetylation (Ac), phosphorylation (P), and polyamination (Am) are found within the tubulin bodies that assemble into the microtubule lattice, whereas polyglutamylation, polyglycylation, detyrosination, and C-terminal deglutamylation take place within the C-terminal tubulin tails that project away from the lattice surface. The tubulin dimer represents TubA1A and TubB2B (Fig. 2), and modification sites for polyglutamylation and polyglycylation have been randomly chosen. (B) Chemical structure of the branched peptide formed by polyglutamylation and polyglycylation, using the γ-carboxyl groups of the modified glutamate residues as acceptor sites for the isopeptide bonds. Note that in the case of polyglutamylation, the elongation of the side chains generates classical peptide bonds (Redeker et al., 1991).Open in a separate windowFigure 2.Heterogeneity of C-terminal tails of tubulin isotypes and their PTMs. The amino acid sequences of all tubulin genes found in the human genome are indicated, starting at the last amino acid of the folded tubulin bodies. Amino acids are represented in single-letter codes and color coded according to their biochemical properties. Known sites for polyglutamylation are indicated (Eddé et al., 1990; Alexander et al., 1991; Rüdiger et al., 1992). Potential modification sites (all glutamate residues) are indicated. Known C-terminal truncation reactions of α/β-tubulin (tub) are indicated. The C-terminal tails of the yeast Saccharomyces cerevisiae are shown to illustrate the phylogenetic diversity of these domains.

Tubulin isotypes

The cloning of the first tubulin genes in the late 1970’s (Cleveland et al., 1978) revealed the existence of multiple genes coding for α- or β-tubulin (Ludueña and Banerjee, 2008) that generate subtle differences in their amino acid sequences, particularly in the C-terminal tails (Fig. 2). It was assumed that tubulin isotypes, as they were named, assemble into discrete microtubule species that carry out unique functions. This conclusion was reinforced by the observation that some isotypes are specifically expressed in specialized cells and tissues and that isotype expression changes during development (Lewis et al., 1985; Denoulet et al., 1986). These high expectations were mitigated by a subsequent study showing that all tubulin isotypes freely copolymerize into heterogeneous microtubules (Lewis et al., 1987). To date, only highly specialized microtubules, such as ciliary axonemes (Renthal et al., 1993; Raff et al., 2008), neuronal microtubules (Denoulet et al., 1986; Joshi and Cleveland, 1989), and microtubules of the marginal band of platelets (Wang et al., 1986; Schwer et al., 2001) are known to depend on some specific (β) tubulin isotypes, whereas the function of most other microtubules appears to be independent of their isotype composition.More recently, a large number of mutations in single tubulin isotypes have been linked to deleterious neurodevelopmental disorders (Keays et al., 2007; Fallet-Bianco et al., 2008; Tischfield et al., 2010; Cederquist et al., 2012; Niwa et al., 2013). Mutations of a single tubulin isotype could lead to an imbalance in the levels of tubulins as a result of a lack of incorporation of mutant isoforms into the microtubule lattice or to incorporation that perturbs the architecture or dynamics of the microtubules. The analysis of tubulin disease mutations is starting to reveal how subtle alterations of the microtubule cytoskeleton can lead to functional aberrations in cells and organisms and might provide novel insights into the roles of tubulin isotypes that have so far been considered redundant.

Tubulin PTMs

Tubulin is subject to a large range of PTMs (Fig. 1), from well-known ones, such as acetylation or phosphorylation, to others that have so far mostly been found on tubulin. Detyrosination/tyrosination, polyglutamylation, and polyglycylation, for instance, might have evolved to specifically regulate tubulin and microtubule functions, in particular in cilia and flagella, as their evolution is closely linked to these organelles. The strong link between those modifications and tubulin evolution has led to the perception that they are tubulin PTMs; however, apart from detyrosination/tyrosination, most of them have other substrates (Regnard et al., 2000; Xie et al., 2007; van Dijk et al., 2008; Rogowski et al., 2009).

Tubulin acetylation.

Tubulin acetylation was discovered on lysine 40 (K40; Fig. 1 A) of flagellar α-tubulin in Chlamydomonas reinhardtii (L’Hernault and Rosenbaum, 1985) and is generally enriched on stable microtubules in cells. Considering that K40 acetylation per se has no effect on the ultrastructure of microtubules (Howes et al., 2014), it is rather unlikely that it directly stabilizes microtubules. As a result of its localization at the inner face of microtubules (Soppina et al., 2012), K40 acetylation might rather affect the binding of microtubule inner proteins, a poorly characterized family of proteins (Nicastro et al., 2011; Linck et al., 2014). Functional experiments in cells have further suggested that K40 acetylation regulates intracellular transport by regulating the traffic of kinesin motors (Reed et al., 2006; Dompierre et al., 2007). These observations could so far not be confirmed by biophysical measurements in vitro (Walter et al., 2012; Kaul et al., 2014), suggesting that in cells, K40 acetylation might affect intracellular traffic by indirect mechanisms.Enzymes involved in K40 acetylation are HDAC6 (histone deacetylase family member 6; Hubbert et al., 2002) and Sirt2 (sirtuin type 2; North et al., 2003). Initial functional studies used overexpression, depletion, or chemical inhibition of these enzymes. These studies should be discussed with care, as both HDAC6 and Sirt2 deacetylate other substrates and have deacetylase-independent functions and chemical inhibition of HDAC6 is not entirely selective for this enzyme (Valenzuela-Fernández et al., 2008). In contrast, acetyl transferase α-Tat1 (or Mec-17; Akella et al., 2010; Shida et al., 2010) specifically acetylates α-tubulin K40 (Fig. 3), thus providing a more specific tool to investigate the functions of K40 acetylation. Knockout mice of α-Tat1 are completely void of K40-acetylated tubulin; however, they show only slight phenotypic aberrations, for instance, in their sperm flagellum (Kalebic et al., 2013). A more detailed analysis of α-Tat1 knockout mice demonstrated that absence of K40 acetylation leads to reduced contact inhibition in proliferating cells (Aguilar et al., 2014). In migrating cells, α-Tat1 is targeted to microtubules at the leading edge by clathrin-coated pits, resulting in locally restricted acetylation of those microtubules (Montagnac et al., 2013). A recent structural study of α-Tat1 demonstrated that the low catalytic rate of this enzyme, together with its localization inside the microtubules, caused acetylation to accumulate selectively in stable, long-lived microtubules (Szyk et al., 2014), thus explaining the link between this PTM and stable microtubules in cells. However, the direct cellular function of K40 acetylation on microtubules is still unclear.Open in a separate windowFigure 3.Enzymes involved in PTM of tubulin. Schematic representation of known enzymes (mammalian enzymes are shown) involved in the generation and removal of PTMs shown in Fig. 1. Note that some enzymes still remain unknown, and some modifications are irreversible. (*CCP5 preferentially removes branching points [Rogowski et al., 2010]; however, the enzyme can also hydrolyze linear glutamate chains [Berezniuk et al., 2013]).Recent discoveries have brought up the possibility that tubulin could be subject to multiple acetylation events. A whole-acetylome study identified >10 novel sites on α- and β-tubulin (Choudhary et al., 2009); however, none of these sites have been confirmed. Another acetylation event has been described at lysine 252 (K252) of β-tubulin. This modification is catalyzed by the acetyltransferase San (Fig. 3) and might regulate the assembly efficiency of microtubules as a result of its localization at the polymerization interface (Chu et al., 2011).

Tubulin detyrosination.

Most α-tubulin genes in different species encode a C-terminal tyrosine residue (Fig. 2; Valenzuela et al., 1981). This tyrosine can be enzymatically removed (Hallak et al., 1977) and religated (Fig. 3; Arce et al., 1975). Mapping of tyrosinated and detyrosinated microtubules in cells using specific antibodies (Gundersen et al., 1984; Geuens et al., 1986; Cambray-Deakin and Burgoyne, 1987a) revealed that subsets of interphase and mitotic spindle microtubules are detyrosinated (Gundersen and Bulinski, 1986). As detyrosination was mostly found on stable and long-lived microtubules, especially in neurons (Cambray-Deakin and Burgoyne, 1987b; Robson and Burgoyne, 1989; Brown et al., 1993), it was assumed that this modification promotes microtubule stability (Gundersen et al., 1987; Sherwin et al., 1987). Although a direct stabilization of the microtubule lattice was considered unlikely (Khawaja et al., 1988), it was found more recently that detyrosination protects cellular microtubules from the depolymerizing activity of kinesin-13–type motor proteins, such as KIF2 or MCAK, thus increasing their longevity (Peris et al., 2009; Sirajuddin et al., 2014).Besides kinesin-13 motors, plus end–tracking proteins with cytoskeleton-associated protein glycine-rich (CAP-Gly) domains, such as CLIP170 or p150/glued, specifically interact with tyrosinated microtubules (Peris et al., 2006; Bieling et al., 2008) via this domain (Honnappa et al., 2006). In contrast, kinesin-1 moves preferentially on detyrosinated microtubules tracks in cells (Liao and Gundersen, 1998; Kreitzer et al., 1999; Konishi and Setou, 2009). The effect of detyrosination on kinesin-1 motor behavior was recently measured in vitro, and a small but significant increase in the landing rate and processivity of the motor has been found (Kaul et al., 2014). Such subtle changes in the motor behavior could, in conjunction with other factors, such as regulatory MAPs associated with cargo transport complexes (Barlan et al., 2013), lead to a preferential use of detyrosinated microtubules by kinesin-1 in cells.Despite the early biochemical characterization of a detyrosinating activity, the carboxypeptidase catalyzing detyrosination of α-tubulin has yet to be identified (Hallak et al., 1977; Argaraña et al., 1978, 1980). In contrast, the reverse enzyme, tubulin tyrosine ligase (TTL; Fig. 3; Raybin and Flavin, 1975; Deanin and Gordon, 1976; Argaraña et al., 1980), has been purified (Schröder et al., 1985) and cloned (Ersfeld et al., 1993). TTL modifies nonpolymerized tubulin dimers exclusively. This selectivity is determined by the binding interface between the TTL and tubulin dimers (Szyk et al., 2011, 2013; Prota et al., 2013). In contrast, the so far unidentified detyrosinase acts preferentially on polymerized microtubules (Kumar and Flavin, 1981; Arce and Barra, 1983), thus modifying a select population of microtubules within cells (Gundersen et al., 1987).In most organisms, only one unique gene for TTL exists. Consequently, TTL knockout mice show a huge accumulation of detyrosinated and particularly Δ2-tubulin (see next section). TTL knockout mice die before birth (Erck et al., 2005) with major developmental defects in the nervous system that might be related to aberrant neuronal differentiation (Marcos et al., 2009). TTL is strictly tubulin specific (Prota et al., 2013), indicating that all observed defects in TTL knockout mice are directly related to the deregulation of the microtubule cytoskeleton.

Δ2-tubulin and further C-terminal modification.

A biochemical study of brain tubulin revealed that ∼35% of α-tubulin cannot be retyrosinated (Paturle et al., 1989) because of the lack of the penultimate C-terminal glutamate residue of the primary protein sequence (Fig. 2; Paturle-Lafanechère et al., 1991). This so-called Δ2-tubulin (for two C-terminal amino acids missing) cannot undergo retyrosination as a result of structural constraints within TTL (Prota et al., 2013) and thus is considered an irreversible PTM.Δ2-tubulin accumulates in long-lived microtubules of differentiated neurons, axonemes of cilia and flagella, and also in cellular microtubules that have been artificially stabilized, for instance, with taxol (Paturle-Lafanechère et al., 1994). The generation of Δ2-tubulin requires previous detyrosination of α-tubulin; thus, the levels of this PTM are indirectly regulated by the detyrosination/retyrosination cycle. This mechanistic link is particularly apparent in the TTL knockout mice, which show massive accumulation of Δ2-tubulin in all tested tissues (Erck et al., 2005). Loss of TTL and the subsequent increase of Δ2-tubulin levels were also linked to tumor growth and might contribute to the aggressiveness of the tumors by an as-yet-unknown mechanism (Lafanechère et al., 1998; Mialhe et al., 2001). To date, no specific biochemical role of Δ2-tubulin has been determined; thus, one possibility is that the modification simply locks tubulin in the detyrosinated state.The enzymes responsible for Δ2-tubulin generation are members of a family of cytosolic carboxypeptidases (CCPs; Fig. 3; Kalinina et al., 2007; Rodriguez de la Vega et al., 2007), and most of them also remove polyglutamylation from tubulin (see next section; Rogowski et al., 2010). These enzymes are also able to generate Δ3-tubulin (Fig. 1 A; Berezniuk et al., 2012), indicating that further degradation of the tubulin C-terminal tails are possible; however, the functional significance of this event is unknown.

Polyglutamylation.

Polyglutamylation is a PTM that occurs when secondary glutamate side chains are formed on γ-carboxyl groups of glutamate residues in a protein (Fig. 1, A and B). The modification was first discovered on α- and β-tubulin from the brain (Eddé et al., 1990; Alexander et al., 1991; Rüdiger et al., 1992; Mary et al., 1994) as well as on axonemal tubulin from different species (Mary et al., 1996, 1997); however, it is not restricted to tubulin (Regnard et al., 2000; van Dijk et al., 2008). Using a glutamylation-specific antibody, GT335 (Wolff et al., 1992), it was observed that tubulin glutamylation increases during neuronal differentiation (Audebert et al., 1993, 1994) and that axonemes of cilia and flagella (Fouquet et al., 1994), as well as centrioles of mammalian centrosomes (Bobinnec et al., 1998), are extensively glutamylated.Enzymes catalyzing polyglutamylation belong to the TTL-like (TTLL) family (Regnard et al., 2003; Janke et al., 2005). In mammals, nine glutamylases exist, each of them showing intrinsic preferences for modifying either α- or β-tubulin as well as for initiating or elongating glutamate chains (Fig. 3; van Dijk et al., 2007). Two of the six well-characterized TTLL glutamylases also modify nontubulin substrates (van Dijk et al., 2008).Knockout or depletion of glutamylating enzymes in different model organisms revealed an evolutionarily conserved role of glutamylation in cilia and flagella. In motile cilia, glutamylation regulates beating behavior (Janke et al., 2005; Pathak et al., 2007; Ikegami et al., 2010) via the regulation of flagellar dynein motors (Kubo et al., 2010; Suryavanshi et al., 2010). Despite the expression of multiple glutamylases in ciliated cells and tissues, depletion or knockout of single enzymes often lead to ciliary defects, particularly in motile cilia (Ikegami et al., 2010; Vogel et al., 2010; Bosch Grau et al., 2013; Lee et al., 2013), suggesting essential and nonredundant regulatory functions of these enzymes in cilia.Despite the enrichment of polyglutamylation in neuronal microtubules (Audebert et al., 1993, 1994), knockout of TTLL1, the major polyglutamylase in brain (Janke et al., 2005), did not show obvious neuronal defects in mice (Ikegami et al., 2010; Vogel et al., 2010). This suggests a tolerance of neuronal microtubules to variations in polyglutamylation.Deglutamylases, the enzymes that reverse polyglutamylation, were identified within a novel family of CCPs (Kimura et al., 2010; Rogowski et al., 2010). So far, three out of six mammalian CCPs have been shown to cleave C-terminal glutamate residues, thus catalyzing both the reversal of polyglutamylation and the removal of gene-encoded glutamates from the C termini of proteins (Fig. 3). The hydrolysis of gene-encoded glutamate residues is not restricted to tubulin, in which it generates Δ2- and Δ3-tubulin, but has also been reported for other proteins such as myosin light chain kinase (Rusconi et al., 1997; Rogowski et al., 2010). One enzyme of the CCP family, CCP5, preferentially removes branching points generated by glutamylation, thus allowing the complete reversal of the polyglutamylation modification (Kimura et al., 2010; Rogowski et al., 2010). However, CCP5 can also hydrolyze C-terminal glutamate residues from linear peptide chains similar to other members of the CCP family (Berezniuk et al., 2013).CCP1 is mutated in a well-established mouse model for neurodegeneration, the pcd (Purkinje cell degeneration) mouse (Mullen et al., 1976; Greer and Shepherd, 1982; Fernandez-Gonzalez et al., 2002). The absence of a key deglutamylase leads to strong hyperglutamylation in brain regions that undergo degeneration, such as the cerebellum and the olfactory bulb (Rogowski et al., 2010). When glutamylation levels were rebalanced by depletion or knockout of the major brain polyglutamylase TTLL1 (Rogowski et al., 2010; Berezniuk et al., 2012), Purkinje cells survived. Although the molecular mechanisms of hyperglutamylation-induced degeneration remain to be elucidated, perturbation of neuronal transport, as well as changes in the dynamics and stability of microtubules, is expected to be induced by hyperglutamylation. Increased polyglutamylation levels have been shown to affect kinesin-1–mediated transport in cultured neurons (Maas et al., 2009), and the turnover of microtubules can also be regulated by polyglutamylation via the activation of microtubule-severing enzymes such as spastin (Lacroix et al., 2010).Subtle differences in polyglutamylation can be seen on diverse microtubules in different cell types. The functions of these modifications remain to be studied; however, its wide distribution strengthens the idea that it could be involved in fine-tuning a range of microtubule functions.

Polyglycylation.

Tubulin polyglycylation or glycylation, like polyglutamylation, generates side chains of glycine residues within the C-terminal tails of α- and β-tubulin (Fig. 1, A and B). The modification sites of glycylation are considered to be principally the same as for glutamylation, and indeed, both PTMs have been shown to be interdependent in cells (Rogowski et al., 2009; Wloga et al., 2009). Initially discovered on Paramecium tetraurelia tubulin (Redeker et al., 1994), glycylation has been extensively studied using two antibodies, TAP952 and AXO49 (Bressac et al., 1995; Levilliers et al., 1995; Bré et al., 1996). In contrast to polyglutamylation, glycylation is restricted to cilia and flagella in most organisms analyzed so far.Glycylating enzymes are also members of the TTLL family, and homologues of these enzymes have so far been found in all organisms with proven glycylation of ciliary axonemes (Rogowski et al., 2009; Wloga et al., 2009). In mammals, initiating (TTLL3 and TTLL8) and elongating (TTLL10) glycylases work together to generate polyglycylation (Fig. 3). In contrast, the two TTLL3 orthologues from Drosophila melanogaster can both initiate and elongate glycine side chains (Rogowski et al., 2009).In mice, motile ependymal cilia in brain ventricles acquire monoglycylation upon maturation, whereas polyglycylation is observed only after several weeks (Bosch Grau et al., 2013). Sperm flagella, in contrast, acquire long glycine chains much faster, suggesting that the extent of polyglycylation could correlate with the length of the axonemes (Rogowski et al., 2009). Depletion of glycylases in mice (ependymal cilia; Bosch Grau et al., 2013), zebrafish (Wloga et al., 2009; Pathak et al., 2011), Tetrahymena thermophila (Wloga et al., 2009), and D. melanogaster (Rogowski et al., 2009) consistently led to ciliary disassembly or severe ciliary defects. How glycylation regulates microtubule functions remains unknown; however, the observation that glycylation-depleted axonemes disassemble after initial assembly (Rogowski et al., 2009; Bosch Grau et al., 2013) suggests a role of this PTM in stabilizing axonemal microtubules. Strikingly, human TTLL10 is enzymatically inactive; thus, humans have lost the ability to elongate glycine side chains (Rogowski et al., 2009). This suggests that the elongation of the glycine side chains is not an essential aspect of the function of this otherwise critical tubulin PTM.

Other tubulin PTMs.

Several other PTMs have been found on tubulin. Early studies identified tubulin phosphorylation (Eipper, 1974; Gard and Kirschner, 1985; Díaz-Nido et al., 1990); however, no specific functions were found. The perhaps best-studied phosphorylation event on tubulin takes place at serine S172 of β-tubulin (Fig. 1 A), is catalyzed by the Cdk1 (Fig. 3), and might regulate microtubule dynamics during cell division (Fourest-Lieuvin et al., 2006; Caudron et al., 2010). Tubulin can be also modified by the spleen tyrosine kinase Syk (Fig. 3; Peters et al., 1996), which might play a role in immune cells (Faruki et al., 2000; Sulimenko et al., 2006) and cell division (Zyss et al., 2005; Sulimenko et al., 2006).Polyamination has recently been discovered on brain tubulin (Song et al., 2013), after having been overlooked for many years as a result of the low solubility of polyaminated tubulin. Among several glutamine residues of α- and β-tubulin that can be polyaminated, Q15 of β-tubulin is considered the primary modification site (Fig. 1 A). Polyamination is catalyzed by transglutaminases (Fig. 3), which modify free tubulin as well as microtubules in an irreversible manner, and most likely contribute to the stabilization of microtubules (Song et al., 2013).Tubulin was also reported to be palmitoylated (Caron, 1997; Ozols and Caron, 1997; Caron et al., 2001), ubiquitinated (Ren et al., 2003; Huang et al., 2009; Xu et al., 2010), glycosylated (Walgren et al., 2003; Ji et al., 2011), arginylated (Wong et al., 2007), methylated (Xiao et al., 2010), and sumoylated (Rosas-Acosta et al., 2005). These PTMs have mostly been reported without follow-up studies, and some of them are only found in specific cell types or organisms and/or under specific metabolic conditions. Further studies will be necessary to gain insights into their potential roles for the regulation of the microtubule cytoskeleton.

Current advances and future perspectives

The molecular heterogeneity of microtubules, generated by the expression of different tubulin isotypes and by the PTM of tubulin has fascinated the scientific community for ∼40 years. Although many important advances have been made in the past decade, the dissection of the molecular mechanisms and a comprehensive understanding of the biological functions of tubulin isotypes and PTMs will be a challenging field of research in the near future.

Direct measurements of the impact of tubulin heterogeneity.

The most direct and reliable type of experiments to determine the impact of tubulin heterogeneity on microtubule behavior are in vitro measurements with purified proteins. However, most biophysical work on microtubules has been performed with tubulin purified from bovine, ovine, or porcine brains, which can be obtained in large quantities and with a high degree of purity and activity (Vallee, 1986; Castoldi and Popov, 2003). Brain tubulin is a mixture of different tubulin isotypes and is heavily posttranslationally modified and thus inept for investigating the functions of tubulin heterogeneity (Denoulet et al., 1986; Cambray-Deakin and Burgoyne, 1987b; Paturle et al., 1989; Eddé et al., 1990). Thus, pure, recombinant tubulin will be essential to dissect the roles of different tubulin isoforms and PTMs.Attempts to produce recombinant, functional α- and β-tubulin in bacteria have failed so far (Yaffe et al., 1988), most likely because of the absence of the extensive tubulin-specific folding machinery (Yaffe et al., 1992; Gao et al., 1993; Tian et al., 1996; Vainberg et al., 1998) in prokaryotes. An alternative source of tubulin with less isotype heterogeneity and with almost no PTMs is endogenous tubulin from cell lines such as HeLa, which in the past has been purified using a range of biochemical procedures (Bulinski and Borisy, 1979; Weatherbee et al., 1980; Farrell, 1982; Newton et al., 2002; Fourest-Lieuvin, 2006). Such tubulin can be further modified with tubulin-modifying enzymes, such as polyglutamylases, either by expressing those enzymes in the cells before tubulin purification (Lacroix and Janke, 2011) or in vitro with purified enzymes (Vemu et al., 2014). Despite some technical limitations of these methods, HeLa tubulin modified in cells has been successfully used in an in vitro study on the role of polyglutamylation in microtubule severing (Lacroix et al., 2010).Naturally occurring variants of tubulin isotypes and PTMs can be purified from different organisms, organs, or cell types, but obviously, only some combinations of tubulin isotypes and PTMs can be obtained by this approach. The recent development of an affinity purification method using the microtubule-binding TOG (tumor overexpressed gene) domain of yeast Stu2p has brought a new twist to this approach, as it allows purifying small amounts of tubulin from any cell type or tissue (Widlund et al., 2012).The absence of tubulin heterogeneity in yeast has made budding and fission yeast potential expression systems for recombinant, PTM-free tubulin (Katsuki et al., 2009; Drummond et al., 2011; Johnson et al., 2011). However, the expression of mammalian tubulin in this system has remained impossible. This problem was then partially circumvented by expressing tubulin chimeras that consist of a yeast tubulin body fused to mammalian C-terminal tubulin tails, thus mimicking different tubulin isotypes (Sirajuddin et al., 2014). Moreover, detyrosination can be generated by deleting the key C-terminal residue from endogenous or chimeric α-tubulin (Badin-Larçon et al., 2004), and polyglutamylation is generated by chemically coupling glutamate side chains to specifically engineered tubulin chimeras (Sirajuddin et al., 2014). These approaches allowed the first direct measurements of the impact of tubulin isotypes and PTMs on the behavior of molecular motors in vitro (Sirajuddin et al., 2014) and the analysis of the effects of tubulin heterogeneity on microtubule behavior and interactions inside the yeast cell (Badin-Larçon et al., 2004; Aiken et al., 2014).Currently, the most promising development has been the successful purification of fully functional recombinant tubulin from the baculovirus expression system (Minoura et al., 2013). Using this system, defined α/β-tubulin dimers can be obtained using two different epitope tags on α- and β-tubulin, respectively. Although these epitope tags are essential for separating recombinant from the endogenous tubulin, they could also affect tubulin assembly or microtubule–MAP interactions. Thus, future developments should focus on eliminating these tags.Current efforts have brought the possibility of producing recombinant tubulin into reach. Further improvement and standardization of these methods will certainly provide a breakthrough in understanding the mechanisms by which tubulin heterogeneity contributes to microtubule functions.

Complexity of tubulin—understanding the regulatory principles.

The diversity of tubulin genes (isotypes) and the complexity of tubulin PTMs have led to the proposal of the term “tubulin code” (Verhey and Gaertig, 2007; Wehenkel and Janke, 2014), in analogy to the previously coined histone code (Jenuwein and Allis, 2001). Tubulin molecules consist of a highly structured and thus evolutionarily conserved tubulin body and the unstructured and less conserved C-terminal tails (Nogales et al., 1998). As PTMs and sequence variations within the tubulin body are expected to affect the conserved tubulin fold and therefore the properties of the microtubule lattice, they are not likely to be involved in generating the tubulin code. In contrast, modulations of the C-terminal tails could encode signals on the microtubule surface without perturbing basic microtubule functions and properties (Figs. 1 A and and4).4). Indeed, the highest degree of gene-encoded diversity (Fig. 2) and the highest density and complexity of PTMs (Fig. 1) are found within these tail domains.Open in a separate windowFigure 4.Molecular components of the tubulin code. Schematic representation of potential coding elements that could generate specific signals for the tubulin code. (A) The length of the C-terminal tails of different tubulin isotypes differ significantly (Fig. 2) and could have an impact on the interactions between microtubules and MAPs. (B) Tubulin C-terminal tails are rich in charged amino acid residues. The distribution of these residues and local densities of charges could influence the electrostatic interactions with the tails and the readers. (C) Although each glutamate residue within the C-terminal tails could be considered a potential modification site, only some sites have been found highly occupied in tubulin purifications from native sources. This indicates selectivity of the modification reactions, which can participate in the generation of specific modification patterns (see D). Modification sites might be distinguished by their neighboring amino acid residues, which could create specific modification epitopes. (D) As a result of the large number of modification sites and the variability of side chains, a large variety of modification patterns could be generated within a single C-terminal tail of tubulin. (E) Modification patterns as shown in D can be distinct between α- and β-tubulin. These modification patterns could be differentially distributed at the surface of the microtubule lattice, thus generating a higher-order patterning. Tub, tubulin. For color coding, see Fig. 2.Considering the number of tubulin isotypes plus all potential combinations of PTMs (e.g., each glutamate residue within the C-terminal tubulin tail could be modified by either polyglutamylation or polyglycylation, each of them generating side chains of different lengths; Fig. 4), the number of distinct signals generated by the potential tubulin code would be huge. However, as many of these potential signals represent chemical structures that are similar and might not be reliably distinguished by readout mechanisms, it is possible that the tubulin code generates probabilistic signals. In this scenario, biochemically similar modifications would have similar functional readouts, and marginal differences between those signals would only bias biological processes but not determine them. This stands in contrast to the concept of the histone code, in which precise patterns of different PTMs on the histone proteins encode distinct biological signals.The concept of probabilistic signaling is already inscribed in the machinery that generates the tubulin code. Polyglutamylases and polyglycylases from the TTLL family have preferential activities for either α- or β-tubulin and for generating different lengths of the branched glutamate or glycine chains. Although under conditions of low enzyme concentrations, as found in most cells and tissues, the enzymes seem to selectively generate their preferential type of PTM, higher enzyme concentrations induce a more promiscuous behavior, leading, for instance, to a loss of selectivity for α- or β-tubulin (van Dijk et al., 2007). Similarly, the modifying enzymes might prefer certain modification sites within the C-terminal tails of tubulin but might be equally able to modify other sites, which could be locally regulated in cells. For example, β-tubulin isotypes isolated from mammalian brain were initially found to be glutamylated on single residues (Alexander et al., 1991; Rüdiger et al., 1992), which in the light of the comparably low sensitivity of mass spectrometry at the time might rather indicate a preferential than a unique modification of these sites. Nevertheless, the neuron-specific polyglutamylase for β-tubulin TTLL7 (Ikegami et al., 2006) can incorporate glutamate onto many more modification sites of β-tubulin in vitro (Mukai et al., 2009), which clearly indicates that not all of the possible modification events take place under physiological conditions.Several examples supporting a probabilistic signaling mode of the tubulin code are found in the recent literature. In T. thermophila, a ciliate without tubulin isotype diversity (Gaertig et al., 1993) but with a huge repertoire of tubulin PTMs and tubulin-modifying enzymes (Janke et al., 2005), tubulin can be easily mutagenized to experimentally eliminate sites for PTMs. Mutagenesis of the most commonly occupied glutamylation/glycylation sites within the β-tubulin tails did not generate a clear decrease of glycylation levels nor did it cause obvious phenotypic alterations. This indicates that the modifying enzymes can deviate toward alternative modification sites and that similar PTMs on different sites can compensate the functions of the mutated site. However, when all of the key modification sites were mutated, glycylation became prominently decreased, which led to severe phenotypes, including lethality (Xia et al., 2000). Most strikingly, these phenotypes could be recovered by replacing the C-terminal tail of α-tubulin with the nonmutated β-tubulin tail. This α–β-tubulin chimera became overglycylated and functionally compensated for the absence of modification sites on β-tubulin. The conclusion of this study is that PTM- and isotype-generated signals can fulfill a biological function within a certain range of tolerance.But how efficient is such compensation? The answer can be found in a variety of already described deletion mutants for tubulin-modifying enzymes in different model organisms. Most single-gene knockouts for TTLL genes (glutamylases or glycylases) did not result in prominent phenotypic alterations in mice, even for enzymes that are ubiquitously expressed. Only some highly specialized microtubule structures show functional aberrations upon the deletion of a single enzyme. These “tips of the iceberg” are usually the motile cilia and sperm flagella, which carry very high levels of polyglutamylation and polyglycylation (Bré et al., 1996; Kann et al., 1998; Rogowski et al., 2009). It thus appears that some microtubules are essentially dependent on the generation of specific PTM patterns, whereas others can tolerate changes and appear to function normally. How “normal” these functions are remains to be investigated in future studies. It is possible that defects are subtle and thus overlooked but could become functionally important under specific conditions.A tubulin code also requires readout mechanisms. The most likely “readers” of the tubulin code are MAPs and molecular motors. Considering the probabilistic signaling hypothesis, the expected effects of the signals would be in most cases rather gradual changes, for instance, to fine-tune molecular motor traffic and/or to bias motors toward defined microtubule tracks but not to obliterate motor activity or MAP binding to microtubules. An in vitro study using recombinant tubulin chimeras purified from yeast confirmed this notion (Sirajuddin et al., 2014). By analyzing which elements of the tubulin code can regulate the velocity and processivity of the molecular motors kinesin and dynein, these researchers found that the C-terminal tails of α- and β-tubulin differentially influence the kinetic parameters of the tested motors; however, the modulation was rather modest. One of their striking observations was that a single lysine residue, present in the C-terminal tails of two β-tubulin isotypes (Figs. 2 and and4),4), significantly affected motor traffic and that this effect can be counterbalanced by polyglutamylation. These observations are the first in vitro evidence for the interdependence of different elements of the tubulin code and provide another indication for its probabilistic mode of signaling.

Future directions.

One of the greatest technological challenges to understanding the function of the tubulin code is to detect and interpret subtle and complex regulatory events generated by this code. It will thus be instrumental to further develop tools to better distinguish graded changes in PTM levels on microtubules in cells and tissues (Magiera and Janke, 2013) and to reliably measure subtle modulations of microtubule behavior in reconstituted systems.The current advances in the field and especially the availability of whole-organism models, as well as first insights into the pathological role of tubulin mutations (Tischfield et al., 2011), are about to transform our way of thinking about the regulation of microtubule cytoskeleton. Tubulin heterogeneity generates complex probabilistic signals that cannot be clearly attributed to single biological functions in most cases and that are not essential for most cellular processes. Nevertheless, it has been conserved throughout evolution of eukaryotes and can hardly be dismissed as not important. To understand the functional implications of these processes, we might be forced to reconsider how we define biologically important events and how we measure events that might encode probabilistic signals. The answers to these questions could provide novel insights into how complex systems, such as cells and organisms, are sustained throughout difficult and challenging life cycles, resist to environmental stress and diseases, and have the flexibility needed to succeed in evolution.  相似文献   

2.
3.
4.
Proper brain wiring during development is pivotal for adult brain function. Neurons display a high degree of polarization both morphologically and functionally, and this polarization requires the segregation of mRNA, proteins, and lipids into the axonal or somatodendritic domains. Recent discoveries have provided insight into many aspects of the cell biology of axonal development including axon specification during neuronal polarization, axon growth, and terminal axon branching during synaptogenesis.

Introduction

Axon development can be divided into three main steps: (1) axon specification during neuronal polarization, (2) axon growth and guidance, and (3) axon branching and presynaptic differentiation (Fig. 1; Barnes and Polleux, 2009; Donahoo and Richards, 2009). These three steps are exemplified during neocortical development in the mouse: upon neurogenesis, newly born neurons engage long-range migration and polarize (Fig. 1, A and B) by adopting a bipolar morphology with a leading and a trailing process (Fig. 1 C). During migration (approximately from embryonic day [E]11 to E18 in the mouse cortex), the trailing process becomes the axon and extends rapidly while being guided to its final destination (lasts until around postnatal day [P]7 in mouse corticofugal axons with distant targets like the spinal cord; Fig. 1, D–F). Finally, upon reaching its target area, extensive axonal branching occurs during the formation of presynaptic contacts with specific postsynaptic partners (during the second and third postnatal week in the mouse cortex; Fig. 1, G–I). Disruption of any of these steps is thought to lead to various neurodevelopmental disorders ranging from mental retardation and infantile epilepsy to autism spectrum disorders (Zoghbi and Bear, 2012). This review will provide an overview of some of the cellular and molecular mechanisms underlying axon specification, growth, and branching.Open in a separate windowFigure 1.Axon specification, growth, and branching during mouse cortical development. Three stages of the development of callosal axons of cortical pyramidal neurons from the superficial layers 2/3 of the somatosensory cortex in the mouse visualized using long-term in utero cortical electroporation. For this class of model axons, development can be divided in three main stages: (1) neurogenesis and axon specification, occurring mostly at embryonic ages (A–C); (2) axon growth/guidance during the first postnatal week (D–F); and (3) axon branching and synapse formation until approximately the end of the third postnatal week (G–I). A, D, and G show coronal sections of mouse cortex at the indicated ages after in utero cortical electroporation of a GFP-coding plasmid at E15.5 in superficial neuron precursors in one brain hemisphere only (GFP signal in inverted color, dotted line indicates the limits of the brain). B, E, and H are a schematic representation of the main morphological changes observed in callosally projecting axons (red) at the corresponding ages. C shows the typical bipolar morphology of a migrating neuron emitting a trailing process (TP) and a leading process (LP) that will ultimately become the axon and dendrite, respectively. F and I show typical axon projections of layer 2/3 neurons located in the primary somatosensory area at P8 and P21, respectively. Neurons and axons in C, F, and I are visualized by GFP expression (inverted color). Image in C is modified from Barnes et al. (2007) with permission from Elsevier. Images in D, F, G, and I are reprinted from Courchet et al. (2013) with permission from Elsevier.

Neuronal polarization and axon specification

Neuronal polarization is the process of breaking symmetry in the newly born cell to create the asymmetry inherent to the formation of the axonal and somatodendritic compartments (Dotti and Banker, 1987). The mechanisms underlying this process have been studied extensively in vitro and more recently in vivo, but the exact sequence of events has remained elusive (Neukirchen and Bradke, 2011) partly because it is studied in various neuronal cell types that might not use the same extrinsic/intrinsic mechanisms to polarize. It is highly likely that at least three factors underlie neuronal polarization: extracellular cues, intracellular signaling cascades, and subcellular organelle localization. The partition-defective proteins (PARs) are a highly conserved family of proteins including two dyads (Par3/Par6 adaptor proteins and the Par4/Par1 serine/threonine kinases) that are required for polarization and axon formation (Shi et al., 2003, 2004; Barnes et al., 2007; Shelly et al., 2007; Chen et al., 2013), while many other intracellular signaling molecules also support axon formation (Oliva et al., 2006; Rašin et al., 2007; Barnes and Polleux, 2009; Shelly et al., 2010; Cheng et al., 2011; Hand and Polleux, 2011; Cheng and Poo, 2012; Gärtner et al., 2012). These intracellular signaling pathways are influenced by localized extracellular cues that instruct which neurite becomes the axon by either directly promoting axon extension or repressing axon growth in favor of dendritic growth (Adler et al., 2006; Yi et al., 2010; Randlett et al., 2011b; Shelly et al., 2011).The role of organelle subcellular localization during neuronal polarization is a more controversial issue. Initially, the orientation of organelles, including the Golgi complex, centrosomes, mitochondria, and endosomes, was shown to correlate with the neurite that becomes the axon in vitro (Bradke and Dotti, 1997; de Anda et al., 2005, 2010) and in vivo (de Anda et al., 2010). However, more recent studies suggest that the positioning of the centrosome is not necessary for neuronal polarization (Distel et al., 2010; Nguyen et al., 2011). Centrosome localization is likely constrained by microtubule organization within the cell, and therefore the centrosome position within the cell changes dynamically during different stages of polarization (Sakakibara et al., 2013). The question of how the interplay between extracellular cues, intracellular signaling, and organelle localization lead to polarization has pushed the field to perform more extensive in vivo imaging studies as in vitro systems/models have a difficult time recapitulating the complex environment and rely on neurons that were previously polarized in vivo.Like other epithelial cells, neural progenitors present a high degree of polarization along the apico-basal axis (Götz and Huttner, 2005). One of the major questions still needing to be addressed is how, or if, newly born mammalian neurons inherit some level of asymmetry from their parent progenitors (Barnes and Polleux, 2009). Recent studies have attempted to answer this question in vivo but have found that the answer might vary in each neuronal subtype. Retinal ganglion cells (RGCs), retinal bipolar neurons, and tegmental hindbrain nuclei neurons seem to inherit the apical/basolateral polarity from their progenitors (Morgan et al., 2006; Zolessi et al., 2006; Distel et al., 2010; Randlett et al., 2011a). In cortical neurons, hippocampal neurons, and cerebellar granule neurons, this relationship is unclear, in part because newly born cortical neurons first exhibit a multipolar morphology with dynamic neurites emerging from the cell body before adopting a bipolar morphology, suggesting they may not retain a predisposed parental polarity (Hand et al., 2005; Barnes et al., 2007). Other factors also suggest that different neuronal subtypes use different mechanisms during polarization. One such factor is the position where neurons specify their axon relative to the original apical/basolateral axis of their progenitors. As an example, cortical neurons in the mouse brain protrude an axon from the membrane facing the original apical surface toward the ventricular zone (Hand et al., 2005; Barnes et al., 2007; Shelly et al., 2007), whereas zebrafish RGCs form their axon from the membrane on the basolateral side (Zolessi et al., 2006; Randlett et al., 2011b). Another significant difference between cortical neurons and RGCs is related to the timing of axogenesis and dendrogenesis. RGCs tend to form their axons and dendrites at the same time during migration (Zolessi et al., 2006; Randlett et al., 2011b). However, cortical neurons form a long axon during migration before significant dendrite arborization takes place. These differences in the regulation of polarization and sequence of axon versus dendrite outgrowth may be linked to the localization of extracellular cues relative to the immature neuron during polarization (Yi et al., 2010).

Neuronal polarization, cytoskeletal dynamics, and polarized transport

What exactly makes the axonal compartment distinct from the somatodendritic domain? This can most easily be illustrated by focusing on the cytoskeleton that forms the framework of the developing axon. The cytoskeleton is composed of microtubules, actin filaments, and intermediate filaments (also called neurofilaments) along with their associated binding partners. Microtubules are composed of α- and β-tubulin subunits that polymerize to form a long filament intrinsically polarized by the addition of tubulin subunits to only one side of the growing filament called the plus end, while on the opposite side depolymerization occurs. It was discovered more than thirty years ago that the axon of a neuron contains a very uniform distribution of microtubules with the plus end facing away from the cell body (Heidemann et al., 1981). Through the years this observation was confirmed in many neuron cell types, and it was determined that dendrites do not have this uniform plus-end out network of microtubules (Fig. 2; Baas et al., 1988). Dendrites appear to have a complex array of microtubule orientations that may vary between species and/or neuronal subtypes. Current research shows that proximal dendrites are composed of mainly minus-end out microtubules, whereas more distal dendrites transition from an equal distribution of minus-end out and plus-end out microtubules to mainly plus-end out microtubules (Stone et al., 2008; Yin et al., 2011; Ori-McKenney et al., 2012). The orientation of microtubules matters greatly because it determines the relative contribution of microtubule-dependent motor proteins (kinesins and dyneins), which are the main motor proteins carrying various cargoes within cells and in particular are responsible for long-range transport in very large cells such as neurons. Dynein (a minus end–directed microtubule motor) is known to be responsible for both the transport of microtubules away from the cell body and for the uniform polarity of microtubules in the axon (Ahmad et al., 1998; Zheng et al., 2008). Recently, it was discovered that kinesin-1 (a plus end–directed microtubule motor) is required for the minus-end out orientation of microtubules in the dendrites of Caenorhabditis elegans DA9 neurons through selective transport of plus-end out microtubule fragments out of the dendrite (Yan et al., 2013). Another hallmark that differentiates the axonal and somatodendritic compartments is the microtubule-associated proteins (MAPs) that decorate microtubules to regulate their bundling and stability (Hirokawa et al., 2010). Microtubules in the axon are mainly decorated by Tau and MAP1B, whereas microtubules in the dendrites are labeled by proteins of the MAP2a-c family. The role of Tau in axon elongation remains controversial because early reports (Harada et al., 1994; Tint et al., 1998; Dawson et al., 2001) of Tau knockout alone suggested that axons were unaffected, but this apparent lack of phenotype might originate from the functional redundancy between MAPs as Tau/MAP1b double knockout mice show clear axon growth defects (Takei et al., 2000).Open in a separate windowFigure 2.Polarity maintenance and trafficking of somatodendritic and axonal proteins. Neurons are polarized into two main compartments: the somatodendritic domain and the axon. These domains are characterized by the underlying cytoskeleton and their unique protein signatures. The axonal cytoskeleton is defined by its uniform microtubule orientation where each microtubule is oriented with its plus end away from the cell body, while the dendrites contain a mixture of microtubules oriented in both directions. The proximal axon is characterized by a structure known as the axon initial segment (AIS, see inset). This highly ordered structure creates a diffusion barrier between the axonal compartment and the rest of the cell. F-actin is responsible for the cytoplasmic barrier, while sodium channels anchored by Ankyrin G form the basis of the plasma membrane barrier. Tau is retained in the axon by a microtubule-based filter at the AIS. Molecular motors (including kinesin, dynein, and myosin) then use the underlying cytoskeleton to restrict cargo transport to either the axon (such as Cntn1 and L1) or the dendrites (such as PSD95, AMPARs, and NMDARs).The dynamics of actin polymerization into actin filaments (F-actin) also play an important role in defining the axonal compartment, and contain an intrinsic polarity based on the polymerization of the free G-actin subunits (Hirokawa et al., 2010). Beyond the well-documented early role of F-actin dynamics in neurite outgrowth, multiple groups have shown that the disruption of actin polymerization allows dendritically localized proteins to incorrectly enter the axonal compartment (Winckler et al., 1999; Lewis et al., 2009; Song et al., 2009). The existence of a “diffusion barrier” in the proximal part of newly formed axons (Song et al., 2009) was long suspected. One of the current hypotheses is that a dense F-actin meshwork creates a cytoplasmic diffusion barrier shortly after polarization, which in part separates the axonal compartment from the neuronal cell body (Fig. 2, inset). Based on functional analysis and electron microscopy analysis, this “F-actin–based filter” is oriented so that the plus ends point toward the cell body while the minus ends point into the axon (Lewis et al., 2009, 2011; Watanabe et al., 2012). Two recent papers show via high resolution imaging techniques that indeed the axon has a unique F-actin network that is not found in dendrites (Watanabe et al., 2012; Xu et al., 2013). The development of this F-actin meshwork appears to directly precede the formation of the axon initial segment (AIS; Song et al., 2009; Galiano et al., 2012). An intra-axonal diffusion barrier, composed of Spectrins and Ankyrin B, defines the eventual position of the AIS. This boundary excludes Ankyrin G, which instead clusters in the most proximal part of the axon close to the cell body, where the AIS will form (Galiano et al., 2012). Ankyrin G is required for AIS formation and maintenance, and its loss causes the axon to start forming protrusions resembling dendritic spines (Hedstrom et al., 2008). Microtubules also play an important role at the AIS, as recent evidence suggests that Tau is retained in the axon through a microtubule-based diffusion barrier independently of the F-actin based filter (X. Li et al., 2011). The AIS is important in the formation of a plasma membrane barrier between the axonal and somatodendritic domains and its disruption affects both neuronal polarity and function because it is critical for clustering of voltage-dependent sodium channels and action potential initiation (Rasband, 2010).One of the critical cellular mechanisms underlying neuronal polarization is the polarized transport of various cargoes in axons and dendrites. Transport of proteins and various organelles is performed by the microtubule-dependent motor proteins kinesin and dynein (Hirokawa et al., 2010). Studies from many laboratories have demonstrated that kinesin motors can carry cargo to both the axonal and dendritic compartments (Burack et al., 2000; Nakata and Hirokawa, 2003). The mechanism for how selection occurs is not completely understood, but it probably incorporates both the affinity of the kinesin head for microtubules and the cargo bound to the motor protein (Nakata and Hirokawa, 2003; Song et al., 2009; Jenkins et al., 2012). In the axon, dynein works to bring cargo and retrograde signals back to the cell body, whereas in the dendrites it is responsible for much of the transport from the soma into the dendrites (Zheng et al., 2008; Kapitein et al., 2010; Harrington and Ginty, 2013). Additionally, the F-actin–dependent myosin motors can affect the polarized transport of cargos by using the F-actin–based cytoplasmic filter at the AIS to deny or facilitate entry of vesicles into the axon. Loss of the actin filter or myosin Va activity (a plus end–directed motor) allows dendritic cargos into the axon, whereas myosin VI (a minus end–directed motor) both removes axonal proteins from the dendritic surface and funnels vesicles containing axonal proteins through the actin filter at the AIS (Lewis et al., 2009, 2011; Al-Bassam et al., 2012). A current working hypothesis is that vesicles composed of multiple cargoes contain binding sites for each of these motors, and that through unknown mechanisms the activity of the motors can be differentially regulated to control the directionality of transport. An interesting example of how the interplay between different motors and cargo adaptors could lead to polarized transport was recently described for mitochondria (van Spronsen et al., 2013).

Axon growth

Microtubule dynamics regulate axon growth.

After axon specification, axon growth constitutes the second step of axonal development and is tightly linked to axon guidance toward the proper postsynaptic targets. Axon elongation by the growth cone is the product of two opposite forces (Fig. 3): slow axonal transport and the polymerization of microtubules providing a pushing force from the axon shaft, and the retrograde flow of actin providing a pulling force at the front of the growth cone (Letourneau et al., 1987; Suter and Miller, 2011). Although coordinated actin and microtubule dynamics are required for the proper function of the growth cone, it was reported that agents disrupting the actin cytoskeleton have limited consequences on axon elongation and are rather involved in axon guidance in vitro (Marsh and Letourneau, 1984; Ruthel and Hollenbeck, 2000) and in vivo (Bentley and Toroian-Raymond, 1986). Furthermore, local disruption of actin organization in the growth cone of minor neurites allows them to turn into axons (Bradke and Dotti, 1999; Kunda et al., 2001), indicating that the dense actin network present at the periphery of an immature neuronal cell body and in immature neurites may prevent microtubule protrusion and elongation necessary for axon specification.Open in a separate windowFigure 3.Cytoskeletal changes during axon elongation and branching. Representation of axon elongation and collateral branch formation in a cultured neuron. Axon growth is a discontinuous process, and collateral branches often originate from sites where the growth cone paused (gray dotted line), after it has resumed its progression. Other modalities of branch formation can occur through the formation of filopodia and lamellipodia. Red box shows a magnification of the main growth cone. Microtubules from the axon shaft spread into the central (C) zone. Some microtubules pass through the transition (T) zone, containing F-actin arcs, to explore filopodia from the peripheral (P) zone. Upon the proper stimulation by extracellular guidance cues or growth-promoting cues, microtubules are stabilized and invade the P-zone where they provide a pushing force, which, combined with the traction force from the actin treadmilling, provides the force required for growth cone extension. Green box shows the cytoskeletal changes occurring during collateral branch formation in the axon. Filopodia and lamellipodia are primarily F-actin–based protrusions that get invaded by microtubules, then elongate upon microtubule bundling. At later developmental stages, axon branches are stabilized or retracted (blue box) by mechanisms relying on the access to extracellular neurotrophins and/or neuronal activity and synapse formation.Contrary to actin, microtubule polymerization is required to sustain axon elongation and branching (Letourneau et al., 1987; Baas and Ahmad, 1993). Axonal proteins and cytoskeletal elements are transported along the axon through slow axonal transport by molecular motors (Yabe et al., 1999; Xia et al., 2003). It is still controversial whether tubulin and other cytoskeletal elements are transported in the axon as monomers and/or as polymers (Roy et al., 2000; Terada et al., 2000; Wang et al., 2000; Brown, 2003; Terada, 2003). Nonetheless, disruption of the slow transport of tubulin impairs the pushing force resulting from microtubule polymerization and impairs axon elongation (Suter and Miller, 2011). Therefore, it is not surprising that axon growth is affected in vitro and in vivo by disruption of plus-end microtubule-binding proteins such as APC (Shi et al., 2004; Zhou et al., 2004; Yokota et al., 2009; Chen et al., 2011) or EB1 and EB3 (Zhou et al., 2004; Jiménez-Mateos et al., 2005; Geraldo et al., 2008), microtubule-associated proteins such as MAP1B (Black et al., 1994; Takei et al., 2000; Dajas-Bailador et al., 2012; Tortosa et al., 2013), or proteins regulating microtubule severing and reorganization such as KIF2A (Homma et al., 2003), katanin, and spastin (Karabay et al., 2004; Yu et al., 2005; Wood et al., 2006; Butler et al., 2010).The contribution of microtubule dynamics to axon growth is not limited to growth cone dynamics but also involves axonal transport and polymerization along the axon shaft. Moreover, changing the balance between microtubule stabilization and depolymerization by local application of microtubule stabilizing agents is sufficient to instruct one neurite to grow and adopt an axon fate (Witte et al., 2008). Many kinase pathways converge on Tau and other axonal MAPs to regulate their function by phosphorylation (Morris et al., 2011). Among them, the MARK kinases regulate microtubule stability and axonal transport through phosphorylation of Tau (Drewes et al., 1997; Mandelkow et al., 2004). Interestingly, MARK-related kinases SAD-A/B control axon specification in part through phosphorylation of Tau (Barnes et al., 2007) and have very recently been linked to the growth and branching of the axons of sensory neurons (Lilley et al., 2013). Our work recently demonstrated that another family member related to MARKs and SAD kinases, called NUAK1, controls axon branching of mouse cortical neurons through the regulation of presynaptic mitochondria capture (Courchet et al., 2013). To what extent the regulation of Tau and other MAPs by the MARKs, SADs, and NUAK1 kinases contributes to axon elongation remains to be explored.

Where does axon elongation take place?

Growth cone progression and guidance constitute the main driver of axonal growth during development, but this process is unlikely to account for the totality of axon elongation. This is especially true after the axon has reached its final target but the axon shaft keeps growing in proportion to the rest of the body. One mechanism that may contribute to this “interstitial” form of axon elongation during brain/body size increase (see Fig. 1 for an example during postnatal cortex growth) is axon stretching, a process that can induce axon elongation in vitro (Smith et al., 2001; Pfister et al., 2004; Loverde et al., 2011) and in vivo (Abe et al., 2004). Aside from extreme stretching performed through the application of external forces, stretching could also contribute to the natural elongation of the axon in response to the tension resulting from growth cone progression (Suter and Miller, 2011).Axon elongation requires the addition of new lipids, proteins, cytoskeleton elements, and organelles along the axon. Where does the synthesis and incorporation of new components take place? Polysaccharides and cholesterol synthesis mostly occur in the cell body; however, lipid synthesis and/or incorporation can occur along the axon as well (Posse De Chaves et al., 2000; Hayashi et al., 2004). The growth cone is also a site of endocytosis, membrane recycling, and exocytosis (Kamiguchi and Yoshihara, 2001; Winckler and Yap, 2011; Nakazawa et al., 2012). One of the best studied examples of endocytosis and its role in axon growth and neuronal survival is the retrograde trafficking of TrkA receptor by target-derived nerve growth factor (NGF) in the peripheral nervous system (Harrington and Ginty, 2013).

Axon branching and presynaptic differentiation

Where do axon branches form?

The last step of axon development is terminal branching, which allows a single axon to connect to a broad set of postsynaptic targets. Collateral branches are formed along the axon through two distinct mechanisms: the first modality of branching is through splitting or bifurcation of the growth cone, which is linked to axon guidance and to the capacity of one single neuron to reach two targets that are far apart with one single axon. Growth cone splitting is observed in vivo in various neuron types including cortical neurons (Sato et al., 1994; Bastmeyer and O’Leary, 1996; Dent et al., 1999; Tang and Kalil, 2005), sympathetic neurons (Letourneau et al., 1986), motorneurons (Matheson and Levine, 1999), sensory neurons (Ma and Tessier-Lavigne, 2007), or mushroom body neurons in Drosophila (Wang et al., 2002). The second modality, known as interstitial branching, occurs through the formation of collateral branches directly along the axon shaft. Contrary to growth cone splitting, interstitial branching serves the purpose of raising axon coverage locally in order to define their “presynaptic territory”, and may contribute to increased network connectivity (Portera-Cailliau et al., 2005). Although both mechanisms can occur simultaneously in the same neuron, the relative importance of splitting versus interstitial branching is highly divergent from one neuron type to the other (Bastmeyer and O’Leary, 1996; Matheson and Levine, 1999; Portera-Cailliau et al., 2005).In culture, the axon grows in a non-continuous fashion with frequent growth cone pausing. Time-lapse imaging of sensorimotor neurons revealed that interstitial branching often occurs at the site where the growth cone paused, shortly after it has continued its course (Szebenyi et al., 1998). Accordingly, treatments with neurotrophins that slow the growth cone correlate with increased axon branching (Szebenyi et al., 1998). This suggests that growth cone pausing leaves a “mark” along the axon shaft that might predetermine future sites of branching (Kalil et al., 2000). However, local applications of neurotrophins shows that aside from growth cone pause sites the axon shaft remains competent to form collateral branches upon stimulation by extracellular factors (Gallo and Letourneau, 1998; Szebenyi et al., 2001), through the formation of filopodia or lamellipodia. Similar observations in vivo revealed that cortical axons are highly dynamic during development and form multiple filopodia that are the origin of collateral branches (Bastmeyer and O’Leary, 1996). Lamellipodia can be observed as motile, F-actin–dependent “waves” along the axon in vitro (Ruthel and Banker, 1998) and in vivo (Flynn et al., 2009). Moreover, disruption of microtubule organization impairs lamellipodia formation along the axon and is correlated with decreased axon branching (Dent and Kalil, 2001; Tint et al., 2009).

Cytoskeleton dynamics and axon branch formation.

Regardless of what type of protrusion gives rise to a branch, cytoskeletal reorganization in the nascent branch generally follows a similar sequence (Fig. 3): initially F-actin filament reorganization gives rise to a protrusion (filopodia, lamellipodia), followed by microtubule invasion of this otherwise transient structure to consolidate it, before the mature branch starts elongating through microtubule bundling (Gallo, 2011). Actin filaments accumulate along the axon and form “patches” that serve as nucleators for axon protrusions such as filopodia and lamellipodia (Korobova and Svitkina, 2008; Mingorance-Le Meur and O’Connor, 2009; Ketschek and Gallo, 2010). The mRNA for β-actin and regulators of actin polymerization such as Wave1 or Cortactin accumulate along the axons of sensory neurons and form hot-spots of local translation that are associated to NGF-dependent branching (Spillane et al., 2012; Donnelly et al., 2013). Subsequently, microtubules in the axon shaft undergo fragmentation at branch points as a prelude to branch invasion by microtubules (Yu et al., 1994, 2008; Gallo and Letourneau, 1998; Dent et al., 1999; Hu et al., 2012), a process that may disrupt transport locally to help trap molecules and organelles at branch points. Moreover, severed microtubules are transported into branches, a process required for branch stabilization (Gallo and Letourneau, 1999; Ahmad et al., 2006; Qiang et al., 2010; Hu et al., 2012). Interestingly, it is clear that, just like growth cone–mediated axon elongation, F-actin and microtubule reorganization events are interconnected to sustain axon branching (Dent and Kalil, 2001). As an example, microtubule-severing enzymes can also contribute to actin nucleation and filopodia formation (Hu et al., 2012).

Is axon branching linked to axon elongation?

Like in the growth cone, cytoskeleton reorganization constitutes the backbone of branch formation. It is therefore not surprising that many manipulations of the cytoskeleton affect both axon elongation and branch formation (Homma et al., 2003; Chen et al., 2011). Moreover, conditions that primarily disrupt axon elongation could secondarily disrupt branching by impairing the ability of the nascent branch to grow. However, axon elongation and axon branching can be considered as two separate phenomena and can be operationally separated because conditions disrupting one do not systematically affect the other. As an example, the microtubule-severing proteins katanin and spastin have differential consequences on axon elongation (primarily dependent upon katanin function) and branching (mostly spastin mediated; Qiang et al., 2010), taxol treatment (which stabilizes microtubules) affects axon elongation but not branching (Gallo and Letourneau, 1999), and disruption of TrkA endocytosis by knock-down of Unc51-like kinase (ULK1/2) proteins has opposite effects on axon elongation and branching (Zhou et al., 2007). In vivo, superficial layer cortical neurons initially go through a phase of elongation through the corpus callosum without branching (see Fig. 1), then stop elongating and form collateral branches in the contralateral cortex (Mizuno et al., 2007; Wang et al., 2007). It is conceivable that even before myelination, axons are actively prevented from branching at places and stages when they elongate (for example in the white matter of the neocortex) where they tend to be highly fasciculated. The identities of the molecules that inhibit interstitial branching along the axon shaft are currently unknown.

Regulation of axon branching by activity.

Immature neurons display spontaneous activity in the form of calcium waves (Gu et al., 1994; Gomez and Spitzer, 1999; Gomez et al., 2001) and spontaneous vesicular release long before they have completed axon development, which suggested a role for early neuronal activity in axon development and guidance (Catalano and Shatz, 1998). Cell-autonomous silencing of neurons in vivo by transfection of the hyperpolarizing inward-rectifying potassium channel Kir2.1 in olfactory neurons (Yu et al., 2004), in RGCs (Hua et al., 2005) or in cortical pyramidal neurons (Mizuno et al., 2007; Wang et al., 2007), or in vitro through infusion of tetrodotoxin (which blocks action potentials generation) in co-cultures of thalamo-cortical projecting neurons (Uesaka et al., 2007) results in a decrease in terminal axon branching, indicating that synaptic activity is required for axons to fully develop their branching pattern. Moreover, inhibition of synaptic release by expression of tetanus toxin light chain (TeTN-LC; Wang et al., 2007) also abolished terminal axon branching, suggesting that the formation of functional presynaptic release sites is required cell autonomously to control terminal axon branching. However, one potential limitation of the experiments involving TeTN-LC is that it blocks most VAMP-mediated vesicular release (with the exception of VAMP7, also called tetanus toxin–independent VAMP, or TI-VAMP). Therefore TeTN-LC action may not be limited to blocking synaptic vesicle release, but could also inhibit peptide release through vesicles containing neurotrophins for example, or other important trophic factors required for axon branching. More recent experiments through silencing of postsynaptic targets revealed that branching of callosal or thalamocortical axons is also dependent upon the activity of the postsynaptic targets (Mizuno et al., 2010; Yamada et al., 2010), albeit activity of the presynaptic neuron is required earlier during the branching process than activity of the postsynaptic targets (Mizuno et al., 2010). Activity is also required in some neurons at the phase of axon elongation through a feedback loop involving the activity-dependent up-regulation of guidance molecules (Mire et al., 2012).How much does spontaneous or evoked neuronal activity contribute to branching? Reduction of neuronal activity through hyperpolarization induced by overexpression of Kir2.1 significantly reduces axon branching without completely eliminating it (Hua et al., 2005; Mizuno et al., 2007; Wang et al., 2007). Activity seems to serve as a competitive regulator of axon branching with regard to its neighbors because silencing of neighboring axons restores normal branching (Hua et al., 2005). Interestingly, neuronal activity induces neurotrophin expression locally, suggesting that activity can contribute to branching partly through activation of activity-independent branching mechanisms (Calinescu et al., 2011).Neuronal activity can regulate branching through modification of the actin cytoskeleton via RhoA activation (Ohnami et al., 2008), and mRNA accumulates at presynaptic sites, indicating a correlation between local translation and synaptic activity (Lyles et al., 2006; Taylor et al., 2013). Neuronal activity is associated with changes in intracellular Ca2+ signaling, which has been shown to play a deterministic function in axon growth (Gomez and Spitzer, 1999). Calcium signaling activates the Ca2+/calmodulin-dependent kinases (CAMKs) that are known to regulate axon branching in vitro (Wayman et al., 2004; Ageta-Ishihara et al., 2009) and in vivo (Ageta-Ishihara et al., 2009).

Stabilization and refinement of the axonal arborization.

Axon branches are often formed in excess during development, then later refined to select for specific neural circuits (Luo and O’Leary, 2005). Long-range axon branch retraction has long been observed in layer V cortical neurons that initially project to the midbrain, hindbrain, and spinal cord (O’Leary and Terashima, 1988; Bastmeyer and O’Leary, 1996). At later stages, pyramidal neurons from the primary visual cortex will retract their spinal projection through axon pruning, whereas pyramidal neurons from the primary motor cortex will stabilize this projection but retract their axonal branches growing toward visual targets such as the superior colliculus. The molecular mechanisms controlling this area-specific pattern of axon branch pruning are still poorly understood, but seem to involve extracellular cues such as semaphorins and Rac1-dependent signaling (Bagri et al., 2003; Low et al., 2008; Riccomagno et al., 2012). Another example is the well-characterized refinement of retino-geniculate axons during the selective elimination of binocular input of RGC axon synapses onto relay neurons in the dorsal lateral geniculate nucleus (Muir-Robinson et al., 2002). Interestingly, some axons use caspase-dependent pathways locally to induce the selective retraction of axon branches during the process of pruning (Nikolaev et al., 2009; Simon et al., 2012).Circuit refinement and selective branch retraction can be observed in vivo at the level of the neuromuscular junction where individual branches of motor axons are eliminated asynchronously (Keller-Peck et al., 2001). In the developing CNS, neurotrophin-induced branch retraction can also be observed in a context of competition between neighboring axons (Singh et al., 2008). One other way of stabilizing axon branches is through the formation of synapses with postsynaptic targets. In the visual system, the initial axon arbor is refined to establish ocular dominance through activity-dependent retraction of less active branches (Ruthazer et al., 2003). Time-lapse imaging of RGC axons in zebrafish or in Xenopus tadpole revealed that the formation of presynaptic sites occurs concomitantly to axon branching, and branches that form presynaptic structures are less likely to retract (Meyer and Smith, 2006; Ruthazer et al., 2006). The stabilization of axon branches through formation of synaptic contacts parallels with the stabilization of dendritic branches through synapse formation and stabilization (Niell et al., 2004; J. Li et al., 2011). The role of presynaptic bouton formation goes beyond the stabilization of axonal branches because in vivo, new axon branches can emerge from existing presynaptic terminals (Alsina et al., 2001; Javaherian and Cline, 2005; Panzer et al., 2006).In conclusion, axon growth and branching can be regulated by both activity-dependent and activity-independent mechanisms during development. However, for mammalian CNS axons, much more work is needed to define (1) the precise molecular mechanisms underlying axon branching; (2) the cellular and molecular mechanisms regulating the key transition between axon growth and branching when axons start forming presynaptic contacts with their postsynaptic partners; and (3) the mechanisms regulating axon pruning during synapse elimination.  相似文献   

5.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

6.
7.
8.
9.
Volatile methyl esters are common constituents of plant volatiles with important functions in plant defense. To study the biosynthesis of these compounds, especially methyl anthranilate and methyl salicylate, we identified a group of methyltransferases that are members of the SABATH enzyme family in maize (Zea mays). In vitro biochemical characterization after bacterial expression revealed three S-adenosyl-l-methionine-dependent methyltransferases with high specificity for anthranilic acid as a substrate. Of these three proteins, Anthranilic Acid Methyltransferase1 (AAMT1) appears to be responsible for most of the S-adenosyl-l-methionine-dependent methyltransferase activity and methyl anthranilate formation observed in maize after herbivore damage. The enzymes may also be involved in the formation of low amounts of methyl salicylate, which are emitted from herbivore-damaged maize. Homology-based structural modeling combined with site-directed mutagenesis identified two amino acid residues, designated tyrosine-246 and glutamine-167 in AAMT1, which are responsible for the high specificity of AAMTs toward anthranilic acid. These residues are conserved in each of the three main clades of the SABATH family, indicating that the carboxyl methyltransferases are functionally separated by these clades. In maize, this gene family has diversified especially toward benzenoid carboxyl methyltransferases that accept anthranilic acid and benzoic acid.Volatile compounds have important roles in the reproduction and defense of plants. Volatiles can attract pollinators and seed dispersers (Dobson and Bergström, 2000; Knudsen et al., 2006) or function as indirect defense compounds that attract natural enemies of herbivores (Dicke, 1994; Degenhardt et al., 2003; Howe and Jander, 2008). A well-studied example for the role of volatiles in plant defense is the tritrophic interaction between maize (Zea mays) plants, their lepidopteran herbivores, and parasitoid wasps of the herbivores. After damage by larvae of Spodoptera species, maize releases a complex volatile blend containing different classes of natural products (Turlings et al., 1990; Turlings and Benrey, 1998a). This volatile blend can be used as a cue by parasitic wasps to find hosts for oviposition (Turlings et al., 1990, 2005). After parasitization, lepidopteran larvae feed less and die upon emergence of the adult wasp, resulting in a considerable reduction in damage to the plant (Hoballah et al., 2002, 2004). The composition of the maize volatile blend is complex, consisting of terpenoids and products of the lipoxygenase pathway, along with three aromatic compounds: indole, methyl anthranilate, and methyl salicylate (Turlings et al., 1990; Degen et al., 2004; Köllner et al., 2004a). In the last decade, several studies have addressed the biosynthesis of terpenoids (Shen et al., 2000; Schnee et al., 2002, 2006; Köllner et al., 2004b, 2008a, 2008b) and indole (Frey et al., 2000, 2004) in maize. The formation of methyl anthranilate and methyl salicylate, however, has not been elucidated.Methyl anthranilate and methyl salicylate are carboxyl methyl esters of anthranilic acid, an intermediate of Trp biosynthesis, and the plant hormone salicylic acid, respectively. Our understanding of methyl anthranilate biosynthesis in plants is very limited. The only enzyme that has been described to be involved in methyl anthranilate synthesis is the anthraniloyl-CoA:methanol acyltransferase in Washington Concord grape (Vitis vinifera; Wang and De Luca, 2005). In contrast, the biosynthesis of methyl salicylate has been well studied in several plant species, such as Clarkia brewerii (Ross et al., 1999), Arabidopsis (Arabidopsis thaliana; Chen et al., 2003), and rice (Oryza sativa; Xu et al., 2006; Koo et al., 2007; Zhao et al., 2010). In all these species, methyl salicylate is synthesized by the action of S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase (SAMT). The apparent homology of SAMTs from different plant species suggests that methyl salicylate formation in maize, a species closely related to rice, is also catalyzed by an SAMT. SAMT enzymes are considered part of a larger family of methyltransferases called SABATH methyltransferases (D''Auria et al., 2003). The SABATH family also includes methyltransferases producing other methyl esters such as methyl benzoate, methyl jasmonate, and methyl indole-3-acetate (Seo et al., 2001; Effmert et al., 2005; Qin et al., 2005; Song et al., 2005; Zhao et al., 2007). An activity forming methyl anthranilate has not been described in the SABATH family, despite the striking structural similarity between methyl anthranilate and methyl salicylate or methyl benzoate. Two different classes of enzymes, methanol acyl transferases and methyltransferases, therefore, might be responsible for methyl anthranilate biosynthesis in maize (Fig. 1). Some of the SABATH methyltransferases have been shown previously to have methyltransferase activity in vitro using anthranilic acid as substrate (Chen et al., 2003; Zhao et al., 2010), but the biological relevance of such activity is unknown.Open in a separate windowFigure 1.The biosynthesis of methyl anthranilate from anthranilic acid can proceed over two pathways. Pathway A has been documented in grape, while pathway B is demonstrated here. AMAT, Anthraniloyl-CoA:methanol acyltransferase; SAH, S-adenosyl-l-homocysteine.In our ongoing attempt to investigate the biosynthesis and function of maize volatiles, we have studied the biosynthesis of the aromatic methyl esters, methyl salicylate and methyl anthranilate, and their regulation by herbivory. Biochemical characterization of maize benzenoid carboxyl methyltransferases of the SABATH family led to the discovery of a group of anthranilic acid methyltransferases (AAMTs). Homology-based structural modeling combined with site-directed mutagenesis identified the residues critical for the binding of the anthranilic acid substrate. Such functionally important residues are responsible for the diversification and evolution of benzenoid carboxyl methyltransferases in plants.  相似文献   

10.
11.
12.
Growth of tissues is highly reproducible; yet, growth of individual cells in a tissue is highly variable, and neighboring cells can grow at different rates. We analyzed the growth of epidermal cell lineages in the Arabidopsis (Arabidopsis thaliana) sepal to determine how the growth curves of individual cell lineages relate to one another in a developing tissue. To identify underlying growth trends, we developed a continuous displacement field to predict spatially averaged growth rates. We showed that this displacement field accurately describes the growth of sepal cell lineages and reveals underlying trends within the variability of in vivo cellular growth. We found that the tissue, individual cell lineages, and cell walls all exhibit growth rates that are initially low, accelerate to a maximum, and decrease again. Accordingly, these growth curves can be represented by sigmoid functions. We examined the relationships among the cell lineage growth curves and surprisingly found that all lineages reach the same maximum growth rate relative to their size. However, the cell lineages are not synchronized; each cell lineage reaches this same maximum relative growth rate but at different times. The heterogeneity in observed growth results from shifting the same underlying sigmoid curve in time and scaling by size. Thus, despite the variability in growth observed in our study and others, individual cell lineages in the developing sepal follow similarly shaped growth curves.Cells undergo multiple rounds of growth and division to create reproducible tissues. In some plant tissues, such as expanding cotyledons, reproducibility can occur on a cellular level during specific intervals of development, where cotyledon cells exhibit uniform cellular growth (Zhang et al., 2011). However, several studies on cell division and growth in other developing plant tissues have demonstrated that plant cells exhibit considerable cell-to-cell variability during development (Meyer and Roeder, 2014). For example, in both the Arabidopsis (Arabidopsis thaliana) meristem and leaf epidermis, cells show spatiotemporal variation in individual cell growth rates (GRs; Asl et al., 2011; Elsner et al., 2012; Kierzkowski et al., 2012; Uyttewaal et al., 2012). Furthermore, cell divisions have been observed with marked randomness in their timing and orientation (Roeder et al., 2010; Besson and Dumais, 2011; Roeder, 2012). In this study, we identify a hidden, underlying pattern in the seemingly random GR (Box 1) of cells during the formation of sepals in Arabidopsis.Open in a separate windowBox 1.Definitions of GR terms. (For details on the calculations, see “Materials and Methods.”)Plant cell growth is defined as an increase in cell size due to an irreversible expansion of the cell wall. Neighboring cells physically accommodate one another during plant growth because their cell walls are glued together with a pectin-rich middle lamella, which prevents cell mobility. The cell wall is a thin, stiff layer composed of a polymer matrix including cellulose, hemicellulose, and pectin (Somerville et al., 2004; Cosgrove, 2005). Plant cells change their size and shape by modifying their turgor pressure and/or the mechanical properties of their walls, such as elasticity, plasticity, and extensibility. Growing plant cells exert forces on their neighbors through their walls, and cell wall stresses created by these forces feed back to alter the growth anisotropy (Hamant et al., 2008; Sampathkumar et al., 2014). Although these feedbacks can coordinate growth, they may also amplify differences in growth between neighboring cells (Uyttewaal et al., 2012).Two competing computational models have proposed explanations of the cellular heterogeneity observed in growing tissues by making different assumptions about how cells grow. In the first, it is assumed that relative growth rates (RGRs) of all cells are uniform in space and time, whereas variation in the timing of division causes the heterogeneity of cell sizes (Roeder et al., 2010). This model suggests that cell divisions cut the sepal into semiindependent cells, which grow uniformly within the expanding organ (Kaplan and Hagemann, 1991). The second model postulates the reverse process: timing of cell division is uniform, but cellular growth is variable and depends on the size of the cell (Asl et al., 2011). This model suggests that cells are autonomous. Currently, there is biological evidence for both models. Variability in cell division timing is observed in sepals and meristems, whereas variability in cellular GRs has been observed in leaves and meristem cells (Reddy et al., 2004; Roeder et al., 2010; Asl et al., 2011; Elsner et al., 2012; Kierzkowski et al., 2012; Uyttewaal et al., 2012). Thus, the debate on how the growth of individual cells within an organ relates to one another remains unresolved.The identification of underlying patterns in noisy cellular growth processes is challenging. Technical difficulties include the capability for cellular-resolution imaging of the tissue at sufficiently small time intervals. Previous studies (Zhang et al., 2011; Elsner et al., 2012; Kierzkowski et al., 2012) did not image and track individual cells, or they had a coarse time resolution, with 11- to 48-h intervals between images, which may have hidden important temporal dynamics. We studied growing cells in the Arabidopsis sepal, which allows for live imaging with cellular resolution at 6-h intervals (Roeder et al., 2010). The sepal is the leaf-like outermost floral organ of Arabidopsis (Fig. 1) with four sepals of stereotypical size produced per flower. Its accessibility for live imaging makes the sepal an excellent system for studying organogenesis (Roeder et al., 2010, 2011, 2012; Qu et al., 2014). Sepals exhibit high cellular variability in the timing of division and endoreduplication, an alternative cell cycle in which a cell replicates its DNA but fails to divide (Roeder et al., 2010). Furthermore, quantifying cell growth in sepals may shed light on growth mechanisms of other plant organs, such as leaves (Poethig and Sussex, 1985; Roeder et al., 2010).Open in a separate windowFigure 1.Diverse sizes of Arabidopsis sepal cells. A, Four sepals (s) are the outermost green leaf-like floral organs in Arabidopsis. B and C, Scanning electron micrographs of a mature Arabidopsis sepal show that the outer epidermal cells have a wide range of sizes. Asterisks mark some of the largest cells (giant cells) that can span 1/4 the length of the sepal. Scale = 100 µm.Another key challenge in analyzing cellular growth is the identification of trends in noisy data. Inaccuracies in data acquisition, such as segmentation errors, and noisy growth of individual cells can hide meaningful spatiotemporal trends in growth. GRs measured over longer time intervals will have reduced noise, but they may also obscure important temporal dynamics. Alternatively, previous studies have examined growth of the whole organ or its subregions to avoid cellular noise (De Veylder et al., 2001; Mündermann et al., 2005; Rolland-Lagan et al., 2005, 2014; Kuchen et al., 2012; Remmler and Rolland-Lagan, 2012). However, precise cellular patterns are not resolved. In our study, we use cellular resolution data to define spatially averaged kinematics while keeping the full temporal resolution to identify course-grained spatial trends in the dynamics of cellular growth (Box 1).We analyze the relationships among the growth of individual cell lineages in a developing Arabidopsis sepal by live imaging and computational analyses. We have developed continuous low-order displacement fields to represent the spatially averaged kinematics of the sepal (Box 1). We find that the growth of the tissue surface area, cell lineage area, and wall length follows S curves, suggesting that their GRs vary over time. Additionally, we find that there is a linear correlation between the maximum GR (i.e. size increase per hour) and the size of the cell. We furthermore find that each sepal cell lineage reaches the same maximum RGR (i.e. GR divided by size). However, each cell reaches the maximum RGR at a different time during its development, generating the observed heterogeneity. Thus, we find underlying similarities in the growth curves of sepal cells.  相似文献   

13.
14.
In angiosperms, pollen wall pattern formation is determined by primexine deposition on the microspores. Here, we show that AUXIN RESPONSE FACTOR17 (ARF17) is essential for primexine formation and pollen development in Arabidopsis (Arabidopsis thaliana). The arf17 mutant exhibited a male-sterile phenotype with normal vegetative growth. ARF17 was expressed in microsporocytes and microgametophytes from meiosis to the bicellular microspore stage. Transmission electron microscopy analysis showed that primexine was absent in the arf17 mutant, which leads to pollen wall-patterning defects and pollen degradation. Callose deposition was also significantly reduced in the arf17 mutant, and the expression of CALLOSE SYNTHASE5 (CalS5), the major gene for callose biosynthesis, was approximately 10% that of the wild type. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that ARF17 can directly bind to the CalS5 promoter. As indicated by the expression of DR5-driven green fluorescent protein, which is an synthetic auxin response reporter, auxin signaling appeared to be specifically impaired in arf17 anthers. Taken together, our results suggest that ARF17 is essential for pollen wall patterning in Arabidopsis by modulating primexine formation at least partially through direct regulation of CalS5 gene expression.In angiosperms, the pollen wall is the most complex plant cell wall. It consists of the inner wall, the intine, and the outer wall, the exine. The exine is further divided into sexine and nexine layers. The sculptured sexine includes three major parts: baculum, tectum, and tryphine (Heslop-Harrison, 1971; Piffanelli et al., 1998; Ariizumi and Toriyama, 2011; Fig. 1A). Production of a functional pollen wall requires the precise spatial and temporal cooperation of gametophytic and sporophytic tissues and metabolic events (Blackmore et al., 2007). The intine layer is controlled gametophytically, while the exine is regulated sporophytically. The sporophytic tapetum cells provide material for pollen wall formation, while primexine determines pollen wall patterning (Heslop-Harrison, 1968).Open in a separate windowFigure 1.Schematic representation of the pollen wall and primexine development. A, The innermost layer adjacent to the plasma membrane is the intine. The bacula (Ba), tectum (Te), and tryphine (T) make up the sexine layer. The nexine is located between the intine and the sexine layers. The exine includes the nexine and sexine layers. B, Primexine (Pr) appears between callose (Cl) and plasma membrane (Pm) at the early tetrad stage (left panel). Subsequently, the plasma membrane becomes undulated (middle panel) and sporopollenin deposits on the peak of the undulated plasma membrane to form bacula and tectum (right panel).After meiosis, four microspores were encased in callose to form a tetrad. Subsequently, the primexine develops between the callose layer and the microspore membrane (Fig. 1B), and the microspore plasma membrane becomes undulated (Fig. 1B; Fitzgerald and Knox, 1995; Southworth and Jernstedt, 1995). Sporopollenin precursors then accumulate on the peak of the undulated microspore membrane to form the bacula and tectum (Fig. 1B; Fitzgerald and Knox, 1995). After callose degradation, individual microspores are released from the tetrad, and the bacula and tectum continue to grow into exine with further sporopollenin deposition (Fitzgerald and Knox, 1995; Blackmore et al., 2007).The callose has been reported to affect primexine deposition and pollen wall pattern formation. The peripheral callose layer, secreted by the microsporocyte, acts as the mold for primexine (Waterkeyn and Bienfait, 1970; Heslop-Harrison, 1971). CALLOSE SYNTHASE5 (CalS5) is the major enzyme responsible for the biosynthesis of the callose peripheral of the tetrad (Dong et al., 2005; Nishikawa et al., 2005). Mutation of Cals5 and abnormal CalS5 pre-mRNA splicing resulted in defective peripheral callose deposition and primexine formation (Dong et al., 2005; Nishikawa et al., 2005; Huang et al., 2013). Besides CalS5, four membrane-associated proteins have also been reported to be involved in primexine formation: DEFECTIVE EXINE FORMATION1 (DEX1; Paxson-Sowders et al., 1997, 2001), NO EXINE FORMATION1 (NEF1; Ariizumi et al., 2004), RUPTURED POLLEN GRAIN1 (RPG1; Guan et al., 2008; Sun et al., 2013), and NO PRIMEXINE AND PLASMA MEMBRANE UNDULATION (NPU; Chang et al., 2012). Mutation of DEX1 results in delayed primexine formation (Paxson-Sowders et al., 2001). The primexine in nef1 is coarse compared with the wild type (Ariizumi et al., 2004). The loss-of-function rpg1 shows reduced primexine deposition (Guan et al., 2008; Sun et al., 2013), while the npu mutant does not deposit any primexine (Chang et al., 2012). Recently, it was reported that Arabidopsis (Arabidopsis thaliana) CYCLIN-DEPENDENT KINASE G1 (CDKG1) associates with the spliceosome to regulate the CalS5 pre-mRNA splicing for pollen wall formation (Huang et al., 2013). Clearly, disrupted primexine deposition leads to aberrant pollen wall patterning and ruptured pollen grains in these mutants.The plant hormone auxin has multiple roles in plant reproductive development (Aloni et al., 2006; Sundberg and Østergaard, 2009). Knocking out the two auxin biosynthesis genes, YUC2 and YUC6, caused an essentially sterile phenotype in Arabidopsis (Cheng et al., 2006). Auxin transport is essential for anther development; defects in auxin flow in anther filaments resulted in abnormal pollen mitosis and pollen development (Feng et al., 2006). Ding et al. (2012) showed that the endoplasmic reticulum-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Evidence for the localization, biosynthesis, and transport of auxin indicates that auxin regulates anther dehiscence, pollen maturation, and filament elongation during late anther development (Cecchetti et al., 2004, 2008). The role of auxin in pollen wall development has not been reported.The auxin signaling pathway requires the auxin response factor (ARF) family proteins (Quint and Gray, 2006; Guilfoyle and Hagen, 2007; Mockaitis and Estelle, 2008; Vanneste and Friml, 2009). ARF proteins can either activate or repress the expression of target genes by directly binding to auxin response elements (AuxRE; TGTCTC/GAGACA) in the promoters (Ulmasov et al., 1999; Tiwari et al., 2003). The Arabidopsis ARF family contains 23 members. A subgroup in the ARF family, ARF10, ARF16, and ARF17, are targets of miRNA160 (Okushima et al., 2005b; Wang et al., 2005). Plants expressing miR160-resistant ARF17 exhibited pleiotropic developmental defects, including abnormal stamen structure and reduced fertility (Mallory et al., 2005). This indicates a potential role for ARF17 in plant fertility, although the detailed function remains unknown. In addition, ARF17 was also proposed to negatively regulate adventitious root formation (Sorin et al., 2005; Gutierrez et al., 2009), although an ARF17 knockout mutant was not reported and its phenotype is unknown.In this work, we isolated and characterized a loss-of-function mutant of ARF17. Results from cytological observations suggest that ARF17 controls callose biosynthesis and primexine deposition. Consistent with this, the ARF17 protein is highly abundant in microsporocytes and tetrads. Furthermore, we demonstrate that the ARF17 protein is able to bind the promoter region of CalS5. Our results suggest that ARF17 regulates pollen wall pattern formation in Arabidopsis.  相似文献   

15.
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death'' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death'' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.Defining life and death is more problematic than one would guess. In 1838, the work of several scientists including Matthias Jakob Schleiden, Theodor Schwann and Rudolf Carl Virchow culminated in the so-called ‘cell theory'', postulating that: (1) all living organisms are composed of one or more cells; (2) the cell is the basic unit of life; and (3) all cells arise from pre-existing, living cells.1 Only a few decades later (in 1885), Walter Flemming described for the first time some of the morphologic features that have been largely (but often inappropriately) used to define apoptosis throughout the past four decades.2, 3, 4A corollary of the cell theory is that viruses do not constitute bona fide living organisms.5 However, the discovery that the giant Acanthamoeba polyphaga mimivirus can itself be infected by other viral species has casted doubts on this point.6, 7, 8 Thus, the features that underlie the distinction between a living and an inert entity remain a matter of debate. Along similar lines, defining the transition between an organism''s life and death is complex, even when the organism under consideration is the basic unit of life, a cell. From a conceptual standpoint, cell death can obviously be defined as the permanent degeneration of vital cellular functions. Pragmatically speaking, however, the precise boundary between a reversible alteration in homeostasis and an irreversible loss of cellular activities appears to be virtually impossible to identify. To circumvent this issue, the Nomenclature Committee on Cell Death (NCCD) previously proposed three criteria for the identification of dead cells: (1) the permanent loss of the barrier function of the plasma membrane; (2) the breakdown of cells into discrete fragments, which are commonly referred to as apoptotic bodies; or (3) the engulfment of cells by professional phagocytes or other cells endowed with phagocytic activity.9, 10, 11However, the fact that a cell is engulfed by another via phagocytosis does not imply that the cell-containing phagosome fuses with a lysosome and that the phagosomal cargo is degraded by lysosomal hydrolases.12, 13, 14 Indeed, it has been reported that engulfed cells can be released from phagosomes as they preserve their viability, at least under some circumstances.15 Thus, the NCCD recommends here to consider as dead only cells that either exhibit irreversible plasma membrane permeabilization or have undergone complete fragmentation. A compendium of techniques that can be used to quantify these two markers of end-stage cell death in vitro and in vivo goes beyond the scope of this review and can be found in several recent articles.16, 17, 18, 19, 20, 21, 22, 23, 24, 25Importantly, cell death instances can be operationally classified into two broad, mutually exclusive categories: ‘accidental'' and ‘regulated''. Accidental cell death (ACD) is caused by severe insults, including physical (e.g., elevated temperatures or high pressures), chemical (e.g., potent detergents or extreme variations in pH) and mechanical (e.g., shearing) stimuli, is virtually immediate and is insensitive to pharmacologic or genetic interventions of any kind. The NCCD thinks that this reflects the structural disassembly of cells exposed to very harsh physicochemical conditions, which does not involve a specific molecular machinery. Although ACD can occur in vivo, for instance as a result of burns or traumatic injuries, it cannot be prevented or modulated and hence does not constitute a direct target for therapeutic interventions.23, 26, 27, 28 Nonetheless, cells exposed to extreme physicochemical or mechanical insults die while releasing elevated amounts of damage-associated molecular patterns (DAMPs), that is, endogenous molecules with immunomodulatory (and sometimes cytotoxic) activity. Some DAMPs can indeed propagate an unwarranted cytotoxic response (directly or upon the involvement of innate immune effectors) that promotes the demise of local cells surviving the primary insult.16, 19, 29, 30, 31 Intercepting DAMPs or blocking DAMP-ignited signaling pathways may mediate beneficial effects in a wide array of diseases involving accidental (as well as regulated) instances of cell death.19, 32At odds with its accidental counterpart, regulated cell death (RCD) involves a genetically encoded molecular machinery.9, 33 Thus, the course of RCD can be altered by means of pharmacologic and/or genetic interventions targeting the key components of such a machinery. Moreover, RCD often occurs in a relatively delayed manner and is initiated in the context of adaptive responses that (unsuccessfully) attempt to restore cellular homeostasis.34, 35, 36, 37, 38 Depending on the initiating stimulus, such responses can preferentially involve an organelle, such as the reticular unfolded protein response, or operate at a cell-wide level, such as macroautophagy (hereafter referred to as autophagy).39, 40, 41, 42, 43, 44 Thus, while ACD is completely unpreventable, RCD can be modulated (at least to some extent, see below) not only by inhibiting the transduction of lethal signals but also by improving the capacity of cells to mount adaptive responses to stress.45, 46, 47, 48, 49, 50 Importantly, RCD occurs not only as a consequence of microenvironmental perturbations but also in the context of (post-)embryonic development, tissue homeostasis and immune responses.51, 52, 53, 54 Such completely physiologic instances of RCD are generally referred to as ‘programmed cell death'' (PCD) (Figure 1).9, 33Open in a separate windowFigure 1Types of cell death. Cells exposed to extreme physical, chemical or mechanical stimuli succumb in a completely uncontrollable manner, reflecting the immediate loss of structural integrity. We refer to such instances of cellular demise with the term ‘accidental cell death'' (ACD). Alternatively, cell death can be initiated by a genetically encoded machinery. The course of such ‘regulated cell death'' (RCD) variants can be influenced, at least to some extent, by specific pharmacologic or genetic interventions. The term ‘programmed cell death'' (PCD) is used to indicate RCD instances that occur as part of a developmental program or to preserve physiologic adult tissue homeostasisFor the purpose of this discussion, it is useful to keep in mind the distinction that is currently made between the initiation of RCD and its execution. The term execution is generally used to indicate the ensemble of biochemical processes that truly cause the cellular demise. Conversely, initiation is commonly used to refer to the signal transduction events that activate executioner mechanisms. Thus, the activation of caspase-8 (CASP8) in the course of FAS ligand (FASL)-triggered apoptosis is widely considered as an initiator mechanism, whereas the consequent activation of caspase-3 (CASP3) is categorized as an executioner mechanism (see below).51, 55, 56, 57Here, the NCCD formulates a set of recommendations to discriminate between essential and accessory aspects of RCD, that is, between those that etiologically mediate its occurrence and those that change its kinetics or morphologic and biochemical manifestations.  相似文献   

16.
17.
Malignant melanoma possesses one of the highest metastatic potentials among human cancers. Acquisition of invasive phenotypes is a prerequisite for melanoma metastases. Elucidation of the molecular mechanisms underlying melanoma invasion will greatly enhance the design of novel agents for melanoma therapeutic intervention. Here, we report that guanosine monophosphate synthase (GMPS), an enzyme required for the de novo biosynthesis of GMP, has a major role in invasion and tumorigenicity of cells derived from either BRAFV600E or NRASQ61R human metastatic melanomas. Moreover, GMPS levels are increased in metastatic human melanoma specimens compared with primary melanomas arguing that GMPS is an attractive candidate for anti-melanoma therapy. Accordingly, for the first time we demonstrate that angustmycin A, a nucleoside-analog inhibitor of GMPS produced by Streptomyces hygroscopius efficiently suppresses melanoma cell invasion in vitro and tumorigenicity in immunocompromised mice. Our data identify GMPS as a powerful driver of melanoma cell invasion and warrant further investigation of angustmycin A as a novel anti-melanoma agent.Malignant melanoma is one of the most aggressive types of human cancers. Its ability to metastasize in combination with resistance to conventional anticancer chemotherapy makes melanoma extremely difficult to cure, and the median survival of patients with metastatic melanoma is 8.5 months.1, 2, 3 A better understanding of the biology behind melanoma aggressiveness is imperative to facilitate the development of novel anti-melanoma strategies.Melanoma and other cancers cells have been shown to strongly rely on de novo nucleotide biosynthesis4, 5 and often overexpress several biosynthetic enzymes involved in these pathways.6, 7, 8, 9 Recently, we have identified a fundamental connection between melanoma invasion and biosynthesis of guanylates,8 suggesting that distortion of the guanylate metabolism facilitates melanoma progression.Guanosine monophosphate reductase (GMPR) reduces GMP to one of its precursors, inosine monophosphate (IMP), and depletes intracellular GTP pools (Figure 1a). We have recently demonstrated that GMPR suppresses melanoma cell invasion and growth of human melanoma cell xenografts. These findings tightly linked guanylate production to the invasive potential of melanoma cells.8Open in a separate windowFigure 1GMPS contributes to the invasive capability of melanoma cells. (a) Simplified schematic of the metabolic pathway for guanylates production. (b) SK-Mel-103 and SK-Mel-28 cells were transduced with a control vector or two independent shRNAs to GMPS and tested for invasion through Matrigel (left panel). Where indicated, cells were incubated with 100 μM guanosine for 24 h before the assay and guanosine supplementation was maintained throughout the experimental procedure. The data represent the average ± S.E.M. of at least two independent experiments. GMPS suppression was verified by immunoblotting (right panel). (c) Cells transduced as in (a) were plated on coverslips coated with FITC-conjugated gelatin. After 16 h cells were fixed with 4% PFA and stained for actin (rhodamine-conjugated phallodin) and nuclei (Hoechst). Where indicated, cells were incubated with 100 μM guanosine for 24 h before the assay and guanosine supplementation was maintained throughout the experimental procedure. At least 25 cells/sample were imaged to assess the number of cells with gelatin degradation. The data represent the average ± S.E.M. of two independent experiments. *P<0.05, **P<0.001 compared with control; #P<0.05, ##P<0.001 compared with untreated cells. Statistics performed with Student''s t-Test. See also Supplementary Figure S1Of the several enzymes involved in guanylate biosynthesis, inositol monophosphate dehydrogenases 1 and 2 (IMPDH-1, -2), functional antagonists of GMPR (Figure 1a), have been targeted clinically with several drugs including the most specific one, mycophenolic acid (MPA) and its salt, mycophenolate mofetil (MMF).10, 11, 12, 13 Nonetheless, prior studies demonstrated that MPA possesses poor anti-tumor activity,14, 15 and it is primarily used as an immunosuppressing agent in organ transplantation.10, 11, 12GMP synthase (GMPS) is the other functional antagonist of GMPR. GMPS catalyzes the amination of xanitol monophosphate (XMP) to GMP to promote GTP synthesis (Figure 1a).16, 17 Most of the studies on GMPS have been performed in bacteria, yeast, and insects, where GMPS has been shown to have a key role in sporulation, pathogenicity, and axon guidance, respectively.18, 19, 20 Mammalian GMPS has been the subject of several studies addressing its unconventional (GMP-unrelated) roles in the regulation of activity of ubiquitin-specific protease 7 (USP7).21, 22, 23, 24 However, because of the newly revealed importance of guanylate metabolism in control of melanoma cell invasion and tumorigenicity,8 GMPS emerges as an attractive target for anti-cancer therapy.In the late 1950s, a specific inhibitor of bacterial GMPS, angustmycin A (also known as decoyinine), has been isolated from Streptomyces hygroscopius as a potential antibiotic with sporulation-inducing activity in Bacillus subtilis.25, 26, 27, 28, 29 Its anti-tumor activity has never been experimentally explored. In the current study, we investigated the role of GMPS in regulation of melanoma invasion and tumorigenicity, and explored the possibility of targeting GMPS by angustmycin A as a novel anti-melanoma strategy.  相似文献   

18.
Metabolic syndrome is a condition that typically includes central obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension. Disruption of the hypothalamic–pituitary–adrenal axis, a regulator of corticosterone secretion, occurs in some cases of metabolic syndrome and obesity, and Cushing hypercortisolemia is associated with obesity and metabolic disorders. We therefore assessed anatomic and clinical pathology in C57BL/6NCrl mice to evaluate the effects of chronic corticosterone in the drinking water at doses of 25, 50, and 100 μg/mL for 25 d. Treated mice developed obesity, glucose intolerance, electrolyte aberrations, and dyslipidemia that were dose-dependent and most severe in the 100-μg/mL treatment group. To evaluate return to normal function, additional C57BL/6NCrl mice received corticosterone-free water for 2 wk after the 25-d treatment period. According to results of gross examination, mice appeared to recover within days of exogenous corticosterone withdrawal; however, adrenal gland vacuolation and protein, lipid, and electrolyte abnormalities persisted. Together, these findings support chronic corticosterone exposure through the drinking water as a potentially useful, noninvasive method to induce some features of metabolic syndrome.Obesity and associated metabolic dysfunctions are an increasing public health concern in modern Western society. In humans, obesity and metabolic syndrome heighten the risk of developing debilitating and costly illness including diabetes, cardiovascular disease, stroke, and some forms of cancer.2,20 Mounting evidence indicates that stress and associated hormones such as cortisol (corticosterone in rodents) contribute to the development of metabolic syndrome. Furthermore, regional glucocorticoid metabolism in adipocytes is proposed to be involved in the pathogenesis of metabolic syndrome.6,16,17,27,56 Cushing syndrome, iatrogenic hypercortisolemia, and metabolic syndrome share clinical and physiologic similarities, including central obesity, insulin resistance, glucose intolerance, dyslipidemia, and hypertension.1,2,31,35,41,46 How glucocorticoids contribute to the development of these problems remains unclear.Numerous clinical and experimental studies have linked stress, diet, and lifestyle choices to changes in risk factors associated with the development of metabolic disorders.1,3,7,10,21,33,36,42,55 How corticosterone influences this risk remains unclear. Although corticosterone has beneficial short-term effects, long-term corticosterone exposure can result in damage to the physiologic systems it protects acutely.27 Disruption of this physiologic signal occurs in numerous disparate disorders, ranging from depression to Cushing syndrome.16,22,36,54 Therefore, understanding the effects of chronic high corticosterone on metabolism and physiology is of key importance.To clarify how chronic treatment with corticosterone alters the physiology of an organism, we treated adrenally intact adult male mice with corticosterone in drinking water for 4 wk. Furthermore, we examined the return of physiology 2 wk after withdrawal of chronic corticosterone administration. We used this approach as a rapid (3- to 4-wk), noninvasive method of altering plasma corticosterone levels that enabled us to retain some integrity in the diurnal rhythm present in normal animals.We previously characterized the gross metabolic consequences of exogenous noninvasive corticosterone delivery in the drinking water.20,28 In those studies, we found that high doses of corticosterone (100 μg/mL) resulted in rapid and dramatic hyperphagia; weight gain; increased adiposity; elevated plasma corticosterone, leptin, insulin, and triglyceride levels; and decreased homecage locomotion.20 Moreover, several studies have shown that a lower dose of corticosterone (25 μg/mL) resulted in an intermediate phenotype in some of these measures but had no effect on others.12,14,20,23,28,38,42,47 As such, the high corticosterone dose results in a phenotype that satisfies most of the criteria for metabolic syndrome as defined by the National Heart, Lung, and Blood Institute and the American Heart Association.15 However, little information is available on the resulting histologic, hematologic, and serum chemical profiles associated with this treatment. We sought to more fully characterize this model to support selection of the model that most accurately reflects the human disease conditions under study. In-depth characterization of the model also provides more precise measurements of response to therapies intended to ameliorate the effects of the treatment.The current study provides a detailed examination of the physiologic effect of 3 dosages of corticosterone—low (25 μg/mL), intermediate (50 μg/mL), and high (100 μg/mL) doses—in drinking water. The goal was to extend the previous findings that established this regimen as a model of metabolic syndrome by exploring the detailed physiologic changes associated with this model and to assess whether and how treated mice recover after withdrawal of the corticosterone treatment. We propose that the physiologic changes observed in the mice treated with high-dose corticosterone approximate changes observed in human patients with metabolic syndrome and that these mice potentially serve as a model for hypercortisolemia and associated obesity. In addition, we hypothesized that 2 wk of recovery from corticosterone treatment would not completely resolve cellular and clinical pathologies characterized during treatment, given the numerous changes in physiology.  相似文献   

19.
20.
Epithelia are polarized layers of adherent cells that are the building blocks for organ and appendage structures throughout animals. To preserve tissue architecture and barrier function during both homeostasis and rapid growth, individual epithelial cells divide in a highly constrained manner. Building on decades of research focused on single cells, recent work is probing the mechanisms by which the dynamic process of mitosis is reconciled with the global maintenance of epithelial order during development. These studies reveal how symmetrically dividing cells both exploit and conform to tissue organization to orient their mitotic spindles during division and establish new adhesive junctions during cytokinesis.The association of large numbers of cells in tightly organized epithelial layers is a unique and defining feature of Metazoa. Although classical studies of development once labeled distinct embryonic regions as territories, fields, layers, placodes, and primordia, we now know many of these structures to be primarily constructed from epithelial sheets. Epithelial structure and function are critically dependent on cell polarization, which is coupled to the targeted assembly of adhesive junctions along the apicolateral membranes of adjacent cells (Tepass et al., 2001; Cavey and Lecuit, 2009). In brief, the plasma membrane of epithelial cells is polarized into apical and basolateral domains, each enriched with distinct lipid and protein components (Fig. 1; Rodriguez-Boulan et al., 2005; St Johnston and Ahringer, 2010). At the molecular level, E-cadherins are the major class of adhesion proteins that establish cell–cell connections through homophilic interaction across cell membranes (Takeichi, 1991, 2011; Halbleib and Nelson, 2006; Harris and Tepass, 2010). Whereas E-cadherin is apically enriched in invertebrate epithelia, it is localized along the lateral domain of vertebrate epithelial cells. In both cases, E-cadherin interacts with cytoplasmic actin filaments via the catenin class of adaptor proteins, thus coupling intercellular adhesive contacts to the cytoskeleton (Cavey and Lecuit, 2009; Harris and Tepass, 2010; Gomez et al., 2011). Within this framework, the maintenance of both polarity and cell–cell adhesion are essential for epithelial barrier function and tissue architecture during growth and morphogenesis (Papusheva and Heisenberg, 2010; Guillot and Lecuit, 2013b).Open in a separate windowFigure 1.Architectural implications of orthogonal and planar spindle orientations during epithelial cell division. (A) Programmed orthogonal orientation of the mitotic spindle can promote epithelial stratification, although the remodeling of adhesion and polarity complexes during this process remains an important area for further study. (B) Planar spindle orientation is coordinated with the overall cell polarity machinery and thus facilitates conservation of monolayer organization during rapid cell proliferation.During development, epithelia expand by the combined effects of cell growth (increase in cell size) and cell division (increase in cell numbers). Division events are typically oriented either parallel or orthogonal to the plane of the layer and less frequently at oblique angles (Gillies and Cabernard, 2011). When cells divide orthogonally (perpendicular to the plane of the epithelium), the two daughters will be at least initially nonequivalent with respect to position within the cell layer (Fig. 1 A). Under normal conditions, such programmed orthogonal divisions can be used to effect asymmetric segregation of cell fates or to establish distinct cell types, such as in the developing cortex (Fietz et al., 2010; Hansen et al., 2010) or during morphogenesis of stratified epithelia (Lechler and Fuchs, 2005; Williams et al., 2011). Conversely, when cells divide parallel to the plane of the epithelium (planar orientation; Fig. 1 B), both daughter cells are equivalent with respect to mother cell polarity and tightly integrated in the growing monolayer (Morin and Bellaïche, 2011).During planar division, epithelial cells typically round up, constrict in the middle to form the cytokinetic furrow, and divide symmetrically with respect to the apicobasal axis to produce two equal daughter cells. These daughters construct new cell–cell junctions at their nascent interface, thus integrating into the monolayer (Fig. 2, A–G). Although the intricate relationship between cell polarity and cell division has been explored for many years in the context of asymmetric cell division (Rhyu and Knoblich, 1995; Siller and Doe, 2009; Williams and Fuchs, 2013), recent studies have also begun to explore how epithelia maintain their morphology, integrity, and barrier function during continuous rounds of planar cell division and junction assembly. In this review, we highlight recent findings that provide new insights into the problem of symmetric planar cell division in diverse polarized epithelia, with a focus on two crucial mitotic events: (1) the orientation of cell division and (2) the formation of new cell junctions.Open in a separate windowFigure 2.Progression of planar cell division in an epithelial monolayer. Apical cross section (xy, top row) and longitudinal (xz, bottom row) view of a dividing cell (red). (A) At the level of apical junctions, cells are packed in a polygonal cell arrangement during interphase. (B) In prophase, the dividing nucleus begins to translocate apically as the cell rounds up and maintains a thin basal projection enriched with nonmuscle myosin II and actin (light blue). Notably, this type of nuclear migration is typically observed in pseudostratified columnar epithelia and does not occur in cuboidal and squamous epithelial tissues. (C) Localized molecular landmarks (apical complexes marked as gray bars on cell sides) direct orientation of the mitotic spindle to the plane of the epithelium (arrows). (D) Within the plane of the cell layer, the spindle can be further oriented (arrows) in response to molecular cues, global tissue tension, and local cell geometry. (E and F) After chromosome segregation during anaphase, the cell constricts in the middle and cleaves orthogonal to the plane of the monolayer. (G) After cytokinesis, daughter nuclei move basally and daughter cells form new junctions at their nascent interface (white) while elongating along the apicobasal axis.

Mitotic spindle position and orientation in epithelial cells

Planar orientation of epithelial cell division requires coordinated interaction between the cell polarization machinery and the mitotic spindle itself (Morin and Bellaïche, 2011). In animal cells, the spindle is organized by two symmetrically positioned poles or centrosomes, which nucleate three forms of microtubules (Tanaka, 2010): kinetochore microtubules that attach to the chromosomes, polar microtubules that overlap in an antiparallel fashion over the midplane, and astral microtubules that extend to the cell cortex, which is the actin-rich layer beneath the cell membrane (Lancaster and Baum, 2014). Work in Drosophila melanogaster and vertebrates reveals that at least three factors influence the orientation of this spindle machinery with respect to polarized epithelial architecture: cytoskeletal forces, localized cortical cues, and tissue tension.

Cytoskeletal forces position mitotic nuclei near the apical cell membrane.

In columnar and pseudostratified epithelia where cells elongate along their apicobasal axes, mitotic events are typically restricted to the apical domain of the epithelium (corresponding to the apical membrane of each cell; Fig. 2, C–F). How does the mitotic nucleus achieve the correct apical position? In Drosophila wing discs and zebrafish neuroepithelia, mitotic nuclei and the bulk of the cell cytoplasm are driven apically by actomyosin-dependent cortical contractility at prophase entry (Norden et al., 2009; Leung et al., 2011; Meyer et al., 2011). These events are fundamentally similar to mitotic cell rounding in tissue culture cells (Kunda and Baum, 2009; Lancaster et al., 2013; Lancaster and Baum, 2014). In many epithelia, as the cell rounds up and the nucleus translocates apically, a thin actin-rich projection maintains contact with the basal lamina (Fig. 2, B and C). It remains poorly understood how this structure behaves during cleavage and whether this basal process plays any role in the correct reintegration of the postmitotic daughter cells into the monolayer. Although actomyosin may be the primary driver of apical rounding in many cases, evidence also supports a role for microtubule-based mechanisms in the positioning of premitotic nuclei. In chicken neural tube and mouse cerebral cortex, nuclei migrate apically on microtubules before actomyosin-dependent rounding (Spear and Erickson, 2012a). Centrosomes provide directionality to the microtubules on which the nucleus migrates and organize the spindle once the mitotic chromatin reaches the apical domain (Peyre et al., 2011; Spear and Erickson, 2012a; Nakajima et al., 2013). Collectively, current evidence suggests that both actomyosin- and microtubule-dependent forces conspire to effect mitotic nuclear translocation in a highly context- and species-specific manner. One possibility is that the varying physical dimensions of epithelial cells require varying mechanisms for apical nuclear translocation. For example, highly elongated radial glial cells require active transport of the nucleus on microtubules before mitotic rounding, whereas cortical actomyosin contractility may be sufficient in less elongated cells (Spear and Erickson, 2012b). A major outstanding problem is how cortical contractility triggers cell rounding that is polarized along the apicobasal axis of the cell. Whereas centrosomes function as an apical landmark for nuclei moving on microtubules, it remains unclear what provides the directionality for the basal-to-apical actomyosin contraction. One hypothesis is that certain proteins can restrict the localization of nonmuscle myosin II at the basal domain of epithelial cells. The microcephaly protein Asp interacts with myosin II and regulates its polarized localization along the apicobasal axis in the fly optic lobe neuroepithelium. In asp mutant flies, myosin II is enriched apically instead of basally. Many dividing nuclei fail to reach the apical domain and are thus broadly distributed along the apicobasal axis of the epithelium, leading to a disorganized tissue (Rujano et al., 2013). Interestingly, Asp also interacts with microtubules, associates with spindle poles, and is essential for positioning the spindle in fly and vertebrate epithelia (Saunders et al., 1997; do Carmo Avides and Glover, 1999; Wakefield et al., 2001; Fish et al., 2006). Elucidating the function of proteins such as Asp at the interface of microtubules and actomyosin will be essential to our understanding of how the cytoskeleton drives apical mitotic rounding.

Localized molecular landmarks direct planar spindle orientation.

In most animal cells, the mitotic spindle is anchored to the cell cortex by astral microtubules (Fig. 2, C–E; Théry and Bornens, 2006). Translocation of the dynein–dynactin motor toward the astral microtubule minus ends provides a pulling force on centrosomes and is essential for spindle orientation and pole separation during cell division (Dujardin and Vallee, 2002; Kotak et al., 2012). Molecular cues embedded in the cortex can thus determine spindle orientation by anchoring the dynein–dynactin complex in restricted domains. In cultured MDCK and chick neuroepithelia cells, the Gαi–LGN–nuclear mitotic apparatus (NuMA) complex serves this function (Busson et al., 1998; Hao et al., 2010; Zheng et al., 2010; Peyre et al., 2011). Knockdown or mislocalization of these factors leads to spindle orientation defects that ultimately lead to removal of cell progenitors from the monolayer (Peyre et al., 2011). LGN (Pins in Drosophila) localizes to the lateral cell cortex by binding to the membrane-bound Gαi and enforces spindle orientation by recruiting NuMA (Mud in Drosophila), which binds directly to the dynein–dynactin motor. In certain epithelia, including MDCK cells and Drosophila wing discs, LGN is excluded from the apical domain by atypical PKC (aPKC) phosphorylation, thus restricting it at the lateral cell cortex (Konno et al., 2008; Hao et al., 2010; Zheng et al., 2010; Guilgur et al., 2012). In chick neuroepithelia, however, LGN is restricted at the lateral cortex independently of aPKC, suggesting that other cues control its localization (Morin et al., 2007; Peyre et al., 2011). In the mouse embryonic neocortex, the actin–membrane linkers ERM (ezrin/radixin/moesin) promote the association of LGN with NuMA (Machicoane et al., 2014), indicating that organized cortical actin is critical for correct LGN localization.Cell–cell junctions have been implicated in planar cell division in mammalian epithelia, suggesting a possible direct link between the polarity apparatus and the spindle machinery (Reinsch and Karsenti, 1994; den Elzen et al., 2009). Interfering with E-cadherin function or reducing E-cadherin levels abolishes junctional localization of APC (adenomatous polyposis coli), a microtubule-interacting protein that is required for planar spindle orientation and chromosome alignment (Green et al., 2005; den Elzen et al., 2009). However, spindle orientation may not directly depend on E-cadherin or adherens junctions (AJs) in all cases. In Drosophila follicle cells and imaginal discs as well as Xenopus laevis embryonic epithelia, mitotic spindles exhibit planar orientation but do not align with the AJs (Woolner and Papalopulu, 2012; Bergstralh et al., 2013; Nakajima et al., 2013). Moreover, disruption of AJs in Drosophila follicle cells does not affect spindle position (Bergstralh et al., 2013).In Drosophila wing discs, the spindle poles localize in close proximity to septate junctions, which are positioned immediately basal to AJs (Nakajima et al., 2013). Septate junctions are enriched with many proteins, including the neoplastic tumor suppressors SCRIB (Scribbled) and DLG1 (Discs large 1; Bilder and Perrimon, 2000; Bilder et al., 2000). In asymmetrically dividing cells, such as Drosophila sensory organ precursors and neuroblasts, DLG1 interacts with LGN at the cortex and is required for proper spindle orientation (Bellaïche et al., 2001; Siegrist and Doe, 2005; Johnston et al., 2009). Recent findings indicate that DLG1 is also essential for planar spindle orientation in the symmetric division of epithelial cells. In wing discs, knockdown of scrib or dlg1 leads to randomized spindle orientations. scrib knockdown wing discs exhibit diffuse DLG1 localization but no obvious apicobasal polarity defect, suggesting that epithelial disorganization could be a consequence of aberrant spindle orientation (Nakajima et al., 2013). However, it is not clear whether the septate junctions themselves are important. In Drosophila follicle epithelial cells where septate junctions do not form until relatively late in development (Oshima and Fehon, 2011), DLG1 is localized at the lateral cell cortex and is essential for planar spindle orientation (Bergstralh et al., 2013). Interestingly, dlg1 mutant follicle cells display misoriented divisions yet normal epithelial polarity and tissue organization. In this case, planar spindle orientation appears to be independent of junctions per se but still depends on a DLG1–LGN–NuMA complex, similar to asymmetrically dividing cells (Bergstralh et al., 2013).

Global stress and local cell geometry influence mitotic spindle orientation within the plane of the epithelium.

During planar divisions, the mitotic spindle aligns to the plane of the epithelium (xz; Fig. 2 C) and also within the plane of the cell layer (xy; Fig. 2 D). Studies in gastrulating zebrafish embryos revealed a role for the Wnt–Frizzled–planar cell polarity signaling pathway in orienting cell divisions (Concha and Adams, 1998; Gong et al., 2004). Similarly, the atypical cadherins Fat and Dachsous are involved in orienting cell divisions in the Drosophila wing and in developing mouse kidneys (Baena-López et al., 2005; Saburi et al., 2008). Although both of these pathways have been reviewed elsewhere (Morin and Bellaïche, 2011), recent studies also point to at least two other mechanisms that may independently influence spindle orientation within the plane of the monolayer: (1) global tissue stress and (2) local epithelial cell geometry.Epithelial cell shape and spindle orientation are modulated by global stress that accumulates during tissue growth. In Drosophila wing discs, cells in the center of the wing blade primordium proliferate at a faster rate than in the periphery. Consequently, cells in the periphery are mechanically stretched, and cells in the center are compressed. As a result of stretching, peripheral cells localize myosin II at their cortex and align their mitotic spindle with the stretch axis (LeGoff et al., 2013; Mao et al., 2013). Similarly, epithelial cells of the enveloping cell layer in gastrulating zebrafish embryos elongate and orient their spindle along the direction of tension generated by spreading during epiboly (Campinho et al., 2013). It is unclear whether myosin II directly conveys cell tension to the mitotic apparatus, and it will be necessary to dissect whether cell elongation alone or additional mechanosensing pathways signal cell tension to the mitotic spindle. Keratinocytes from the mammalian epidermis reorient their mitotic spindle in response to mechanical stretch in a NuMA-dependent manner. The mitotic spindle aligns with the cortical NuMA-localized crescent upon stretch and fails to orient when NuMA levels are reduced (Seldin et al., 2013). In summary, global tension generated by growth and cell spreading impact division orientation, suggesting that shape changes in proximity to dividing cells may also lead to a similar effect.Although variations certainly exist, the apical surfaces of proliferating epithelia tend to feature a consistent percentage of hexagonal, pentagonal, heptagonal, and octagonal cell shapes (Gibson et al., 2006; Farhadifar et al., 2007; Aegerter-Wilmsen et al., 2010). In Drosophila imaginal discs, these local patterns of cell packing may systematically influence spindle orientation, as mitotic cells are biased toward cleaving their common interfaces with subhexagonal neighbors (less than six sides) and avoid cleaving their interfaces with superhexagonal neighbors (more than six sides; Gibson et al., 2011). Although the mechanisms underlying the effect of local cell geometry remain elusive, cell packing influences mitotic cell shape and the distribution of adhesive cues, both of which could, in turn, bias spindle orientation. Indeed, dividing cells maintain contacts with their neighbors, which can influence the cell cortex and direct spindle orientation (Goldstein, 1995; Wang et al., 1997). The distribution of adhesions between epithelial cells may also alter the position or action of cortical force generators that interact with spindle microtubules in the mitotic cell. In support of this idea, when single cells are placed on micropatterned substrates, they orient their spindle relative to the geometry of their adhesion pattern and not their cell shape (Théry et al., 2005, 2007). Alternatively, neighbors of different polygonal shapes could stretch the mitotic cell, thus imposing a bias on its long axis. Indeed, sea urchin embryos orient their spindles to divide their longest axis (Hertwig, 1884) and can even sense complex cell geometries to orient their spindles accordingly (Minc et al., 2011). Still, precisely how the interphase morphology of epithelial cells might impinge on mitotic spindle orientation remains an open question.

Genesis of nascent junctions during epithelial cell division

After spindle orientation, the essential processes of cytokinesis and abscission are driven by the assembly and contraction of an actomyosin ring positioned in the cleavage plane (Fededa and Gerlich, 2012). In epithelia, ring contraction accompanied by membrane invagination ultimately gives rise to a new junctional interface between nascent daughter cells. Precisely how this new interface forms remains poorly understood. Recent studies in Drosophila epithelia reveal that, during cytokinesis, (a) E-cadherin levels are reduced at the interface between the cleavage furrow of dividing cells and their neighbors (Fig. 3), and (b) neighbor tension and midbody position guide establishment of new AJs in context with local epithelial geometry (Fig. 4).Open in a separate windowFigure 3.Cytokinetic membrane dynamics in epithelial cells. (A) Cytokinesis of a dividing epithelial cell (yellow) presents several unique structural considerations not addressed by the analysis of single cells. Recent studies (Founounou et al., 2013; Guillot and Lecuit, 2013a; Herszterg et al., 2013, 2014) report a local reduction of E-cadherin levels in proximity to the contractile ring in the dividing cell and its neighbor (red). How cytokinesis is resolved from there may vary in a context-dependent manner. (B) In Drosophila embryos, ring contraction leads to E-cadherin disengagement, and a gap forms between the mitotic cell and its neighbor (Guillot and Lecuit, 2013a). (C) In the Drosophila pupal notum, the contractile ring pulls the neighbor cell plasma membrane into the cleavage furrow, perhaps enabled by uncoupling of the membrane and the cortex in the neighbor (Herszterg et al., 2013, 2014).Open in a separate windowFigure 4.New AJ formation in dividing epithelial cells. Apical cross section (xy, top row) and longitudinal (xz, bottom row) view of a dividing epithelial cell (red). (A) Opposing forces (black vertical arrows) develop between the contractile ring in the dividing cell and the two neighboring cells (orange) in proximity to the cleavage furrow. E-cadherin clusters are reduced at the furrow/neighbor interface. (B) Myosin II and tension build up in the neighboring cell, causing the nascent daughter cells to juxtapose their plasma membranes at the presumptive site of junction assembly (black horizontal arrows). (C) Arp2/3 and Rac1 drive actin polymerization at the daughter cell interface around the midbody, stabilizing the nascent junction as the neighboring cell membrane withdraws. (D) The new junction is complete and of suitable length in context with the local epithelial geometry.

Mitotic cells remodel their adhesion junctions during cytokinesis.

Two kinds of forces are at work during cytokinesis: an active force in the dividing cell caused by ring contraction and a reactive force in contacting neighbors caused by their resistance to pulling to maintain their shape (Fig. 3 and Fig. 4 A; Founounou et al., 2013; Guillot and Lecuit, 2013a; Herszterg et al., 2013). Recent results indicate that these opposing forces can lead to a transient and partial reduction of cell adhesion after mitotic exit. In Drosophila epithelia, E-cadherin levels are reduced at the interface between the cleavage furrow of the dividing cell and its neighbors (Fig. 3, B and C; Founounou et al., 2013; Guillot and Lecuit, 2013a; Herszterg et al., 2013; Morais-de-Sá and Sunkel, 2013). Specifically in embryonic epithelia, the local reduction of E-cadherin facilitates membrane separation, and a gap appears between the dividing cell and its neighbors (Fig. 3 B; Guillot and Lecuit, 2013a). In the dorsal thorax, in contrast, the neighbor cell plasma membrane detaches from the cortex and is drawn into the cleavage furrow (Fig. 3 C; Herszterg et al., 2013, 2014). What triggers E-cadherin modulation in cells after mitotic exit? The loss of overall cell polarity is one possible mechanism. During mitosis in Drosophila, follicular epithelial cells lose cortical enrichment of some apical polarity proteins (aPKC, Crumbs, and Bazooka/Par3; Bergstralh et al., 2013; Morais-de-Sá and Sunkel, 2013), and embryonic cells lose localization of lethal giant larvae, a basolateral cortical protein (Huang et al., 2009). Contrasting with these observations, however, MDCK cells and Drosophila embryonic and dorsal thorax epithelial cells appear to maintain apicobasal polarity as they divide (Reinsch and Karsenti, 1994; Founounou et al., 2013; Guillot and Lecuit, 2013a; Herszterg et al., 2013). Furthermore, E-cadherin reduction is limited to the furrow/neighbor interface and is not observed in other areas of cell contact. Therefore, an alternative mechanism that explains local E-cadherin modulation is mechanical tension that arises precisely at the area between the contractile ring and the neighboring cell membrane (Founounou et al., 2013; Guillot and Lecuit, 2013a).Does E-cadherin modulation serve a functional role in mitotic cells? In Drosophila embryonic and dorsal thorax epithelia, E-cadherin decrease leads to a local adhesion disengagement proposed to facilitate the formation of new AJs between daughter cells (Founounou et al., 2013; Guillot and Lecuit, 2013a). It has been previously reported that cells maintain their AJs throughout division. For example, intercellular junctions are maintained in dividing cells of human colonic mucosal crypt cells and basal keratinocytes (Baker and Garrod, 1993). Similarly, mitotic MDCK cultured cells maintain tight junctions apically and E-cadherin basolaterally (Reinsch and Karsenti, 1994). The E-cadherin loss in certain Drosophila epithelia may be either a tissue-specific phenomenon or a highly dynamic process only observable with the temporal resolution of live-cell imaging. Moreover, dividing cells in the Drosophila dorsal thorax show decreased levels of E-cadherin yet maintain their cohesiveness (Herszterg et al., 2013). Interestingly, E-cadherin is internalized in mitotic MDCK cells (Bauer et al., 1998). It will therefore be important to investigate whether loss of E-cadherin leads to adhesion disengagement in other epithelial tissues and whether tension alone or in combination with biochemical pathways is responsible for E-cadherin modulation.

Epithelial neighbors exert tension on daughter cell membranes to facilitate new AJ formation.

How new junctional contacts form during mitosis is a poorly understood problem at the heart of epithelial cell biology. In Drosophila, new membrane interfaces between nascent daughter cells initially show only a weak level of E-cadherin clusters (Guillot and Lecuit, 2013a; Herszterg et al., 2013). Subsequently, the daughter cells assemble their AJs de novo. How is the length of these new junctions determined with respect to cell geometry? Recent evidence indicates that AJ length is a function of local cell packing within the epithelium. In dividing cells of the Drosophila dorsal thorax, the contractile ring triggers tension and accumulation of myosin II in neighbors at the furrow/neighbor interface (Fig. 4 B; Founounou et al., 2013; Herszterg et al., 2013). Myosin II in the neighboring cells in turn contracts and creates tension at the furrowing membrane of the nascent daughter cells, keeping them tightly pressed against each other (Fig. 4, B and C). This local membrane juxtaposition facilitates AJ formation. To allow expansion of the daughter cell interface and maintain AJ length, branched actin polymerization via Rac1 and Arp2/3 is oriented to the midbody, which serves as a positional landmark for new AJs (Fig. 4 C; Herszterg et al., 2013). The midbody is a narrow intercellular bridge that remains after the contracted cytokinetic ring has driven membrane invagination, and it recruits the abscission factors that will eventually separate the daughter cells (Fededa and Gerlich, 2012). Interestingly, the midbody is positioned apically as a result of the presence of AJs. In Drosophila follicular epithelia, the midbody also provides cues for the formation of the apical daughter cell interface, suggesting that it plays a role in both AJ and epithelial cell polarity establishment and maintenance in dividing epithelial cells (Morais-de-Sá and Sunkel, 2013). Thus, examples from Drosophila epithelia show that cohesion between dividing cells and their neighbors together with the apically positioned midbody provides a spatial template and polarized positional cue for de novo AJ assembly (Herszterg et al., 2013; Morais-de-Sá and Sunkel, 2013). Further work on other epithelial tissues may provide alternative mechanisms of junction biogenesis.

Growth and order in the epithelium: Thinking outside the cell

During development, epithelial monolayers have the remarkable capacity to maintain specialized morphologies and barrier functions during rapid cell proliferation. Mitotic cells remain adherent to their neighbors throughout cell division. Cell cohesion enables local geometry and global tissue tension to instruct mitotic cells where to position their cleavage plane and how to assemble their junctions. However, local tension may also lead to a transient disengagement of dividing cells from their neighbors after mitotic exit. How is global and local tension conveyed to protein complexes in mitotic cells so that different outcomes take place? Moreover, it is unclear whether and how tissue tension instructs synchronously dividing epithelial cells how to divide and reestablish their junctions after division. Clearly, this is a fundamental problem for the maintenance of epithelial order and may be linked to the origin of epithelial cancers, in which cells undergo rapid proliferation but fail to remain integrated into the monolayer.The selected studies discussed here hint at the remarkable level of coordination that occurs during epithelial cell division, recasting mitosis as a truly multicellular process. Looking ahead, understanding the interface between cells, proteins, and mechanical forces that each operate on different scales will require creative multidisciplinary approaches in diverse organismal systems. Indeed, epithelial organization is widespread in nature and is encountered among even the most basal animals, including sponges and cnidarians as well as the fruiting body of the nonmetazoan social amoeba Dictyostelium discoideum (Wood, 1959; Ereskovsky et al., 2009; Houliston et al., 2010; Dickinson et al., 2011; Meyer et al., 2011). Combined, future interdisciplinary studies and a fresh look at diverse animal models should yield new insight into epithelial cell division for many years to come.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号