首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The present study describes the generation of a knock-in mouse model to address the role of type II procollagen (Col2a1) alternative splicing in skeletal development and maintenance. Alternative splicing of Col2a1 precursor mRNA is a developmentally-regulated event that only occurs in chondrogenic tissue. Normally, chondroprogenitor cells synthesize predominantly exon 2-containing mRNA isoforms (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. Another isoform, IIC, has also been identified that contains a truncated exon 2 and is not translated into protein. The biological significance of this IIA/IID to IIB splicing switch is not known. Utilizing a splice site targeting knock-in approach, a 4 nucleotide mutation was created to convert the 5' splice site of Col2a1 exon 2 from a weak, non-consensus sequence to a strong, consensus splice site. This resulted in apparent expression of only the IIA mRNA isoform, as confirmed in vitro by splicing of a type II procollagen mini-gene containing the 5' splice site mutation. To test the splice site targeting approach in vivo, homozygote mice engineered to retain IIA exon 2 (Col2a1(+ex2)) were generated. Chondrocytes from hindlimb epiphyseal cartilage of homozygote mice were shown to express only IIA mRNA and protein at all pre- and post-natal developmental stages analyzed (E12.5, E16.5, P0, P3, P7, P14, P28 and P70). As expected, type IIB procollagen was the major isoform produced in wild type cartilage at all post-natal time points. Col2a1(+ex2) homozygote mice are viable, appear healthy and display no overt phenotype to date. However, research is currently underway to investigate the biological consequence of persistent expression of the exon 2-encoded conserved cysteine-rich domain in post-natal skeletal tissues.  相似文献   

2.
3.
Type II collagen is the major collagenous component of the cartilage extracellular matrix; formation of a covalently cross-linked type II collagen network provides cartilage with important tensile properties. The Col2a1 gene is encoded by 54 exons, of which exon 2 is subject to alternative splicing, resulting in different isoforms named IIA, IIB, IIC and IID. The two major procollagen protein isoforms are type IIA and type IIB procollagen. Type IIA procollagen mRNA contains exon 2 and is generated predominantly by chondroprogenitor cells and other non-cartilaginous tissues. Differentiated chondrocytes generate type IIB procollagen, devoid of exon 2. Although type IIA procollagen is produced in certain non-collagenous tissues during development, this developmentally-regulated alternative splicing switch to type IIB procollagen is restricted to cartilage cells. Though a much studied and characterized molecule, the importance of the various type II collagen protein isoforms in cartilage development and homeostasis is still not completely understood. Effective antibodies against specific epitopes of these isoforms can be useful tools to decipher function. However, most type II collagen antibodies to date recognize either all isoforms or the IIA procollagen isoform. To specifically identify the murine type IIB procollagen, we have generated a rabbit antibody (termed IIBN) directed to a peptide sequence that spans the murine exon 1–3 peptide junction. Characterization of the affinity-purified antibody by western blotting of collagens extracted from wild type murine cartilage or cartilage from Col2a1+ ex2 knock-in mice (which generates predominantly the type IIA procollagen isoform) demonstrated that the IIBN antibody is specific to the type IIB procollagen isoform. IIBN antibody was also able to detect the native type IIB procollagen in the hypertrophic chondrocytes of the wild type growth plate, but not in those of the Col2a1+ ex2 homozygous knock-in mice, by both immunofluorescence and immunohistochemical studies. Thus the IIBN antibody will permit an in-depth characterization of the distribution of IIB procollagen isoform in mouse skeletal tissues. In addition, this antibody will be an important reagent for characterizing mutant type II collagen phenotypes and for monitoring type II procollagen processing and trafficking.  相似文献   

4.
5.
6.
7.
Endochondral ossification is an essential step for skeletal development, which requires chondrocyte differentiation in growth cartilage. The low-density lipoprotein receptor-related protein 4 (LRP4), a member of LDLR family, is an inhibitor for Wnt signaling, but its roles in chondrocyte differentiation remain to be investigated. Here we found by laser capture microdissection that LRP4 expression was induced during chondrocyte differentiation in growth plate. In order to address the roles, we overexpressed recombinant human LRP4 or knocked down endogenous LRP4 by lentivirus in mouse ATDC5 chondrocyte cells. We found that LRP4 induced gene expressions of extracellular matrix proteins of type II collagen (Col2a1), aggrecan (Acan), and type X collagen (Col10a1), as well as production of total proteoglycans in ATDC5 cells, whereas LRP4 knockdown had opposite effects. Interestingly, LRP4-knockdown reduced mRNA expression of Sox9, a master regulator for chondrogenesis, as well as Dkk1, an extracellular Wnt inhibitor. Analysis of Wnt signaling revealed that LRP4 blocked the Wnt/β-catenin signaling activity in ATDC5 cells. Finally, the reduction of these extracellular matrix productions by LRP4-knockdown was rescued by a β-catenin/TCF inhibitor, suggesting that LRP4 is an important regulator for extracellular matrix productions and chondrocyte differentiation by suppressing Wnt/β-catenin signaling.  相似文献   

8.
To understand the molecular mechanism underlying the diversity of mammalian skeletal muscle fibers, the elementary steps of the cross-bridge cycle were investigated in three fast-twitch fiber types from rabbit limb muscles. Skinned fibers were maximally Ca(2+)-activated at 20 degrees C and the effects of MgATP, phosphate (P, P(i)), and MgADP were studied on three exponential processes by sinusoidal analysis. The fiber types (IIA, IID, and IIB) were determined by analyzing the myosin heavy-chain isoforms after mechanical experiments using high-resolution SDS-PAGE. The results were consistent with the following cross-bridge scheme: where A is actin, M is myosin, D is MgADP, and S is MgATP. All states except for those in brackets are strongly bound states. All rate constants of elementary steps (k(2), 198-526 s(-1); k(-2), 51-328 s(-1); k(4), 13.6-143 s(-1); k(-4), 13.6-81 s(-1)) were progressively larger in the order of type IIA, type IID, and type IIB fibers. The rate constants of a transition from a weakly bound state to a strongly bound state (k(-2), k(4)) varied more among fiber types than their reversals (k(2), k(-4)). The equilibrium constants K(1) (MgATP affinity) and K(2) (=k(2)/k(-2), ATP isomerization) were progressively less in the order IIA, IID, and IIB. K(4) (=k(4)/k(-4), force generation) and K(5) (P(i) affinity) were larger in IIB than IIA and IID fibers. K(1) showed the largest variation indicating that the myosin head binds MgATP more tightly in the order IIA (8.7 mM(-1)), IID (4.9 mM(-1)), and IIB (0.84 mM(-1)). Similarly, the MgADP affinity (K(0)) was larger in type IID fibers than in type IIB fibers.  相似文献   

9.
Type II procollagen is expressed as two splice forms. One form, type IIB, is synthesized by chondrocytes and is the major extracellular matrix component of cartilage. The other form, type IIA, contains an additional 69 amino acid cysteine-rich domain in the NH2-propeptide and is synthesized by chondrogenic mesenchyme and perichondrium. We have hypothesized that the additional protein domain of type IIA procollagen plays a role in chondrogenesis. The present study was designed to determine the localization of the type IIA NH2-propeptide and its function during chondrogenesis. Immunofluorescence histochemistry using antibodies to three domains of the type IIA procollagen molecule was used to localize the NH2-propeptide, fibrillar domain, and COOH-propeptides of the type IIA procollagen molecule during chondrogenesis in a developing human long bone (stage XXI). Before chondrogenesis, type IIA procollagen was synthesized by chondroprogenitor cells and deposited in the extracellular matrix. Immunoelectron microscopy revealed type IIA procollagen fibrils labeled with antibodies to NH2-propeptide at approximately 70 nm interval suggesting that the NH2-propeptide remains attached to the collagen molecule in the extracellular matrix. As differentiation proceeds, the cells switch synthesis from type IIA to IIB procollagen, and the newly synthesized type IIB collagen displaces the type IIA procollagen into the interterritorial matrix. To initiate studies on the function of type IIA procollagen, binding was tested between recombinant NH2-propeptide and various growth factors known to be involved in chondrogenesis. A solid phase binding assay showed no reaction with bFGF or IGF-1, however, binding was observed with TGF-beta1 and BMP-2, both known to induce endochondral bone formation. BMP-2, but not IGF-1, coimmunoprecipitated with type IIA NH2-propeptide. Recombinant type IIA NH2-propeptide and type IIA procollagen from media coimmunoprecipitated with BMP-2 while recombinant type IIB NH2-propeptide and all other forms of type II procollagens and mature collagen did not react with BMP-2. Taken together, these results suggest that the NH2-propeptide of type IIA procollagen could function in the extracellular matrix distribution of bone morphogenetic proteins in chondrogenic tissue.  相似文献   

10.
11.
Alternative splicing of the type II procollagen gene (COL2A1) is developmentally regulated during chondrogenesis. Chondroprogenitor cells produce the type IIA procollagen isoform by splicing (including) exon 2 during pre-mRNA processing, whereas differentiated chondrocytes synthesize the type IIB procollagen isoform by exon 2 skipping (exclusion). Using a COL2A1 mini-gene and chondrocytes at various stages of differentiation, we identified a non-classical consensus splicing sequence in intron 2 adjacent to the 5' splice site, which is essential in regulating exon 2 splicing. RNA mapping confirmed this region contains secondary structure in the form of a stem-loop. Mutational analysis identified three cis elements within the conserved double-stranded stem region that are functional only in the context of the natural weak 5' splice site of exon 2; they are 1) a uridine-rich enhancer element in all cell types tested except differentiated chondrocytes; 2) an adenine-rich silencer element, and 3) an enhancer cis element functional in the context of secondary structure. This is the first report identifying key cis elements in the COL2A1 gene that modulate the cell type-specific alternative splicing switch of exon 2 during cartilage development.  相似文献   

12.
13.
14.
15.
16.
The influence of oxygen tension on the side population (SP) fraction sorted from ATDC5 chondroprogenitor cells was investigated. ATDC5 cells cultured in normoxia (20%) or hypoxia (1% oxygen) were compared. The SP fraction was significantly higher in the cells cultured in hypoxia. The gene expression of 3 ABC transporters, abcb1a/b (mdr1a/b) and abcg2 (bcrp1) was quantified by RT-PCR. SP cells were characterized by the higher expression of abcb1a. The expression levels of abcb1b and abcg2 were higher than abcb1a. However, there was no significant difference between SP and non-SP fractions in the expression of abcb1b and abcg2. The telomeric repeat amplification protocol assay showed that SP cells tended to show lower telomerase activity than non-SP cells. Chondrogenic properties of ATDC5 cells derived from SP or non-SP were assessed by micromass culture. There were not significant differences between SP and non-SP derived cells in Alcian blue staining and sox9, Aggrecan, Col2a1 and SZP mRNA expression. The results demonstrate that the SP fraction was stimulated by hypoxia and chondrogenic properties of SP and non-SP fraction of ATDC5 cells were similar.  相似文献   

17.
18.
5'-AMP-activated protein kinase (AMPK) signaling initiates adaptive changes in skeletal muscle fibers that restore homeostatic energy balance. The purpose of this investigation was to examine, in rats, the fiber-type protein expression patterns of the alpha-catalytic subunit isoforms in various skeletal muscles, and changes in their respective contents within the tibialis anterior (TA) after chronic low-frequency electrical stimulation (CLFS; 10 Hz, 10 h daily), applied for 4 +/- 1.2 or 25 +/- 4.8 days. Immunocytochemical staining of soleus (SOL) and medial gastrocnemius (MG) showed that 86 +/- 4.1 to 97 +/- 1.4% of type IIA fibers stained for both the alpha1- and alpha2-isoforms progressively decreased to 63 +/- 12.2% of type IID/X and 9 +/- 2.4% of IIB fibers. 39 +/- 11.4% of IID/X and 83 +/- 7.9% of IIB fibers expressed only the alpha2 isoform in the MG, much of which was localized within nuclei. alpha1 and alpha2 contents, assessed by immunoblot, were lowest in the white gastrocnemius [WG; 80% myosin heavy chain (MHC) IIb; 20% MHCIId/x]. Compared with the WG, alpha1 content was 1.6 +/- 0.08 (P < 0.001) and 1.8 +/- 0.04 (P < 0.0001)-fold greater in the red gastrocnemius (RG: 13%, MHCIIa) and SOL (21%, MHCIIa), respectively, and increased in proportion to MHCIIa content. Similarly, alpha2 content was 1.4 +/- 0.10 (P < 0.02) and 1.5 +/- 0.07 (P < 0.001)-fold greater in RG and SOL compared with WG. CLFS induced 1.43 +/- 0.13 (P < 0.007) and 1.33 +/- 0.08 (P < 0.009)-fold increases in the alpha1 and alpha2 contents of the TA and coincided with the transition of faster type IIB and IID/X fibers toward IIA fibers. These findings indicate that fiber types differ with regard to their capacity for AMPK signaling and that this potential is increased by CLFS.  相似文献   

19.
ObjectivesNSAIDs are used to relieve pain and decrease inflammation by inhibition of cyclooxygenase (COX)-catalyzed prostaglandin (PG) synthesis. PGs are fatty acid mediators involved in cartilage homeostasis, however the action of their synthesizing COX-enzymes in cartilage differentiation is not well understood. In this study we hypothesized that COX-1 and COX-2 have differential roles in chondrogenic differentiation.MethodsATDC5 cells were differentiated in the presence of COX-1 (SC-560, Mofezolac) or COX-2 (NS398, Celecoxib) specific inhibitors. Specificity of the NSAIDs and inhibition of specific prostaglandin levels were determined by EIA. Prostaglandins were added during the differentiation process. Chondrogenic outcome was determined by gene- and protein expression analyses.ResultsInhibition of COX-1 prevented Col2a1 and Col10a1 expression. Inhibition of COX-2 resulted in decreased Col10a1 expression, while Col2a1 remained unaffected. To explain this difference expression patterns of both COX-enzymes as well as specific prostaglandin concentrations were determined. Both COX-enzymes are upregulated during late chondrogenic differentiation, whereas only COX-2 is briefly expressed also early in differentiation. PGD2 and PGE2 followed the COX-2 expression pattern, whereas PGF and TXA2 levels remained low. Furthermore, COX inhibition resulted in decreased levels of all tested PGs, except for PGD2 and PGF in the COX-1 inhibited condition. Addition of PGE2 and PGF resulted in increased expression of chondrogenic markers, whereas TXA2 increased expression of hypertrophic markers.ConclusionsOur findings point towards a differential role for COX-enzymes and PG-production in chondrogenic differentiation of ATDC5 cells. Ongoing research is focusing on further elucidating the functional partition of cyclooxygenases and specific prostaglandin production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号