共查询到20条相似文献,搜索用时 35 毫秒
1.
Kati M. Tarkkonen Emeli M. Nilsson Tiina E. K?hk?nen Julien H. Dey Jari E. Heikkil? Johanna M. Tuomela Qing Liu Nancy E. Hynes Pirkko L. H?rk?nen 《PloS one》2012,7(11)
Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1–4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1–3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level. 相似文献
2.
Goo-Young Kim Ho-Young Kim Hyun-Taek Kim Jeong-Mi Moon Cheol-Hee Kim Seongman Kang Hyangshuk Rhim 《Molecular and cellular biology》2012,32(21):4482-4492
Accumulating evidence suggests that HtrA1 (high-temperature requirement A1) is involved in modulating crucial cellular processes and implicated in life-threatening diseases, such as cancer and neuropathological disorders; however, the exact functions of this protease in vivo remain unknown. Here, we show that loss of HtrA1 function increases fibroblast growth factor 8 (FGF8) mRNA levels and triggers activation of FGF signaling, resulting in dorsalization in zebrafish embryos. Notably, HtrA1 directly cleaves FGF8 in the extracellular region, and this cleavage results in decreased activation of FGF signaling, which is essential for many physiological processes. Therefore, HtrA1 is indispensable for dorsoventral patterning in early zebrafish embryogenesis and serves as a key upstream regulator of FGF signaling through the control of FGF levels. Furthermore, this study offers insight into new strategies to control human diseases associated with HtrA1 and FGF signaling. 相似文献
3.
成纤维细胞生长因子8 (fibroblast growth factor 8,FGF8)是成纤维细胞生长因子家族的成员之一,是一种组织发育过程中的重要分泌性调控信号分子,参与脊椎动物的多种组织器官的发生与发育.早期胚胎细胞通过表达FGF8在组织和器官发育、血管发生、血细胞生成、附肢发生和伤口愈合等方面发挥着重要作用.FGF8不但可以在细胞外通过胞内信号通路,而且也可以进入细胞内部发挥生物学功能.本文就FGF8在脊椎动物神经系统、内脏器官、肢体发育及不对称发育等组织、器官发育中的调控作用予以阐述. 相似文献
4.
成纤维细胞生长因子(FGF)有许多重要的生理功能,并与肿瘤的形成有关.为了弄清FGF与成纤维细胞生长因子受体(FGFR)相互作用的机制,人们对FGF和FGFR的各个结合结构域进行了深入、细致的研究,定位了aFGF、bFGF的肝素结合区、bFGF的受体结合区、FGF受体的肝素结合区、配体结合区和FGF受体相互结合区,提出了两个FGF与FGFR相互作用的模型,在此基础上设计了FGF的核酸类、糖类和多肽类抑制剂,为寻找新一代抗癌药物打下了理论基础. 相似文献
5.
Yasuko Onuma Kumiko Higuchi Yasuhiko Aiki Yujing Shu Masahiro Asada Makoto Asashima Masashi Suzuki Toru Imamura Yuzuru Ito 《PloS one》2015,10(4)
Fibroblast growth factors (FGFs) are essential for maintaining self-renewal in human embryonic stem cells and induced pluripotent stem cells. Recombinant basic FGF (bFGF or FGF2) is conventionally used to culture pluripotent stem cells; however, because of the instability of bFGF, repeated addition of fresh bFGF into the culture medium is required in order to maintain its concentration. In this study, we demonstrate that a heat-stable chimeric variant of FGF, termed FGFC, can be successfully used for maintaining human pluripotent stem cells. FGFC is a chimeric protein composed of human FGF1 and FGF2 domains that exhibits higher thermal stability and protease resistance than do both FGF1 and FGF2. Both human embryonic stem cells and induced pluripotent stem cells were maintained in ordinary culture medium containing FGFC instead of FGF2. Comparison of cells grown in FGFC with those grown in conventional FGF2 media showed no significant differences in terms of the expression of pluripotency markers, global gene expression, karyotype, or differentiation potential in the three germ lineages. We therefore propose that FGFC may be an effective alternative to FGF2, for maintenance of human pluripotent stem cells. 相似文献
6.
7.
8.
9.
10.
Fibroblast Growth Factor (FGF) Soluble Receptor 1 Acts as a Natural Inhibitor of FGF2 Neurotrophic Activity during Retinal Degeneration 总被引:3,自引:1,他引:3 下载免费PDF全文
Xavier Guillonneau Fabienne Rgnier-Ricard Olivier Laplace Laurent Jonet Marijke Bryckaert Yves Courtois Frdric Mascarelli 《Molecular biology of the cell》1998,9(10):2785-2802
Fibroblast growth factors (FGF) 1 and 2 and their tyrosine kinase receptor (FGFR) are present throughout the adult retina. FGFs are potential mitogens, but adult retinal cells are maintained in a nonproliferative state unless the retina is damaged. Our work aims to find a modulator of FGF signaling in normal and pathological retina. We identified and sequenced a truncated FGFR1 form from rat retina generated by the use of selective polyadenylation sites. This 70-kDa form of soluble extracellular FGFR1 (SR1) was distributed mainly localized in the inner nuclear layer of the retina, whereas the full-length FGFR1 form was detected in the retinal Muller glial cells. FGF2 and FGFR1 mRNA levels greatly increased in light-induced retinal degeneration. FGFR1 was detected in the radial fibers of activated retinal Muller glial cells. In contrast, SR1 mRNA synthesis followed a biphasic pattern of down- and up-regulation, and anti-SR1 staining was intense in retinal pigmented epithelial cells. The synthesis of SR1 and FGFR1 specifically and independently regulated in normal and degenerating retina suggests that changes in the proportion of various FGFR forms may control the bioavailability of FGFs and thus their potential as neurotrophic factors. This was demonstrated in vivo during retinal degeneration when recombinant SR1 inhibited the neurotrophic activity of exogenous FGF2 and increased damaging effects of light by inhibiting endogenous FGF. This study highlights the significance of the generation of SR1 in normal and pathological conditions. 相似文献
11.
Satoshi Yamaji Jun Saegusa Katsuaki Ieguchi Masaaki Fujita Seiji Mori Yoko K. Takada Yoshikazu Takada 《PloS one》2010,5(4)
Background
Crosstalk between integrins and FGF receptors has been implicated in FGF signaling, but the specifics of the crosstalk are unclear. We recently discovered that 1) FGF1 directly binds to integrin αvβ3, 2) the integrin-binding site and FGF receptor (FGFR) binding site are distinct, and 3) the integrin-binding-defective FGF1 mutant (R50E) is defective in inducing FGF signaling although R50E still binds to FGFR and heparin and induces transient ERK1/2 activation.Principal Findings
We tested if excess R50E affect DNA synthesis and cell survival induced by WT FGF1 in BaF3 mouse pro-B cells expressing human FGFR1. R50E suppressed DNA synthesis and cell proliferation induced by WT FGF1. We tested if WT FGF1 and R50E generate integrin-FGF1-FGFR ternary complex. WT FGF1 induced ternary complex formation (integrin-FGF-FGFR1) and recruitment of SHP-2 to the complex in NIH 3T3 cells and human umbilical endothelial cells, but R50E was defective in these functions. It has been reported that sustained ERK1/2 activation is integrin-dependent and crucial to cell cycle entry upon FGF stimulation. We thus determined the time-course of ERK1/2 activation induced by WT FGF1 and R50E. We found that WT FGF1 induced sustained activation of ERK1/2, but R50E was defective in this function.Conclusions/Significance
Our results suggest that 1) R50E is a dominant-negative mutant, 2) Ternary complex formation is involved in FGF signaling, 3) The defect of R50E to bind to integrin may be directly related to the antagonistic action of R50E. Taken together, these results suggest that R50E has potential as a therapeutic in cancer. 相似文献12.
Of Worms and Men: An Evolutionary Perspective on the Fibroblast Growth Factor (FGF) and FGF Receptor Families 总被引:6,自引:0,他引:6
François Coulier Pierre Pontarotti Régine Roubin Helge Hartung Mitchell Goldfarb Daniel Birnbaum 《Journal of molecular evolution》1997,44(1):43-56
FGFs (fibroblast growth factors) play major roles in a number of developmental processes. Recent studies of several human
disorders, and concurrent analysis of gene knock-out and properties of the corresponding recombinant proteins have shown that
FGFs and their receptors are prominently involved in the development of the skeletal system in mammals. We have compared the
sequences of the nine known mammalian FGFs, FGFs from other vertebrates, and three additional sequences that we extracted
from existing databases: two human FGF sequences that we tentatively designated FGF10 and FGF11, and an FGF sequence from
C?norhabditis elegans. Similarly, we have compared the sequences of the four FGF receptor paralogs found in chordates with four non-chordate FGF
receptors, including one recently identified in C. elegans. The comparison of FGF and FGF receptor sequences in vertebrates and nonvertebrates shows that the FGF and FGF receptor families
have evolved through phases of gene duplications, one of which may have coincided with the emergence of vertebrates, in relation
with their new system of body scaffold.
Received: 6 April 1996 / Accepted: 5 July 1996 相似文献
13.
Opoku Yeboah Kwaku Liu Zhihang Afrifa Justice Khoso Mir Hassan Ren Guiping Li Deshan 《International journal of peptide research and therapeutics》2020,26(1):107-119
International Journal of Peptide Research and Therapeutics - Fibroblast growth factor-21 (FGF21) is a member of the family of fibroblast growth factors (FGFs). FGF21 (synthesized by many organs)... 相似文献
14.
15.
Lucía Saucedo Gabriela N. Buffa Marina Rosso Tomás Guillardoy Adrian Góngora María J. Munuce Mónica H. Vazquez-Levin Clara Marín-Briggiler 《PloS one》2015,10(5)
Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility. 相似文献
16.
Objectives
Circulating Fibroblast Growth Factor 21 (FGF21) levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM). In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF) and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM) and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants.Design
CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26–47 years, BMI: 24.3–36.3 kg/m2) and 12 controls (age: 22–40 years, BMI: 30.1–37.0 kg/m2)]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA.Results
Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2–352.7) vs. 115.5 (60.5–188.7) pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3–0.6) vs. 0.8 (0.5–1.6); P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05).Conclusions
The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points. 相似文献17.
Activation of Mitogen-Activated Protein Kinase by Epidermal Growth Factor in Hippocampal Neurons and Neuronal Cell Lines 总被引:1,自引:0,他引:1
Marcy S. Tucker† Eva M. Eves Bruce H. Wainer‡ Marsha Rich Rosner† 《Journal of neurochemistry》1993,61(4):1376-1387
Abstract: Epidermal growth factor (EGF) functions in a bimodal capacity in the nervous system, acting as a mitogen in neuronal stem cells and a neurotrophic factor in differentiated adult neurons. Thus, it is likely that EGF signal transduction, as well as receptor expression, differs among various cell types and possibly in the same cell type at different stages of development. We used hippocampal neuronal cell lines capable of terminal differentiation to investigate changes in EGF receptor expression, DNA synthesis, and stimulation of mitogen-activated protein (MAP) kinase by EGF before and after differentiation. H19-7, the line that was most representative of hippocampal neurons, was mitogenically responsive to EGF only before differentiation and increased in EGF binding after differentiation. MAP kinase was stimulated by EGF in both undifferentiated and differentiated cells, as well as in primary hippocampal cultures treated with either EGF or glutamate. These results indicate that the activation of MAP kinase by EGF is an early signaling event in both mitotic and postmitotic neuronal cells. Furthermore, these studies demonstrate the usefulness of hippocampal cell lines as a homogeneous neuronal system for studies of EGF signaling or other receptor signaling mechanisms in the brain. 相似文献
18.
Zelarayan LC Vendrell V Alvarez Y Domínguez-Frutos E Theil T Alonso MT Maconochie M Schimmang T 《Developmental biology》2007,308(2):379-391
FGF signaling is required during multiple stages of inner ear development in many different vertebrates, where it is involved in induction of the otic placode, in formation and morphogenesis of the otic vesicle as well as for cellular differentiation within the sensory epithelia. In this study we have looked to define the redundant and conserved roles of FGF3, FGF8 and FGF10 during the development of the murine and avian inner ear. In the mouse, hindbrain-derived FGF10 ectopically induces FGF8 and rescues otic vesicle formation in Fgf3 and Fgf10 homozygous double mutants. Conditional inactivation of Fgf8 after induction of the placode does not interfere with otic vesicle formation and morphogenesis but affects cellular differentiation in the inner ear. In contrast, inactivation of Fgf8 during induction of the placode in a homozygous Fgf3 null background leads to a reduced size otic vesicle or the complete absence of otic tissue. This latter phenotype is more severe than the one observed in mutants carrying null mutations for both Fgf3 and Fgf10 that develop microvesicles. However, FGF3 and FGF10 are redundantly required for morphogenesis of the otic vesicle and the formation of semicircular ducts. In the chicken embryo, misexpression of Fgf3 in the hindbrain induces ectopic otic vesicles in vivo. On the other hand, Fgf3 expression in the hindbrain or pharyngeal endoderm is required for formation of the otic vesicle from the otic placode. Together these results provide important insights into how the spatial and temporal expression of various FGFs controls different steps of inner ear formation during vertebrate development. 相似文献
19.
Seema Nayak Madhu Mati Goel Annu Makker Vikram Bhatia Saumya Chandra Sandeep Kumar S. P. Agarwal 《PloS one》2015,10(10)
There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP. 相似文献
20.
Garima Singhal ffolliott Martin Fisher Melissa J. Chee Tze Guan Tan Abdelfattah El Ouaamari Andrew C. Adams Robert Najarian Rohit N. Kulkarni Christophe Benoist Jeffrey S. Flier Eleftheria Maratos-Flier 《PloS one》2016,11(2)
Fibroblast growth factor 21 (FGF21) is an important endocrine metabolic regulator expressed in multiple tissues including liver and adipose tissue. Although highest levels of expression are in pancreas, little is known about the function of FGF21 in this tissue. In order to understand the physiology of FGF21 in the pancreas, we analyzed its expression and regulation in both acinar and islet tissues. We found that acinar tissue express 20-fold higher levels than that observed in islets. We also observed that pancreatic FGF21 is nutritionally regulated; a marked reduction in FGF21 expression was noted with fasting while obesity is associated with 3–4 fold higher expression. Acinar and islet cells are targets of FGF21, which when systemically administered, leads to phosphorylation of the downstream target ERK 1/2 in about half of acinar cells and a small subset of islet cells. Chronic, systemic FGF21 infusion down-regulates its own expression in the pancreas. Mice lacking FGF21 develop significant islet hyperplasia and periductal lymphocytic inflammation when fed with a high fat obesogenic diet. Inflammatory infiltrates consist of TCRb+ Thy1+ T lymphocytes with increased levels of Foxp3+ regulatory T cells. Increased levels of inflammatory cells were coupled with elevated expression of cytokines such as TNFα, IFNγ and IL1β. We conclude that FGF21 acts to limit islet hyperplasia and may also prevent pancreatic inflammation. 相似文献