首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tsuruda JM  Amdam GV  Page RE 《PloS one》2008,3(10):e3397

Background

Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding). We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The ‘pollen-hoarding syndrome’ of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size), physiology (yolk protein level), and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH), which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.

Methodology/Principal Findings

Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar). To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER) assay and quantified ovary size and vitellogenin (yolk precursor) gene expression in 6–7-day-old bees by counting ovarioles (ovary filaments) and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles) are characterized by higher levels of vitellogenin mRNA expression and are more responsive to sucrose solutions, a trait that is central to division of labor and foraging specialization.

Conclusions/Significance

Our results establish that in wild-type honey bees, ovary size and vitellogenin mRNA level covary with the sucrose sensory response system, an important component of foraging behavior. This finding validates links between reproductive physiology and behavioral-trait associations of the pollen-hoarding syndrome of honey bees, and supports the forager-RGPH. Our data address a current evolutionary debate, and represent the first direct demonstration of the links between reproductive anatomy, physiology, and behavioral response systems that are central to the control of complex social behavior in insects.  相似文献   

3.
Nosema ceranae is an intracellular microsporidian parasite of the Asian honey bee Apis cerana and the European honey bee Apis mellifera. Until relatively recently, A. mellifera honey bees were naïve to N. ceranae infection. Symptoms of nosemosis, or Nosema disease, in the infected hosts include immunosuppression, damage to gut epithelium, nutrient and energetic stress, precocious foraging and reduced longevity of infected bees. Links remain unclear between immunosuppression, the symptoms of nutrient and energetic stress, and precocious foraging behavior of hosts. To clarify physiological connections, we inoculated newly emerged A. mellifera adult workers with N. ceranae spores, and over 21?days post inoculation (21?days?pi), gauged infection intensity and quantified expression of genes representing two innate immune pathways, Toll and Imd. Additionally, we measured each host’s whole-body protein, lipids, carbohydrates and quantified respirometric and activity levels. Results show sustained suppression of genes of both humorally regulated immune response pathways after 6?days?pi. At 7?days?pi, elevated protein levels of infected bees may reflect synthesis of antimicrobial peptides from an initial immune response, but the lack of protein gain compared with uninfected bees at 14?days?pi may represent low de novo protein synthesis. Carbohydrate data do not indicate that hosts experience severe metabolic stress related to this nutrient. At 14?days?pi infected honey bees show high respirometric and activity levels, and corresponding lipid loss, suggesting lipids may be used as fuel for increased metabolic demands resulting from infection. Accelerated lipid loss during nurse honey bee behavioral development can have cascading effects on downstream physiology that may lead to precocious foraging, which is a major factor driving colony collapse.  相似文献   

4.
Division of labor is a hallmark of eusocial insects and their ecological success can be attributed to it. Honey bee division of labor proceeds along a stereotypical ontogenetic path based on age, modulated by various internal and external stimuli. Brood pheromone is a major social pheromone of the honey bee that has been shown to affect honey bee division of labor. It elicits several physiological and behavioral responses; notably, regulating the timing of the switch from performing in-hive tasks to the initiation of foraging. Additionally, brood pheromone affects future foraging choice. In honey bees, sucrose response threshold is a physiological correlate of age of first foraging and foraging choice. Brood pheromone has been shown to modulate sucrose response threshold in young bees, but its effects on sucrose response thresholds of bees in advanced behavioral states (foragers) are not known. In this study we examined the sucrose response thresholds of two different task groups, foragers (pollen and non-pollen) and non-foraging bees, in response to honey bee brood pheromone. Sucrose response thresholds were not significantly different between brood pheromone treatment and controls among both non-pollen and pollen foragers. However, the sucrose response threshold of non-foraging bees was significantly higher in the brood pheromone treatment group than in the control group. The switch to foraging task is considered a terminal one, with honey bee lifespan being determined at least partially by risks and stress accompanying foraging. Our results indicate that foragers are physiologically resistant to brood pheromone priming of sucrose response thresholds.  相似文献   

5.
Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.  相似文献   

6.
Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators   总被引:1,自引:0,他引:1  
Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species.  相似文献   

7.
Honey bee (Apis mellifera L.) workers are essentially sterile females that are used to study how complex social behavior develops. Workers perform nest tasks, like nursing larvae, prior to field tasks, like foraging. Despite worker sterility, this behavioral progression correlates with ovary size: workers with larger ovaries (many ovary filaments) start foraging at younger ages on average. It is untested, however, whether the correlation confers a causal relationship between ovary size and behavioral development. Here, we successfully grafted supernumerary ovaries into worker bees to produce an artificial increase in the amount of ovary tissue. We next measured fat body mRNA levels for the yolk precursor gene vitellogenin, which influences honey bee behavioral development and can correlate with ovary size. Vitellogenin was equally expressed in surgical controls and bees with supernumerary ovaries, leading us to predict that these groups would be characterized by equal behavior. Contrary to our prediction, bees with supernumerary ovaries showed accelerated behavioral development compared to surgical controls, which behaved like reference bees that were not treated surgically. To explore this result we monitored fat body expression levels of a putative ecdysteroid-response gene, HR46, which is genetically linked to ovary size in workers. Our data establish that social insect worker behavior can be directly influenced by ovaries, and that HR46 expression changes with ovary size independent of vitellogenin.  相似文献   

8.
Sagili RR  Pankiw T  Metz BN 《PloS one》2011,6(2):e16785
Division of labor is a striking feature observed in honey bees and many other social insects. Division of labor has been claimed to benefit fitness. In honey bees, the adult work force may be viewed as divided between non-foraging hive bees that rear brood and maintain the nest, and foragers that collect food outside the nest. Honey bee brood pheromone is a larval pheromone that serves as an excellent empirical tool to manipulate foraging behaviors and thus division of labor in the honey bee. Here we use two different doses of brood pheromone to alter the foraging stimulus environment, thus changing demographics of colony division of labor, to demonstrate how division of labor associated with brood rearing affects colony growth rate. We examine the effects of these different doses of brood pheromone on individual foraging ontogeny and specialization, colony level foraging behavior, and individual glandular protein synthesis. Low brood pheromone treatment colonies exhibited significantly higher foraging population, decreased age of first foraging and greater foraging effort, resulting in greater colony growth compared to other treatments. This study demonstrates how division of labor associated with brood rearing affects honey bee colony growth rate, a token of fitness.  相似文献   

9.
《Journal of Asia》2023,26(2):102047
Oilseed rape is the third-largest source of vegetable oil and the second-largest source of protein meal in the world. Pollinators are vital in the production of oilseed rape. However, pollination efficiency could be influenced by the morphology and foraging behaviors of pollinators. To evaluate the effect of pollinator size and foraging behavior on pollination efficiency, the intertegular distances (ITDs) of five bumble bees (Bombus pyrosoma, B. lantschouensis, B. melanurus, B. sichelii and B. sibiricus) and two honey bees (Apis mellifera and A. cerana) were evaluated. Their foraging activities and single visit depositions (SVDs) on oilseed rape were observed and counted. The ITDs of bumble bees were significantly larger than honey bees (P < 0.05). The single-visit duration of A. mellifera (2.43 ± 0.06 s) was significantly longer than other bees (P < 0.05). The interval time of the A. cerana was longer than other bees (P < 0.05). Larger bees tended to deposit more pollen on stigmas at each visit than smaller bees. The interspecific ITD of bees had a positive effect on SVD (P < 0.001). There was no correlation between ITD and SVD among individuals of the same species. In conclusion, the size of bees had a positive impact on pollination efficiency. Bees with a greater ITD deposited substantially more pollen and had a significantly shorter interval between flowers. Understanding the foraging behavior and pollination efficiency of these bee species and developing habitats to support them should enable growers to achieve resilient production.  相似文献   

10.
The decline of both managed and wild bee populations has been extensively reported for over a decade now, with growing concerns amongst the scientific community. Also, evidence is growing that both managed and feral honey bees may exacerbate threats to wild bees. In Australia, there are over 1600 native bee species and introduced European honey bees (Apis mellifera) have established throughout most landscapes. There is a major gap in knowledge of the interactions between honey bees and native bees in Australian landscapes, especially floral resource use.Here we report on the pollen diets of wild bees in protected areas of coastal heathland, an ecosystem characterised by mass flowering in late winter and spring. We sampled bees within three sites and DNA metabarcoding was used to compare the pollen diets of honey bees and native bees. We recorded 2, 772 bees in total, with 13 genera and 18 described species identified. Apis mellifera was the most common species across all locations, accounting for 42% of all bees collected. Native bee genera included eusocial Tetragonula (stingless bees) (37%), and semi-social Exoneura and Braunsapis (19.8% combined). Metabarcoding data revealed both Tetragonula and honey bees have wide foraging patterns, and the bipartite network overall was highly generalised (H2’ = 0.24). Individual honey bees carried pollen of 7–29 plant species, and significantly more species than all other bees. We found niche overlap in the diets of honey bees and native bees generally (0.42), and strongest overlap with stingless bees (0.70) and species of Braunsapis (0.62). A surprising finding was that many species carried pollen from Restionaceae and Cyperaceae, families generally considered to be predominantly wind-pollinated in Australia. Our study showed introduced honey bee use of resources overlaps with that of native bees in protected heathlands, but there are clear differences in their diet preferences.  相似文献   

11.
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.  相似文献   

12.
The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin''s botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees.  相似文献   

13.
Honey bees collect distinct nutrient sources in the form ofnectar (energy) and pollen (nitrogen). We investigated the effectof varying energy stores on nectar and pollen foraging. We foundno significant changes in nectar foraging in response to changesin honey storage levels within colonies. Individual foragersdid not vary activity rates or nectar load sizes in responseto changes in honey stores, and colonies did not increase nectarintake rates when honey stores within the hive were decreased.This result contrasts with pollen foraging behavior, which isextremely sensitive to colony state. Our data show that individualforaging decisions during nectar collection and colony regulationof nectar intake are distincdy different from pollen foraging.The behavior of honey bees illustrates that foraging strategy(and therefore foraging models) can incorporate multiple currencies,including both energy and protein intake.[Behav Ecol 7: 286–291(1996)]  相似文献   

14.
The social environment plays an essential role in shaping behavior for most animals. Social effects on behavior are often linked to changes in brain gene expression. In the honey bee (Apis mellifera L.), social modulation of individual aggression allows colonies to adjust the intensity with which they defend their hive in response to predation threat. Previous research has showed social effects on both aggression and aggression‐related brain gene expression in honey bees, caused by alarm pheromone and unknown factors related to colony genotype. For example, some bees from less aggressive genetic stock reared in colonies with genetic predispositions toward increased aggression show both increased aggression and more aggressive‐like brain gene expression profiles. We tested the hypothesis that exposure to a colony environment influenced by high levels of predation threat results in increased aggression and aggressive‐like gene expression patterns in individual bees. We assessed gene expression using four marker genes. Experimentally induced predation threats modified behavior, but the effect was opposite of our predictions: disturbed colonies showed decreased aggression. Disturbed colonies also decreased foraging activity, suggesting that they did not habituate to threats; other explanations for this finding are discussed. Bees in disturbed colonies also showed changes in brain gene expression, some of which paralleled behavioral findings. These results show that bee aggression and associated molecular processes are subject to complex social influences .  相似文献   

15.
Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2) in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.  相似文献   

16.
All members of the solitary bee species Osmia lignaria (the orchard bee) forage upon emergence from their natal nest cell. Conversely, in the honey bee, days-to-weeks of socially regulated behavioral development precede the onset of foraging. The social honey bee's behavioral transition to foraging is accompanied by neuroanatomical changes in the mushroom bodies, a region of the insect brain implicated in learning. If these changes were general adaptations to foraging, they should also occur in the solitary orchard bee. Using unbiased stereological methods, we estimated the volume of the major compartments of the mushroom bodies, the neuropil and Kenyon cell body region, in adult orchard bees. We compared the mushroom bodies of recently emerged bees with mature bees that had extensive foraging experience. To separate effects of general maturation from field foraging, some orchard bees were confined to a cage indoors. The mushroom body neuropil of experienced field foragers was significantly greater than that of both recently emerged and mature caged orchard bees, suggesting that, like the honey bee, this increase is driven by outdoor foraging experience. Unlike the honey bee, where increases in the ratio of neuropil to Kenyon cell region occur in the worker after emerging from the hive cell, the orchard bee emerged from the natal nest cell with a ratio that did not change with maturation and was comparable to honey-bee foragers. These results suggest that a common developmental endpoint may be reached via different development paths in social and solitary species of foraging bees.  相似文献   

17.
Certain colours associated with floral food resources are more quickly learned by honey bees (Apis mellifera) than are other colours. But the impact of colour, and other floral cues, on bee choice behaviour has not yet been determined. In these experiments, colour association and sugar concentration of reward were varied to assess how they interact to affect bee choice behaviour. Thirty-five bees were individually given binary choices between blue and yellow artificial flowers that contained either the same rewards or rewards of different sucrose concentrations. Honey bee choice between sucrose concentrations was affected by colour association and this effect was greatest when absolute difference between rewards was the lowest. The honey bee's ability to maximize energetic profitability during foraging is constrained by floral cue effectiveness.  相似文献   

18.
Individual behavioural differences in responding to the same stimuli is an integral part of division of labour in eusocial insect colonies. Amongst honey bee nectar foragers, individuals strongly differ in their sucrose responsiveness, which correlates with strong differences in behavioural decisions. In this study, we explored whether the mechanisms underlying the regulation of foraging are linked to inter‐individual differences in the waggle dance activity of honey bee foragers. We first quantified the variation in dance activity amongst groups of foragers visiting an artificial feeder filled consecutively with different sucrose concentrations. We then determined, for these foragers, the sucrose responsiveness and the brain expression levels of three genes associated with food search and foraging; the foraging gene Amfor, octopamine receptor gene AmoctαR1 and insulin receptor AmInR‐2. As expected, foragers showed large inter‐individual differences in their dance activity, irrespective of the reward offered at the feeder. The sucrose responsiveness correlated positively with the intensity of the dance activity at the higher reward condition, with the more responsive foragers having a higher intensity of dancing. Out of the three genes tested, Amfor expression significantly correlated with dance activity, with more active dancers having lower expression levels. Our results show that dance and foraging behaviour in honey bees have similar mechanistic underpinnings and supports the hypothesis that the social communication behaviour of honey bees might have evolved by co‐opting behavioural modules involved in food search and foraging in solitary insects.  相似文献   

19.
继果蝇、按蚊和家蚕之后,意大利蜜蜂Apis mellifera(膜翅目: 蜜蜂科)成为又一种被完整测得基因组序列的昆虫。从此,蜜蜂研究进入后基因组时代。作为一种典型的社会性昆虫,许多和蜜蜂社会生活紧密相关的性状都是数量性状。这些性状研究中广泛涉及到了数量性状位点(quantitative traits loci,QTL)定位研究。本文综述了应用QTL对蜜蜂取食行为、自卫行为、体长、逆转学习等的研究现状,同时结合国内外最新研究进展,总结并展望了后基因组时代蜜蜂QTL的研究方向。  相似文献   

20.
To provide replicate samples of local bee populations in a nature preserve, light traps operated continuously on Barro Colorado Island (BCI), Panama, collected bees for 17 years, including 10 years following invasion by African Apis mellifera. Honey bees appeared in light traps as the first swarms colonized the Panama Canal area. Their numbers followed seasonal trends shown in inde-pendent studies, thus indicating bee abundance and activity in a large area. No measurable population-level impact of competition between this invading honey bee and native bees, despite many demonstrations of resource competition at flower patch and colony levels, changed annual abundances of all 15 native bee species. Native bee abundance did not decrease, nor did native bees show substantial reciprocal yearly change with honey bee abundance. One strong negative correlation of bee catches with an extremely rainy year was found. However, multiple regression using rainfall and honey bee abundance as the independent variables showed that neither was responsible for bee population change over 17 years. Nearly half the native species declined during a year that displayed peak honey bee number. That competition from honey bees on an island the size of BCI was necessarily reduced below impact levels expected on the mainland is discussed using a model of resource and consumer density, foraging range, and island size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号