首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

ApoE is an abundant component of chylomicron, VLDL, IDL, and HDL. It binds to multiple types of lipids and is implicated in cholesterol and triglyceride homeostasis. Oxidation of ApoE plays a crucial role in the genesis of atherosclerosis. It is proposed that heme-containing peroxidases (hPx) are major mediators of lipoprotein oxidization. Vascular peroxidase 1 (VPO1) is a recently-discovered hPx, which is expressed in cardiovascular system, lung, liver etc. and secreted into plasma. Its plasma concentration is three orders of magnitude of that of myeloperoxidase. If VPO1 mediates ApoE oxidation and affects the lipid metabolism remains to be elucidated.

Methods

Recombinant ApoE and VPO1 were expressed and purified from stably-expressing cell lines deriving from HEK293 cells. ApoE oxidation was carried out by VPO1 in the presence of H2O2 and chloride. ApoE oxidation was verified by a variety of approaches including immunoblot and amino acid analyses. To evaluate the functional changes in VPO1-oxidized ApoE, lipid emulsion particle binding assays were employed.

Results

Oxidized ApoE binds weaker to lipid emulsion particles, which mimic the large lipid complexes in vivo. In lipid efflux assay, oxidized ApoE showed reduced capability in efflux of lipids from foam cells. Mice administrated with oxidized ApoE via blood exhibited weaker clearance ability of plasma lipids.

Conclusions

Our data suggest that VPO1 is a new mediator regulating lipid homeostasis, implying a role in genesis and development of atherosclerosis.  相似文献   

2.

Introduction

Cigarette smoke is a profound pro-inflammatory stimulus that contributes to acute lung injuries and to chronic lung disease including COPD (emphysema and chronic bronchitis). Until recently, it was assumed that resolution of inflammation was a passive process that occurred once the inflammatory stimulus was removed. It is now recognized that resolution of inflammation is a bioactive process, mediated by specialized lipid mediators, and that normal homeostasis is maintained by a balance between pro-inflammatory and pro-resolving pathways. These novel small lipid mediators, including the resolvins, protectins and maresins, are bioactive products mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFA). We hypothesize that resolvin D1 (RvD1) has potent anti-inflammatory and pro-resolving effects in a model of cigarette smoke-induced lung inflammation.

Methods

Primary human lung fibroblasts, small airway epithelial cells and blood monocytes were treated with IL-1β or cigarette smoke extract in combination with RvD1 in vitro, production of pro-inflammatory mediators was measured. Mice were exposed to dilute mainstream cigarette smoke and treated with RvD1 either concurrently with smoke or after smoking cessation. The effects on lung inflammation and lung macrophage populations were assessed.

Results

RvD1 suppressed production of pro-inflammatory mediators by primary human cells in a dose-dependent manner. Treatment of mice with RvD1 concurrently with cigarette smoke exposure significantly reduced neutrophilic lung inflammation and production of pro-inflammatory cytokines, while upregulating the anti-inflammatory cytokine IL-10. RvD1 promoted differentiation of alternatively activated (M2) macrophages and neutrophil efferocytosis. RvD1 also accelerated the resolution of lung inflammation when given after the final smoke exposure.

Conclusions

RvD1 has potent anti-inflammatory and pro-resolving effects in cells and mice exposed to cigarette smoke. Resolvins have strong potential as a novel therapeutic approach to resolve lung injury caused by smoke and pulmonary toxicants.  相似文献   

3.

Introduction

The purpose of this study was to investigate the effects of vegan diet in patients with rheumatoid arthritis (RA) on blood lipids oxidized low-density lipoprotein (oxLDL) and natural atheroprotective antibodies against phosphorylcholine (anti-PCs).

Methods

Sixty-six patients with active RA were randomly assigned to either a vegan diet free of gluten (38 patients) or a well-balanced non-vegan diet (28 patients) for 1 year. Thirty patients in the vegan group completed more than 3 months on the diet regimen. Blood lipids were analyzed by routine methods, and oxLDL and anti-PCs were analyzed by enzyme-linked immunosorbent assay. Data and serum samples were obtained at baseline and after 3 and 12 months.

Results

Mean ages were 50.0 years for the vegan group and 50.8 years for controls. Gluten-free vegan diet induced lower body mass index (BMI) and low-density lipoprotein (LDL) and higher anti-PC IgM than control diet (p < 0.005). In the vegan group, BMI, LDL, and cholesterol decreased after both 3 and 12 months (p < 0.01) and oxLDL after 3 months (p = 0.021) and trendwise after 12 months (p = 0.090). Triglycerides and high-density lipoprotein did not change. IgA anti-PC levels increased after 3 months (p = 0.027) and IgM anti-PC levels increased trendwise after 12 months (p = 0.057). There was no difference in IgG anti-PC levels. In the control diet group, IgM anti-PC levels decreased both after 3 and 12 months (p < 0.01). When separating vegan patients into clinical responders and non-responders at 12 months, the effects on oxLDL and anti-PC IgA were seen only in responders (p < 0.05).

Conclusion

A gluten-free vegan diet in RA induces changes that are potentially atheroprotective and anti-inflammatory, including decreased LDL and oxLDL levels and raised anti-PC IgM and IgA levels.  相似文献   

4.

Background

Previous observations demonstrate that Cftr-null cells and tissues exhibit alterations in cholesterol processing including perinuclear cholesterol accumulation, increased de novo synthesis, and an increase in plasma membrane cholesterol accessibility compared to wild type controls. The hypothesis of this study is that membrane cholesterol accessibility correlates with CFTR genotype and is in part influenced by de novo cholesterol synthesis.

Methods

Electrochemical detection of cholesterol at the plasma membrane is achieved with capillary microelectrodes with a modified platinum coil that accepts covalent attachment of cholesterol oxidase. Modified electrodes absent cholesterol oxidase serves as a baseline control. Cholesterol synthesis is determined by deuterium incorporation into lipids over time. Incorporation into cholesterol specifically is determined by mass spectrometry analysis. All mice used in the study are on a C57Bl/6 background and are between 6 and 8 weeks of age.

Results

Membrane cholesterol measurements are elevated in both R117H and ΔF508 mouse nasal epithelium compared to age-matched sibling wt controls demonstrating a genotype correlation to membrane cholesterol detection. Expression of wt CFTR in CF epithelial cells reverts membrane cholesterol to WT levels further demonstrating the impact of CFTR on these processes. In wt epithelial cell, the addition of the CFTR inhibitors, Gly H101 or CFTRinh-172, for 24 h surprisingly results in an initial drop in membrane cholesterol measurement followed by a rebound at 72 h suggesting a feedback mechanism may be driving the increase in membrane cholesterol. De novo cholesterol synthesis contributes to membrane cholesterol accessibility.

Conclusions

The data in this study suggest that CFTR influences cholesterol trafficking to the plasma membrane, which when depleted, leads to an increase in de novo cholesterol synthesis to restore membrane content.  相似文献   

5.

Objective

To compare the inflammatory response preserved ex vivo by decidual cells isolated from women who experienced preterm labor with and without subclinical intrauterine infection.

Methods

Fetal membranes were obtained after cesarean section from 35 women who delivered before 37 weeks of gestation following spontaneous preterm labor, with no clinical evidence of intrauterine infection. Decidua was microbiologically tested and cultured. Concentrations of anti-inflammatory cytokines (IL-2, IL-4, IL-10), pro-inflammatory cytokines (IL-6, IL-8, IL-1β and TNF-α), and matrix metalloproteinases (MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9) were measured in the supernatants using Bio-Plex, and prostaglandin E2 (PGE2) was measured by enzyme immunoassay.

Results

Subclinical infection was confirmed in 10 women (28.5%). Microorganisms isolated were Ureaplasma urealyticum (4), group B streptococci (3), Gardnerella vaginalis (1), and Escherichia coli (2). We found a significant increase of pro-inflammatory cytokines and a significant decrease of anti-inflammatory cytokines in supernatants from decidual cells obtained from women with preterm labor and subclinical intrauterine infection compared to women without infection. Secretion of MMP-1, MMP-8, MMP-9 and PGE2 was significantly higher in infected women. Secretion of IL-8 by decidual cells from infected women persisted upon repeated in vitro culture passages.

Conclusions

Almost 30% of idiopathic preterm labor cases were associated with subclinical intrauterine infection, and decidual cells isolated from these cases preserved an ex vivo inflammatory status after in vivo bacterial exposure.  相似文献   

6.

Background

Atherosclerosis starts by lipid accumulation in the arterial intima and progresses into a chronic vascular inflammatory disease. A major atherogenic process is the formation of lipid-loaded macrophages in which a breakdown of the endolysomal pathway results in irreversible accumulation of cargo in the late endocytic compartments with a phenotype similar to several forms of lipidosis. Macrophages exposed to oxidized LDL exihibit this phenomenon in vitro and manifest an impaired degradation of internalized lipids and enhanced inflammatory stimulation. Identification of the specific chemical component(s) causing this phenotype has been elusive because of the chemical complexity of oxidized LDL.

Methodology/Principal Findings

Lipid “core aldehydes" are formed in oxidized LDL and exist in atherosclerotic plaques. These aldehydes are slowly oxidized in situ and (much faster) by intracellular aldehyde oxidizing systems to cholesteryl hemiesters. We show that a single cholesteryl hemiester incorporated into native, non-oxidized LDL induces a lipidosis phenotype with subsequent cell death in macrophages. Internalization of the cholesteryl hemiester via the native LDL vehicle induced lipid accumulation in a time- and concentration-dependent manner in “frozen" endolysosomes. Quantitative shotgun lipidomics analysis showed that internalized lipid in cholesteryl hemiester-intoxicated cells remained largely unprocessed in those lipid-rich organelles.

Conclusions/Significance

The principle elucidated with the present cholesteryl hemiester-containing native-LDL model, extended to other molecular components of oxidized LDL, will help in defining the molecular etiology and etiological hierarchy of atherogenic agents.  相似文献   

7.

Background

Chronic inflammation is a characteristic feature of diabetic cutaneous wounds. We sought to delineate novel mechanisms involved in the impairment of resolution of inflammation in diabetic cutaneous wounds. At the wound-site, efficient dead cell clearance (efferocytosis) is a pre-requisite for the timely resolution of inflammation and successful healing.

Methodology/Principal Findings

Macrophages isolated from wounds of diabetic mice showed significant impairment in efferocytosis. Impaired efferocytosis was associated with significantly higher burden of apoptotic cells in wound tissue as well as higher expression of pro-inflammatory and lower expression of anti-inflammatory cytokines. Observations related to apoptotic cell load at the wound site in mice were validated in the wound tissue of diabetic and non-diabetic patients. Forced Fas ligand driven elevation of apoptotic cell burden at the wound site augmented pro-inflammatory and attenuated anti-inflammatory cytokine response. Furthermore, successful efferocytosis switched wound macrophages from pro-inflammatory to an anti-inflammatory mode.

Conclusions/Significance

Taken together, this study presents first evidence demonstrating that diabetic wounds suffer from dysfunctional macrophage efferocytosis resulting in increased apoptotic cell burden at the wound site. This burden, in turn, prolongs the inflammatory phase and complicates wound healing.  相似文献   

8.

Background

Two atherosclerosis-susceptible and -resistant Japanese quail (Coturnix japonica) strains obtained by divergent selection are commonly used as models to study atherosclerosis, but no genetic characterization of their phenotypic differences has been reported so far. Our objective was to examine possible differences in the expression of genes involved in cholesterol metabolism and transport in the liver between these two strains and to evaluate the value of this model to analyze the gene system affecting cholesterol metabolism and transport.

Methods

A factorial study with both strains (atherosclerosis-susceptible versus atherosclerosis-resistant) and two diets (control versus cholesterol) was carried out. The mRNA concentrations of four genes involved in cholesterol biosynthesis (HMGCR, FDFT1, SQLE and DHCR7) and three genes in cholesterol transport (ABCG5, ABCG8 and APOA1) were assayed using real-time quantitative PCR. Plasma lipids were also assayed.

Results

Expression of ABCG5 (control diet) and ABCG8 (regardless of dietary treatment) and expression of HMGCR, FDFT1 and SQLE (regardless of dietary treatment) were significantly higher in the atherosclerosis-resistant than in the atherosclerosis-susceptible strain. Plasma triglyceride and LDL levels, and LDL/HDL ratio were significantly higher in the atherosclerosis-susceptible than in the atherosclerosis-resistant strain fed the cholesterol diet. In the atherosclerosis-susceptible strain, ABCG5 expression regressed significantly and positively on plasma LDL level, whereas DHCR7 and SQLE expression regressed significantly and negatively on plasma triglyceride level.

Conclusions

Our results provide support for the hypothesis that the atherosclerosis-resistant strain metabolizes and excretes cholesterol faster than the atherosclerosis-susceptible strain. We have also demonstrated that these quail strains are a useful model to study cholesterol metabolism and transport in relation with atherosclerosis.  相似文献   

9.

Rationale

Pulmonary fibrosis is a progressive disease with only few treatment options available at the moment. Recently, the nucleoside uridine has been shown to exert anti-inflammatory effects in different animal models, e.g. in acute lung injury or bronchial asthma.

Method

Therefore, we investigated the influence of uridine supplementation on inflammation and fibrosis in the classical bleomycin model. Male C57BL/6 mice received an intratracheal injection of bleomycin on day 0 and were treated intraperitoneally with uridine or vehicle. The degree of inflammation and fibrosis was assessed at different time points.

Results

Uridine administration resulted in attenuated inflammation, as demonstrated by reduced leukocytes and pro-inflammatory cytokines in the broncho-alveolar lavage (BAL) fluid. Furthermore, collagen deposition in the lung interstitium was also reduced by uridine supplementation. Similar results were obtained in a model in which animals received repeated intraperitoneal bleomycin injections. In addition uridine inhibited collagen and TGF-ß synthesis by primary lung fibroblasts, the release of pro-inflammatory cytokines by human lung epithelial cells, as well as the production of reactive oxygen species by human neutrophils.

Conclusion

In summary, we were able to show that uridine has potent anti-inflammatory and anti-fibrotic properties. As uridine supplementation has been shown to be well tolerated and safe in humans, this might be a new therapeutic approach for the treatment of fibrotic lung diseases.  相似文献   

10.

Background

Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower high-density lipoprotein (HDL) cholesterol, raise low-density lipoprotein (LDL) cholesterol, and increase the risk of coronary heart disease. The effects of trans fatty acids from ruminants are less clear. We investigated the effect on blood lipids of cis-9, trans-11 conjugated linoleic acid (CLA), a trans fatty acid largely restricted to ruminant fats.

Methodology/Principal Findings

Sixty-one healthy women and men were sequentially fed each of three diets for three weeks, in random order, for a total of nine weeks. Diets were identical except for 7% of energy (approximately 20 g/day), which was provided either by oleic acid, by industrial trans fatty acids, or by a mixture of 80% cis-9, trans-11 and 20% trans-10, cis-12 CLA. After the oleic acid diet, mean (± SD) serum LDL cholesterol was 2.68±0.62 mmol/L compared to 3.00±0.66 mmol/L after industrial trans fatty acids (p<0.001), and 2.92±0.70 mmol/L after CLA (p<0.001). Compared to oleic acid, HDL-cholesterol was 0.05±0.12 mmol/L lower after industrial trans fatty acids (p = 0.001) and 0.06±0.10 mmol/L lower after CLA (p<0.001). The total-to–HDL cholesterol ratio was 11.6% higher after industrial trans fatty acids (p<0.001) and 10.0% higher after CLA (p<0.001) relative to the oleic acid diet.

Conclusions/Significance

High intakes of an 80∶20 mixture of cis-9, trans-11 and trans-10, cis-12 CLA raise the total to HDL cholesterol ratio in healthy volunteers. The effect of CLA may be somewhat less than that of industrial trans fatty acids.

Trial Registration

ClinicalTrials.gov NCT00529828  相似文献   

11.

Background

Genetic factors influencing the prognosis of gastric adenocarcinoma (GAC) are not well known. Given the relevance of cytokines and other pro-inflammatory mediators in cancer progression and invasiveness, we aimed to assess the prognostic role of several functional cytokine and cyclooxygenase gene polymorphisms in patients with GAC.

Methodology

Genomic DNA from 380 Spanish Caucasian patients with primary GAC was genotyped for 23 polymorphisms in pro-inflammatory (IL1B, TNFA, LTA, IL6, IL12p40), anti-inflammatory (IL4, IL1RN, IL10, TGFB1) cytokine, and cyclooxygenase (PTGS1 and PTGS2) genes by PCR, RFLP and TaqMan assays. Clinical and histological information was collected prospectively. Survival curves were estimated by the Kaplan-Meier method and compared using the log rank test. Outcome was determined by analysis of Cox proportional hazards, adjusting for confounding factors.

Results

The median follow-up period and median overall survival (OS) time were 9.9 months (range 0.4–120.3) and 10.9 months (95% CI: 8.9–14.1), respectively. Multivariate analysis identified tumor stages III (HR, 3.23; 95% CI:2–5.22) and IV (HR, 5.5; 95% CI: 3.51–8.63) as independent factors associated with a significantly reduced OS, whereas surgical treatment (HR: 0.44; 95%CI: 0.3–0.6) was related to a better prognosis of the disease. Concerning genetic factors, none of the 23 polymorphisms evaluated in the current study did influence survival. Moreover, no gene-environment interactions on GAC prognosis were observed.

Conclusions

Our results show that, in our population, the panel of selected pro- and anti-inflammatory cytokine, and cyclooxygenase gene polymorphisms are not relevant in determining the prognosis of gastric adenocarcinoma.  相似文献   

12.

Background

Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin''s sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties.

Methodology/Results

The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface.

Conclusion

Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1.  相似文献   

13.

Background

Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy.

Methods

Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes.

Results

ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters.

Conclusion

Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy.  相似文献   

14.

Background

Tumstatin is a segment of the collagen-IV protein that is markedly reduced in the airways of asthmatics. Tumstatin can play an important role in the development of airway remodelling associated with asthma due to its anti-angiogenic properties. This study assessed the anti-angiogenic properties of smaller peptides derived from tumstatin, which contain the interface tumstatin uses to interact with the αVβ3 integrin.

Methods

Primary human lung endothelial cells were exposed to the LF-15, T3 and T7 tumstatin-derived peptides and assessed for cell viability and tube formation in vitro. The impact of the anti-angiogenic properties on airways hyperresponsiveness (AHR) was then examined using a murine model of chronic OVA-induced allergic airways disease.

Results

The LF-15 and T7 peptides significantly reduced endothelial cell viability and attenuated tube formation in vitro. Mice exposed to OVA+ LF-15 or OVA+T7 also had reduced total lung vascularity and AHR was attenuated compared to mice exposed to OVA alone. T3 peptides reduced cell viability but had no effect on any other parameters.

Conclusion

The LF-15 and T7 peptides may be appropriate candidates for use as novel pharmacotherapies due to their small size and anti-angiogenic properties observed in vitro and in vivo.  相似文献   

15.

Background

Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L – an established marker and mediator of cardiovascular disease – induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo.

Methodology/Principal Findings

WT or CD40L−/− mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L−/− mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L−/− mice. However, CD40L−/− mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L−/− mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels.

Conclusion

We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.  相似文献   

16.
17.

Background

The activation of innate immune responses by Plasmodium vivax results in activation of effector cells and an excessive production of pro-inflammatory cytokines that may culminate in deleterious effects. Here, we examined the activation and function of neutrophils during acute episodes of malaria.

Materials and Methods

Blood samples were collected from P. vivax-infected patients at admission (day 0) and 30–45 days after treatment with chloroquine and primaquine. Expression of activation markers and cytokine levels produced by highly purified monocytes and neutrophils were measured by the Cytometric Bead Assay. Phagocytic activity, superoxide production, chemotaxis and the presence of G protein-coupled receptor (GRK2) were also evaluated in neutrophils from malaria patients.

Principal Findings

Both monocytes and neutrophils from P. vivax-infected patients were highly activated. While monocytes were found to be the main source of cytokines in response to TLR ligands, neutrophils showed enhanced phagocytic activity and superoxide production. Interestingly, neutrophils from the malaria patients expressed high levels of GRK2, low levels of CXCR2, and displayed impaired chemotaxis towards IL-8 (CXCL8).

Conclusion

Activated neutrophils from malaria patients are a poor source of pro-inflammatory cytokines and display reduced chemotactic activity, suggesting a possible mechanism for an enhanced susceptibility to secondary bacterial infection during malaria.  相似文献   

18.

Background

Lipids in reef building corals can be divided into two classes; non-polar storage lipids, e.g. wax esters and triglycerides, and polar structural lipids, e.g. phospholipids and cholesterol. Differences among algal endosymbiont types are known to have important influences on processes including growth and the photobiology of scleractinian corals yet very little is known about the role of symbiont types on lipid energy reserves.

Methodology/Principal Findings

The ratio of storage lipid and structural lipid fractions of Scott Reef corals were determined by thin layer chromatography. The lipid fraction ratio varied with depth and depended on symbiont type harboured by two corals (Seriatopora hystrix and Pachyseris speciosa). S. hystrix colonies associated with Symbiodinium C1 or C1/C# at deep depths (>23 m) had lower lipid fraction ratios (i.e. approximately equal parts of storage and structural lipids) than those with Symbiodinium D1 in shallow depths (<23 m), which had higher lipid fraction ratios (i.e. approximately double amounts of storage relative to structural lipid). Further, there was a non-linear relationship between the lipid fraction ratio and depth for S. hystrix with a modal peak at ∼23 m coinciding with the same depth as the shift from clade D to C types. In contrast, the proportional relationship between the lipid fraction ratio and depth for P. speciosa, which exhibited high specificity for Symbiodinium C3 like across the depth gradient, was indicative of greater amounts of storage lipids contained in the deep colonies.

Conclusions/Significance

This study has demonstrated that Symbiodinium exert significant controls over the quality of coral energy reserves over a large-scale depth gradient. We conclude that the competitive advantages and metabolic costs that arise from flexible associations with divergent symbiont types are offset by energetic trade-offs for the coral host.  相似文献   

19.

Background

Acute respiratory distress syndrome (ARDS) is a disease associated with a high mortality rate. The initial phase is characterized by induction of inflammatory cytokines and chemokines and influx of circulating inflammatory cells, including macrophages which play a pivotal role in the innate and adaptive immune responses to injury. Growing evidence points to phenotypic heterogeneity and plasticity between various macrophage activation states.

Methods

In this study, gene expression in alveolar macrophages and circulating leukocytes from healthy control subjects and patients with ARDS was assessed by mRNA microarray analysis.

Results

Both alveolar macrophages and circulating leukocytes demonstrated up-regulation of genes encoding chemotactic factors, antimicrobial peptides, chemokine receptors, and matrix metalloproteinases. Two genes, the pro-inflammatory S100A12 and the anti-inflammatory IL-1 decoy receptor IL-1R2 were significantly induced in both cell populations in ARDS patients, which was confirmed by protein quantification. Although S100A12 levels did not correlate with disease severity, there was a significant association between early plasma levels of IL-1R2 and APACHE III scores at presentation. Moreover, higher levels of IL-1R2 in plasma were observed in non-survivors as compared to survivors at later stages of ARDS.

Conclusions

These results suggest a hybrid state of alveolar macrophage activation in ARDS, with features of both alternative activation and immune tolerance/deactivation.. Furthermore, we have identified a novel plasma biomarker candidate in ARDS that correlates with the severity of systemic illness and mortality.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0190-x) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

Schistosomiasis affects nearly 40 million women of reproductive age, and is known to elicit a pro-inflammatory signature in the placenta. We have previously shown that antigens from schistosome eggs can elicit pro-inflammatory cytokine production from trophoblast cells specifically; however, the influence of these antigens on other characteristics of trophoblast function, particularly as it pertains to placentation in early gestation, is unknown. We therefore sought to determine the impact of schistosome antigens on key characteristics of first trimester trophoblast cells, including migration and invasion.

Methods

First trimester HTR8/SVneo trophoblast cells were co-cultured with plasma from pregnant women with and without schistosomiasis or schistosome soluble egg antigens (SEA) and measured cytokine, cellular migration, and invasion responses.

Results

Exposure of HTR8 cells to SEA resulted in a pro-inflammatory, anti-invasive signature, characterized by increased pro-inflammatory cytokines (IL-6, IL-8, MCP-1) and TIMP-1. Additionally, these cells displayed 62% decreased migration and 2.7-fold decreased invasion in vitro after treatment with SEA. These results are supported by increased IL-6 and IL-8 in the culture media of HTR8 cells exposed to plasma from Schistosoma japonica infected pregnant women.

Conclusions

Soluble egg antigens found in circulation during schistosome infection increase pro-inflammatory cytokine production and inhibit the mobility and invasive characteristics of the first trimester HTR8/SVneo trophoblast cell line. This is the first study to assess the impact of schistosome soluble egg antigens on the behavior of an extravillous trophoblast model and suggests that schistosomiasis in the pre-pregnancy period may adversely impact placentation and the subsequent health of the mother and newborn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号