首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
目的探讨常见毛囊细胞角蛋白在毛囊周期中的表达特征。 方法取毛囊发育期、生长期启动、生长期、退化期和静止期的小鼠皮肤,石蜡切片后通过免疫荧光的方法,检测细胞角蛋白Krt5、Krt6、Krt10、Krt14、Krt15和Krt19的表达情况。 结果Krt5在静止期和生长期启动表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt6表达于所有时期的外根鞘细胞和内根鞘细胞;Krt10表达于生长期和退化期的毛母质和内根鞘细胞,在其他时期表达不一致;Krt14在生长期和退化期表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt15和Krt19表达于毛囊发育期、生长期启动和静止期的毛囊隆突区细胞,在生长期和退化期表达不一致。 结论角蛋白作为毛囊结构或毛囊干细胞标记物仅适用于特定的毛囊周期。研究者在使用毛囊角蛋白作为标记物时,应首先明确其在毛囊周期中的表达情况。  相似文献   

3.
Hair follicles (HFs) are self-renewing structures that reconstitute themselves through the hair cycle. They maintain reservoirs of stem cells (SC) that are thought to reside in the bulge area, a region localized in the lowermost permanent portion of HFs. In mice and humans, HF bulge cells express nestin and present stem features as pluripotency. Nestin is a class VI intermediate filament protein; it was first described as a specific marker of CNS stem cells, but recent studies suggest that it may represent a more general stem cell marker (Wiese et al., 2004; Hoffman, 2006). Bulge cell characteristics have mainly been studied in mice and humans, but recently, a bulge-like region was identified also in dog HFs (Pascucci et al., 2006). In this work we investigate the presence and localization of nestin in dog HFs with the aim of evaluating its expression and to correlate it with the location of the bulge-like region. Immunostaining of skin samples collected from healthy dogs was performed by using a rabbit anti-nestin polyclonal antibody. The presence of a population of immunoreactive cells was revealed in the hair follicle middle region, at the arrector pili muscle insertion level. An immunohistochemical signal was detected only in primary hair follicles throughout the hair cycle. These observations led us to conclude that nestin positive cells are located in the bulge-like region of dog HFs and strengthen our hypothesis regarding the correlation between this region and the dog HF stem compartment.  相似文献   

4.
目的:探讨毛囊周期中,Wnt3a在毛囊及黑素细胞中的表达变化。方法:以DCT-LacZ转基因小鼠为动物模型,通过X-gal染色技术观察黑素细胞谱系在小鼠皮肤中的分布情况;采用X-gal染色结合免疫组化方法检测Wnt3a在毛囊及黑素细胞谱系中的表达情况;采用RT-PCR方法对小鼠皮肤全层Wnt3a和TYR的mRNA表达进行半定量分析。结果:在生长期毛囊中,Wnt3a蛋白在表皮、毛囊外根鞘Bulge区、内根鞘以及毛球部均有表达,在黑素干细胞与黑素细胞也观察到Wnt3a;在退化期,Wnt3a的表达逐渐减弱,仅在外根鞘有较弱的表达,但黑素干细胞中没有观察到Wnt3a;在静止期,几乎检测不到Wnt3a的表达;TYR mRNA与Wnt3a mRNA在毛囊周期中的表达模式一致,在生长期最强,退化期减弱,静止期最弱。结论:Wnt3a可能对黑素细胞谱系分化起到促进作用。  相似文献   

5.
Hair cycle disturbances are common in dogs and comparable to some alopecic disorders in humans. A normal hair cycle is maintained by follicular stem cells which are predominately found in an area known as the bulge. Due to similar morphological characteristics of the bulge area in humans and dogs, the shared particularity of compound hair follicles as well as similarities in follicular biomarker expression, the dog is a promising model to study human hair cycle and stem cell disorders. To gain insight into the spatial distribution of follicular keratinocytes with stem cell potential in canine compound follicles, we microdissected hair follicles in anagen and telogen from skin samples of freshly euthanized dogs. The keratinocytes isolated from different locations were investigated for their colony forming efficiency, growth and differentiation potential as well as clonal growth. Our results indicate that i) compound and single hair follicles exhibit a comparable spatial distribution pattern with respect to cells with high growth potential and stem cell-like characteristics, ii) the lower isthmus (comprising the bulge) harbors most cells with high growth potential in both, the anagen and the telogen hair cycle stage, iii) unlike in other species, colonies with highest growth potential are rather small with an irregular perimeter and iv) the keratinocytes derived from the bulbar region exhibit characteristics of actively dividing transit amplifying cells. Our results now provide the basis to conduct comparative studies of normal dogs and those with hair cycle disorders with the possibility to extend relevant findings to human patients.  相似文献   

6.
The hair follicle (HF) represents a prototypic ectodermal–mesodermal interaction system in which central questions of modern biology can be studied. A unique feature of these stem‐cell‐rich mini‐organs is that they undergo life‐long, cyclic transformations between stages of active regeneration (anagen), apoptotic involution (catagen), and relative proliferative quiescence (telogen). Due to the low proliferation rate and small size of the HF during telogen, this stage was conventionally thought of as a stage of dormancy. However, multiple lines of newly emerging evidence show that HFs during telogen are anything but dormant. Here, we emphasize that telogen is a highly energy‐efficient default state of the mammalian coat, whose function centres around maintenance of the hair fibre and prompt responses to its loss. While actively retaining hair fibres with minimal energy expenditure, telogen HFs can launch a new regeneration cycle in response to a variety of stimuli originating in their autonomous micro‐environment (including its stem cell niche) as well as in their external tissue macro‐environment. Regenerative responses of telogen HFs change as a function of time and can be divided into two sub‐stages: early ‘refractory’ and late ‘competent’ telogen. These changing activities are reflected in hundreds of dynamically regulated genes in telogen skin, possibly aimed at establishing a fast response‐signalling environment to trauma and other disturbances of skin homeostasis. Furthermore, telogen is an interpreter of circadian output in the timing of anagen initiation and the key stage during which the subsequent organ regeneration (anagen) is actively prepared by suppressing molecular brakes on hair growth while activating pro‐regenerative signals. Thus, telogen may serve as an excellent model system for dissecting signalling and cellular interactions that precede the active ‘regenerative mode’ of tissue remodeling. This revised understanding of telogen biology also points to intriguing new therapeutic avenues in the management of common human hair growth disorders.  相似文献   

7.
Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.  相似文献   

8.
The lowermost portion of the resting (telogen) follicle consists of the bulge and secondary hair germ. We previously showed that the progeny of stem cells in the bulge form the lower follicle and hair, but the relationship of the bulge cells with the secondary hair germ cells, which are also involved in the generation of the new hair at the onset of the hair growth cycle (anagen), remains unclear. Here we address whether secondary hair germ cells are derived directly from epithelial stem cells in the adjacent bulge or whether they arise from cells within the lower follicle that survive the degenerative phase of the hair cycle (catagen). We use 5-bromo-2'-deoxyuridine to label bulge cells at anagen onset, and demonstrate that the lowermost portion of the bulge collapses around the hair and forms the secondary hair germ during late catagen. During the first six days of anagen onset bulge cells proliferate and self-renew. Bulge cell proliferation at this time also generates cells that form the future secondary germ. As bulge cells form the secondary germ cells at the end of catagen, they lose expression of a biochemical marker, S100A6. Remarkably, however, following injury of bulge cells by hair depilation, progenitor cells in the secondary hair germ repopulate the bulge and re-express bulge cell markers. These findings support the notion that keratinocytes can "dedifferentiate" to a stem cell state in response to wounding, perhaps related to signals from the stem cell niche. Finally, we also present evidence that quiescent bulge cells undergo apoptosis during follicle remodeling in catagen, indicating that a subpopulation of bulge cells is not permanent.  相似文献   

9.
Hair follicle (HF) morphogenesis and cycling are a result of intricate autonomous epithelial-mesenchymal interactions. Once the first HF cycle is complete it repeatedly undergoes cyclic transformations. Heparan sulfate (HS) proteoglycans are found on the cell surface and in the extracellular matrix where they influence a variety of biological processes by interacting with physiologically important proteins, such as growth factors. Inhibition of heparanase (an HS endoglycosidase) in in vitro cultured HFs has been shown to induce a catagen-like process. Therefore, this study aimed to elucidate the precise role of HS in HF morphogenesis and cycling. An inducible tetratransgenic mouse model was generated to excise exostosin glycosyltransferase 1 (Ext1) in keratin 14-positive cells from P21. Interestingly, EXT1StEpiΔ/StEpiΔ mice presented solely anagen HFs. Moreover, waxing the fur to synchronize the HFs revealed accelerated hair regrowth in the EXT1StEpiΔ/StEpiΔ mice and hindered cycling into catagen. The ablation of HS in the interfollicular epidermal cells of mature skin led to the spontaneous formation of new HFs and an increase in Sonic Hedgehog expression resembling wild-type mice at P0, thereby indicating that the HS/Sonic Hedgehog signaling pathway regulates HF formation during embryogenesis and prevents HF formation in mature skin. Finally, the knock-out of HS also led to the morphogenesis and hyperplasia of sebaceous glands and sweat glands in mature mice, leading to exacerbated sebum production and accumulation on the skin surface. Therefore, our findings clearly show that an intricate control of HS levels is required for HF, sebaceous gland, and sweat gland morphogenesis and HF cycling.  相似文献   

10.
Studies of human genetic disorders and mouse models reveal the important roles of matriptase in hair growth. Here, we investigate matriptase expression and zymogen activation in hair follicles. We show: 1) layer-dependent distribution patterns, with much higher matriptase expression in cells of the outer root sheath and matrix cells of the hair bulb than in cells of the inner root sheath; 2) cycle-dependent expression patterns, with matriptase expressed in the anagen and catagen phases of the hair lifecycle, but not in the telogen phase; 3) reduced expression of the matriptase inhibitor, HAI-1, in the catagen phase, suggesting increased proteolytic activity in this phase; and 4) definitive matriptase zymogen activation patterns, with the highest matriptase activation observed in matrix cells and outer root sheath cells in the isthmus/bulge region. In sebaceous glands, matriptase is highly expressed in basal and ductal cells, with much lower expression in the differentiated, lipid-filled cells of the interior. We also show that matriptase potently activates hepatocyte growth factor (HGF) in vitro, and that the HGF receptor, c-Met, is co-expressed in those cells that express activated matriptase. Our observations suggest that the matriptase-HGF-c-MET pathway has the potential to be engaged, primarily in proliferative cells rather than terminally differentiated epithelial cells of the human pilosebaceous unit.  相似文献   

11.
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.  相似文献   

12.
Yuan C  Jiao L  Yang L  Ying W  Hu Z  Liu J  Cui F  Li L  Qian L  Teng Y  Hang H  Qian X  Yang X 《Proteomics》2008,8(11):2230-2243
Each postnatal hair follicle (HF) perpetually goes through three phases: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still largely unknown. Our previous study shows that the keratinocyte specific Smad4 knockout mice exhibit progressive alopecia due to the mutant HFs failure to undergo programmed regression. To investigate the detailed molecular events controlling this process, the protein profiles of Smad4 mutant and control epidermal and HF keratinocytes were compared using 2-D difference gel electrophoresis (2-D DIGE) proteomic analysis. Eighty-six differentially expressed protein spots were identified by MALDI-TOF/TOF MS or ESI-MS/MS as 72 proteins, of which 29 proteins were found to be changed during the anagen-catagen transition of HFs in Smad4 mutants compared with the controls. The differentially expressed proteins represent a wide spectrum of functional classes such as keratin, the cytoskeleton, cellular growth and differentiation, ion combination and transfer, protein enzymes. Notably, we found that the 14-3-3sigma protein together with the 14-3-3zeta and 14-3-3beta proteins were significantly down-regulated only in wild-type keratinocytes but not in Smad4 mutant keratinocytes during the catagen phase, suggesting that increased expression of 14-3-3 proteins might contribute to the blockade of catagen initiation in Smad4 deficient HFs.  相似文献   

13.
Mutant gene wallhaarig (wa) was acting as a modifier of the mutant gene waved alopecia (wal), substantially increasing hair loss rate in mice, as was previously shown in our laboratory. The current paper is devoted to a study of mutant gene angora- Y(Fgf5(go-Y)), which had extended anagen stage of the first and second generations hair growth cycles in triple heterozygotes (Fgf5(go-Y)/Fgf5(go-Y) we/we wal/wal). First generation guard hair in triple homozygotes had their anagen stage 4 days longer than the same stage in double homozygotes (+/+ we/we wal/wal). Hair loss started at a catagen stage in double homozygotes, while it started in triple homozygotes at the end of the same stage or even in a telogen. Such mutant gene interaction in hair follicle morphogenesis led to a partial recovery of a body hair coat in triple homozygotes.  相似文献   

14.
15.
16.
Human hair morphogenesis is a dynamic process caused by the remodelling of the skin. Hair growth is cyclic in mammals consisting of three distinct stages: an active stage (anagen), a regressive stage (catagen), and a resting stage (telogen). One disorder in this process is gradual balding of the scalp called androgenetic alopecia. Little is known about the cell biological or molecular mechanisms involved and thus very little treatment is currently available. In this review we focus on the most significant parameters affecting hair growth which participate in baldness.  相似文献   

17.
In early postnatal mouse skin, the NG2 proteoglycan is expressed in the subcutis, the dermis, the outer root sheath of hair follicles, and the basal keratinocyte layer of the epidermis. With further development, NG2 is most prominently expressed by stem cells in the hair follicle bulge region, as also observed in adult human skin. During telogen and anagen phases of the adult hair cycle, NG2 is also found in stem cell populations that reside in dermal papillae and the outer root sheaths of hair follicles. Ablation of NG2 produces alterations in both the epidermis and subcutis layers of neonatal skin. Compared with wild type, the NG2 null epidermis does not achieve its full thickness due to reduced proliferation of basal keratinocytes that serve as the stem cell population in this layer. Thickening of the subcutis is also delayed in NG2 null skin due to deficiencies in the adipocyte population.  相似文献   

18.
We studied the hair-forming ability of epithelium and the relevant activity of dermal papilla (DP) in mouse vibrissal follicles during the hair cycle. Follicles were transversely cut into four pieces and each of them was associated with an isolated DP and grafted beneath the kidney capsule to induce hair formation. Various hair-cycle combinations of the fragments and DPs were examined. Hairs were generated not only in the follicle fragment containing the bulge (fragment III) but also in the fragment between the bulge and hair bulb (fragment II). The hair-forming frequencies were affected by the hair cycle stages of both the follicle fragments and DPs. Fragment III at late anagen (LA) and fragment II at catagen frequently generated hairs when associated with early anagen (EA)-DPs, but infrequently with mid-anagen (MA)-DPs. Oppositely, anagen fragment II produced hairs at a high frequency with MA-DPs and at a low frequency with EA-DPs. Hair generation in anagen fragment II is an unexpected finding because previous studies suggested that, during anagen, this region does not contain clonogenic epithelial cells that have been believed to be crucial for hair formation. Therefore, non-clonogenic epithelial cells would be able to generate hairs as well as clonogenic ones, and they should have a latent hair-forming ability that could be more effectively awakened by MA-DP than by EA-DP stimuli. Non-clonogenic epithelial cells might be a dormant phase of hair precursor cells. Proliferating follicular epithelial cells were detected in the middle and lower outer root sheath throughout the hair cycle but scarcely at LA. These findings suggest that the hair inductivity of DPs should be altered between EA and MA, and follicular epithelial cells would change their DP stimuli-directed hair-forming ability around LA, probably linked to the proliferative activity.  相似文献   

19.
20.
Hair follicle cycling can be divided into the following three stages: anagen, catagen, and telogen. The molecular signals that orchestrate the follicular transition between phases are still unknown. To better understand the detailed protein networks controlling this process, proteomics and bioinformatics analyses were performed to construct comparative protein profiles of mouse skin at specific time points (0, 8, and 20 days). Ninety-five differentially expressed protein spots were identified by MALDI-TOF/TOF as 44 proteins, which were found to change during hair follicle cycle transition. Proteomics analysis revealed that these changes in protein expression are involved in Ca2+-regulated biological processes, migration, and regulation of signal transduction, among other processes. Subsequently, three proteins were selected to validate the reliability of expression patterns using western blotting. Cluster analysis revealed three expression patterns, and each pattern correlated with specific cell processes that occur during the hair cycle. Furthermore, bioinformatics analysis indicated that the differentially expressed proteins impacted multiple biological networks, after which detailed functional analyses were performed. Taken together, the above data may provide insight into the three stages of mouse hair follicle morphogenesis and provide a solid basis for potential therapeutic molecular targets for this hair disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号