首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunocytochemical analysis using antibody raised against human H2AX histones phosphorylated at serine 139 (γ-H2AX) demonstrates that root meristem cells of Vicia faba exposed to UV-radiation or incubated with hydroxyurea (HU) reveal discrete foci at the border of the nucleolus and perinucleolar chromatin or scattered over the whole area of cell nucleus. Western blots detected only one protein band at the position expected for the phosphorylated form of H2AX. The dose-effect relationship was demonstrated following treatment with 2.5 and 10 mM HU. Proteins extracted from root meristems incubated for 2 h either with HU and caffeine or with HU and sodium metavanadate showed unchanged amounts of bound γ-H2AX antibodies, as compared to root meristems treated with 2.5 mM HU. Higher quantities of phosphorylated H2AX histones were detected in proteins extracted from roots treated with HU and 2-aminopurine. All treatments were effective in producing evident aberrations of premature mitosis: broken and lagging chromatids, acentric fragments, chromosomal bridges and micronuclei. Our results show that phosphorylation of H2AX at the carboxy-terminal Ser-Gln-Glu sequence is among the earliest responses to double-strand breaks and, presumably, one of the key ATM/ATR-dependent signals indispensable for the repair of spontaneous and induced DNA damage in plant cells.  相似文献   

2.
The intra-S-phase checkpoint response to hydroxyurea (HU)-mediated arrest of DNA replication was analysed in root meristems of two legumes, Pisum sativum and Vicia faba. The obtained results suggest that a molecular signal which invokes mechanisms allowing the cells to override the S-M dependency control system may be generated by caffeine (CF) and a number of alternative, yet related chemical agents, benzyl-6-aminopurine (BAP), 2-aminopurine (2-AP), and 6-dimethylaminopurine (DMAP). A variety of aberrant mitotic divisions included chromosomal breaks and gaps, lost and lagging chromatids and chromosomes, acentric fragments, chromosome bridges and micronuclei. Furthermore, similar effects induced by sodium vanadate, an inhibitor of protein phosphatases, extend the number of inhibitors capable of inducing premature chromosome condensation (PCC) in root meristem cells, as well as the range of possible regulatory pathways leading to the transition from S-phase arrest towards abnormal mitosis. Until preprophase, FITC-conjugated monoclonal antibodies (alpha-Y(a)b-FITC) that specifically recognize phosphorylated form of threonine indicate no evident cell cycle-dependent changes in an overall phosphorylation status of root meristem cells in the control plants. Irrespective of the stage of interphase, alpha-Y(p)ab-FITC was localized basically in the cytoplasm, whereas nuclear staining was considerably weaker, with a significant fluorescence confined merely to nucleolar regions. The intensity of alpha-Y(p)ab-FITC staining in HU/CF-treated seedlings was found higher than that in the control plants (with the exception of G2 cells), suggesting a general increase in the level of protein phosphorylation, a physiological response mediated probably by an enhanced activity of the cdc-like protein kinase(s).  相似文献   

3.
4.
通过Giemsa染色观察禾谷镰孢菌Fusarium graminearum分生孢子萌发过程中的核相变化及有丝分裂过程。观察表明,分生孢子细胞为单核,细胞核在分生孢子细胞内分裂后进入芽管,在芽管内进行多次分裂,使芽管内细胞核数目不断变化。禾谷镰孢菌有丝分裂过程可以分为4个时期,前期染色体逐渐浓缩变短,中期染色体清晰可见,后期染色单体发生分离并向相反的两极移动,末期形成新的子核。有丝分裂过程中染色体的分离同步或不同步,不同步分离中的滞后染色体形成后期桥的现象更为普遍。  相似文献   

5.
Madin-Darby bovine kidney (MDBK) cells were treated with the bifunctional DNA cross-linker, L-7, to examine the generation of micronuclei and other nuclear abnormalities. The preceding paper demonstrates that L-7 treatment induces the formation of triradial and quadriradial chromosomes in MDBK cells. These chromosomes are believed to result from interduplex DNA cross-links formed between G-C rich centromeric satellite DNA regions on non-sister chromatids. Treatment produces a majority of centromere-positive micronuclei. In addition, many daughter cells remain attached by chromatin bridges which are sometimes beaded with micronuclei. Up to 15% of cell nuclei become lobular and fused with numerous micronuclear-like structures attached to their membranes. These attached structures are classified as attached micronuclear-like structures (AMNLS). Fluorescence in situ hybridization (FISH) using a centromeric satellite sequence was performed on treated cells. Hybridization reveals that intercellular bridges are composed of centromeric sequences and initiate at centromeric foci in daughter cells. Furthermore, the majority of junctions between AMNLS and nuclei contain an enhancement of centromeric signal. The frequency of AMNLS appears dependent on the concentration of L-7 and the duration of treatment. Similar results were found for the generation of cross-linked chromosome products in the previous paper. We suggest that AMNLS result from the abnormal mitotic segregation of cross-linked chromosome products.  相似文献   

6.
Irradiation of the kinetochore region of PtK2 chromosomes by laser light of 532 nm was used to study the function of the kinetochore region in chromosome movement and to create an artificial micronuclei in cells. When the sister kinetochores of a chromosome were irradiated at prometaphase, the affected chromosome detached from the spindle and exhibited no further directed movements for the duration of mitosis. The chromatids of the chromosome remained attached to one another until anaphase, at which point they separated. No poleward movement of the chromatids was observed, and at telophase they passively moved to one of the daughter cells and were enclosed in a micronucleus. The daughter cell containing the micronucleus was then isolated by micromanipulation and followed through subsequent mitoses. At the next mitosis, two chromosomes, each with two chromatids, condensed in the micronucleus. These chromosomes did not attach to the spindle and showed chromatid separation, but no poleward movements at anaphase. They were again enclosed in micronuclei at telophase. The third generation mitosis was similar to the second. Occasionally, both the irradiation-produced and naturally occurring micronuclei exhibited no chromosome condensation at mitosis. Feulgen-stained monolayers of PtK2 cells with naturally occurring micronuclei showed that some micronuclei stain positive for DNA and others do not. This finding raises questions about the fate of chromosomes in a micronucleus.  相似文献   

7.
Micronuclei are formed from chromosomes and chromosomal fragments that lag behind in anaphase and are left outside daughter nuclei in telophase. They may also be derived from broken anaphase bridges. Nuclear buds, micronucleus-like bodies attached to the nucleus by a thin nucleoplasmic connection, have been proposed to be generated similarly to micronuclei during nuclear division or in S-phase as a stage in the extrusion of extra DNA, possibly giving rise to micronuclei. To better understand these phenomena, we have characterized the contents of 894 nuclear buds and 1392 micronuclei in normal and folate-deprived 9-day cultures of human lymphocytes using fluorescence in situ hybridization with pancentromeric and pantelomeric DNA probes. Such information has not earlier been available for human primary cells. Surprisingly, there appears to be no previous data on the occurrence of telomeres in micronuclei (or buds) of normal human cells in general. Our results suggest that nuclear buds and micronuclei have partly different mechanistic origin. Interstitial DNA without centromere or telomere label was clearly more prevalent in nuclear buds (43%) than in micronuclei (13%). DNA with only telomere label or with both centromere and telomere label was more frequent in micronuclei (62% and 22%, respectively) than in nuclear buds (44% and 10%, respectively). Folate deprivation especially increased the frequency of nuclear buds and micronuclei harboring telomeric DNA and nuclear buds harboring interstitial DNA but also buds and micronuclei with both centromeric and telomeric DNA. According to the model we propose, that micronuclei in binucleate lymphocytes primarily derive from lagging chromosomes and terminal acentric fragments during mitosis. Most nuclear buds, however, are suggested to originate from interstitial or terminal acentric fragments, possibly representing nuclear membrane entrapment of DNA that has been left in cytoplasm after nuclear division or excess DNA that is being extruded from the nucleus.  相似文献   

8.
Irradiation of the kinetochore region of PtK2 chromosomes by laser light of 532 nm was used to study the function of the kinetochore region in chromosome movement and to create artificial micronuclei in cells. When the sister kinetochores of a chromosome were irradiated at prometaphase, the affected chromosome detached from the spindle and exhibited no further directed movements for the duration of mitosis. The chromatids of the chromosome remained attached to one another until anaphase, at which point they separated. No poleward movement of the chromatids was observed, and at telophase they passively moved to one of the daughter cells and were enclosed in a micronucleus. The daughter cell containing the micronucleus was then isolated by micromanipulation and followed through subsequent mitoses. At the next mitosis, two chromosomes, each with two chromatids, condensed in the micronucleus. These chromosomes did not attach to the spindle and showed chromatid separation, but no poleward movements at anaphase. They were again enclosed in micronuclei at telophase. The third generation mitosis was similar to the second. Occasionally, both the irradiation-produced and naturally occurring micronuclei exhibited no chromosome condensation at mitosis. Feulgenstained monolayers of PtK2 cells with naturally occurring micronuclei showed that some micronuclei stain positive for DNA and others do not. This finding raises questions about the fate of chromosomes in a micronucleus.  相似文献   

9.
The frequency of micronucleated cells in isolated 72-h human lymphocyte cultures treated with cytochalasin B (Cyt-B; 1.5-6 micrograms/ml for the last 28 h) was 9-21 times higher (mean 14.6 times) among multinucleate than binucleate cells. At 3 micrograms/ml, the concentration of Cyt-B originally recommended for the human lymphocyte micronucleus assay, the frequency of micronucleated multinucleate cells was 8.5%, while 0.7% of the binucleate cells had a micronucleus. Although no dose-dependent induction of micronuclei could be observed for either of the cell types, increase in the concentration of Cyt-B was associated with a decrease in the ratio of multinucleate to binucleate cells. Treatment with Cyt-B (1.5-12 micrograms/ml) increased the frequency of anaphase cells with aberrations, especially lagging chromatids. This finding was explained by a dose-dependent increase in multipolar (greater than or equal to 3 poles) divisions which had a high frequency of anaphase aberrations (39-53%), irrespective of the concentration of Cyt-B. Bipolar anaphases did not show a significant increase in aberrant cells, although a suggestive dependence on the concentration of Cyt-B was observed. The findings indicate that the high frequency of micronuclei in multinucleate lymphocytes produced by Cyt-B is due to mitotic errors arising when bi- (and multi-) nuclear cells divide. To avoid possible artifactually high micronucleus frequencies due to inclusion of cells that have divided greater than or equal to 2 times in the presence of Cyt-B, it is recommended that, in the human lymphocyte micronucleus assay using the cytokinesis-block method, the cell culture time is reduced to minimize the frequency of such cells and that only good preparations and regularly shaped binucleates are included in the analysis.  相似文献   

10.
Summary Mitotic dynamics and the kinetics of mass induction of micronuclei after treatment of Nicotiana plumbaginifolia cell suspensions with the spindle toxin amiprophos-methyl (APM) are reported. The addition of APM to suspension cells resulted in the accumulation of a large number of metaphases. The course of mitosis was strikingly different from normal. Metaphase chromosomes showed neither centromere division nor separation of chromatids. Single chromosomes and groups of 2 or more chromosomes were scattered over the cytoplasm. After 5–6 h of APM treatment, chromosomes decondensed and formed micronuclei. When treatment duration was increased, the frequency of cells with micronuclei as well as those showing lobed micronuclei increased. Similarly, with an increase in APM concentration the frequency of cells with micronuclei increased. After removal of APM, chromosome grouping disappeared, cells showing lobed micronuclei further increased and mitoses with doubled chromosome numbers appeared in the next cell division. Cytological observations and DNA measurements revealed that several sub-diploid micronuclei containing 1 or a few chromosomes can be obtained, and that flow cytometry can detect and sort out these micronuclei. The applications of micronuclei for genetic manipulation of specific chromosomes and gene mapping are indicated.  相似文献   

11.
A N Stroud  R Nathan  S Harami 《In vitro》1975,11(2):61-68
Early chromatin condensation in interphase cells (G1) of human peripheral blood lymphocytes has been induced without virus or cell fusion by exposure to allogeneic or xenogeneic mitotic cells. The event, although similar in some ways to the phenomenon described as "premature chromosome condensation," "chromosome pulverization," and "prophasing," differs in that it does not require the presence of viruses and cell fusion before mitosis proceeds in the G1 cell. Early chromatin condensation in interphase cells induced by mitotic cells only, consists of chromatids in the early or late G1 phase of the cell cycle that are not pulverized or fragmented at mitosis. Some of the chromosomes are twice as long as the metaphase chromosomes and exhibit natural bands. Almost twice as many of these bands are produced as by trypsin treatment of metaphase chromosomes. The nuclear membrane is intact and nucleoli are present, to which some chromosomes are attached. The DNA content of the precocious chromosomes in G1 is half the amount of the metaphase complement.  相似文献   

12.
Using methods of in vivo observation and ultrathin sectioning, it is shown that chromosomes of metaphase PE cells, previously treated with diluted Henk's solutions (70, 30 and 15%), undergo some structural transitions resulting in the formation of micronuclei. At the early stages of hypotonic treatment chromosomes are seen considerably swollen and losing the higher levels of organization, including the chromonema and chromomeres. The chromosomal bodies are formed by DNP fibers 10-25 nm in diameter making loops radiating from the central part of the chromatids. Chromosomes are capable of recondensing from this state by consecutive reconstitution of G-bands, chromomeres and the chromonema. The subsequent secondary decondensation of chromosomes is analogous to telophase decondensation at the normal mitosis, but it results in the formation of a great number of small nuclei (micronuclei). The chromatin structure in micronuclei as well as their ability to synthesize RNA and to replicate DNA show these effects to be reversible. It has been suggested that the loop organization of DNP may be essential for sustaining the structural integrity of the mitotic chromosome.  相似文献   

13.
Microtubules offer a very large local concentration of binding sites for cytotoxic taxoids or for hypothetical endogenous regulators. Several compounds from diverse sources stabilize microtubules and arrest cell division similarly to the antitumour drug Taxol. We have investigated the subcellular location of the Taxol binding sites, employing a fluorescent taxoid (FLUTAX) that reversibly interacts with the Taxol binding sites of microtubules and induces cellular effects similar to Taxol. The specific binding of FLUTAX to a fraction of the available cellular binding sites effectively inhibits division of cultured human tumour cells at G(2)/M, and triggers apoptotic death. The loci of reversible binding, directly imaged in intact U937 cells treated with cytotoxic doses of fluorescent taxoid are the centrosomes, with a few associated microtubules in interphase cells, and the spindle pole microtubules in mitotic cells, instead of uniformly labelling the microtubule cytoskeleton. Cytoskeletal lesions induced and visualized with FLUTAX consist of microtubule bundles and abnormal mitoses, including monopolar spindles and highly fluorescent multipolar spindles. The multiple asters and monopolar spindles mark arrested U937 leukaemia and OVCAR-3 ovarian carcinoma cells on their path to apoptosis (as well as K562, HeLa, and MCF-7 cells). Depending on the FLUTAX treatment, OVCAR-3 cells died from abnormal mitosis or from a subsequent interphase with double chromatin content and lobulated nuclei (micronuclei), indicating impairment of centrosome separation. Fragmented centrosomes could be observed in FLUTAX-treated non-transformed 3T3.A31 cells, which developed micronuclei but were resistant to apoptosis. These results strongly suggest that centrosomal impairment by taxoid binding during interphase, in addition to the suppression of the kinetochore microtubule dynamics in the mitotic spindle, is a primary cause of cell cycle de-regulation and cell death.  相似文献   

14.
Chromosome elimination in micronuclei: a common cause of hypoploidy.   总被引:10,自引:2,他引:8       下载免费PDF全文
An excess of hypoploid cells has repeatedly been reported in studies of aneuploidy and has often been attributed to technical artifact. We have examined at least 200 anaphase or early-telophase cells from each of 28 normal women and found that chromosome or chromatid lagging occurs in an average of 2.43% of cells. In a separate study, we have examined the frequency of micronuclei in cytochalasin B-arrested, binucleate cells and shown that a similar frequency of cells (1.6%) contain one or more micronuclei. Using in situ hybridization of an alpha centromeric probe (alpha R1), which hybridizes to 9 of the 22 human autosomes, we were able to infer that most, if not all, of the micronuclei contain whole chromosomes or chromatids. Since the loss of a chromosome by lagging will induce hypoploid daughter nuclei (two where a chromosome is lost and one where a chromatid is lost), we conclude that lagging is a major mechanism for chromosome loss in human lymphocyte cultures. This loss occurs in the cells of normal individuals under control conditions.  相似文献   

15.
To evaluate the mitotic stability of Triticum aestivum×Thinopyrum ponticum derivatives (BC2F7 and BC2F5 doubled haploids), chromosome counting by both conventional and immunostaining techniques, and measurement of DNA content were performed. The wheat progenitor line, PF 839197, the wheat recurrent parent CEP 19 and the control Chinese Spring were also investigated. In the hybrid derivatives, chromosome number ranged from 2n=36 to 60, with a predominance of chromosome numbers higher than 2n=42, that was confirmed by determination of nuclear DNA content. Chinese Spring and PF 839197 were stable, but CEP 19 showed chromosome number variation (20%). Analyses of non-pretreated cells revealed the presence of anaphase bridges, lagging chromatids, chromosome fragments and micronuclei. Immunostaining with an antibody recognizing histone H3 phosphorylated showed dicentric chromatids forming anaphase bridges and pericentromeric phosphorylation at centric chromosome fragments but not at lagging chromatids. The possible causes of the observed mitotic instability are discussed.  相似文献   

16.
The in vitro micronucleus test with Syrian hamster embryo (SHE) cells assays the induction of micronuclei by chemical agents. Both chromosome fragments and lagging chromosomes can give rise to micronuclei. Nevertheless, only limited information is available on the ultrastructure of micronuclei and the mechanisms of their formation. Diethylstilbestrol (DES), a non-mutagenic carcinogen, as well as its analogue 3.3'-DES induce micronuclei in SHE cells. A comparison of the dose response of DES-induced micronucleus formation with the previously published ones for aneuploidy and transformation shows that all 3 run in parallel. Thus, a functional relationship between these endpoints, in the SHE system, may be implied. The present study is designed to address the formation of micronuclei using supravital UV microscopy, to test for the presence of defined chromosome domains within micronuclei using immunocytochemistry, and to define aspects of their ultrastructure by electron microscopy. Supravital UV microscopy showed that 3.3'-DES induces displacement of chromosomes/chromatids during prophase/anaphase and formation of micronuclei during cytokinesis. Immunocytochemistry revealed that micronuclei contain, at high frequencies, CREST antibody-reactive kinetochores, indicating the presence of whole chromosomes or centric fragments in these structures. Moreover, transmission electron microscopy showed that micronuclei exhibit ultrastructural details typical of interphase nuclei. Specifically, micronuclei exhibited morphological evidence of a nuclear lamina and segregation of karyoplasm into euchromatic and heterochromatic regions. All micronuclei examined were enclosed by a nuclear envelope of normal morphology and showed nuclear pore complexes. Together the findings provide evidence that DES interferes with the mitotic apparatus as early as prophase, resulting in the formation of micronuclei and, as a consequence, in the loss of chromatids or chromosomes.  相似文献   

17.
Posttranslational modifications of core histones contribute to driving changes in chromatin conformation and compaction. Herein, we investigated the role of histone deacetylation on the mitotic process by inhibiting histone deacetylases shortly before mitosis in human primary fibroblasts. Cells entering mitosis with hyperacetylated histones displayed altered chromatin conformation associated with decreased reactivity to the anti-Ser 10 phospho H3 antibody, increased recruitment of protein phosphatase 1-delta on mitotic chromosomes, and depletion of heterochromatin protein 1 from the centromeric heterochromatin. Inhibition of histone deacetylation before mitosis produced defective chromosome condensation and impaired mitotic progression in living cells, suggesting that improper chromosome condensation may induce mitotic checkpoint activation. In situ hybridization analysis on anaphase cells demonstrated the presence of chromatin bridges, which were caused by persisting cohesion along sister chromatid arms after centromere separation. Thus, the presence of hyperacetylated chromatin during mitosis impairs proper chromosome condensation during the pre-anaphase stages, resulting in poor sister chromatid resolution. Lagging chromosomes consisting of single or paired sisters were also induced by the presence of hyperacetylated histones, indicating that the less constrained centromeric organization associated with heterochromatin protein 1 depletion may promote the attachment of kinetochores to microtubules coming from both poles.  相似文献   

18.
We previously demonstrated that simian virus 40 (SV40) large T antigen (LT) binds to the Bub1 kinase, a key regulator of the spindle checkpoint and chromosome segregation. Bub1 mutations or altered expression patterns are linked to chromosome missegregation and are considered to be a driving force in some human cancers. Here we report that LT, dependent on Bub1 binding, causes micronuclei, lagging chromatin, and anaphase bridges, which are hallmarks of chromosomal instability (CIN) and Bub1 insufficiency. Using time-lapse microscopy, we demonstrate that LT imposes a Bub1 binding-dependent delay in the metaphase-to-anaphase transition. Kinetochore fibers reveal that LT, via Bub1 binding, causes aberrant kinetochore (KT)-microtubule (MT) attachments and a shortened interkinetochore distance, consistent with a lack of tension. Previously, we showed that LT also induces the DNA damage response (DDR) via Bub1 binding. Using inducible LT cell lines, we show that an activated DDR was observed before the appearance of anaphase bridges and micronuclei. Furthermore, LT induction in serum-starved cells demonstrated γ-H2AX accumulation in cells that had not yet entered mitosis. Thus, DDR activation can occur independently of chromosome segregation defects. Replication stress pathways may be responsible, because signatures of replication stress were observed, which were attenuated by exogenous supplementation with nucleosides. Our observations allow us to propose a model that explains and integrates the diverse manifestations of genomic instability induced by LT.  相似文献   

19.
Faithful chromosome segregation in mitosis requires the formation of a bipolar mitotic spindle with stably attached chromosomes. Once all of the chromosomes are aligned, the connection between the sister chromatids is severed by the cysteine protease separase. Separase also promotes centriole disengagement at the end of mitosis. Temporal coordination of these two activities with the rest of the cell cycle is required for the successful completion of mitosis. In this study, we report that depletion of the microtubule and kinetochore protein astrin results in checkpoint-arrested cells with multipolar spindles and separated sister chromatids, which is consistent with untimely separase activation. Supporting this idea, astrin-depleted cells contain active separase, and separase depletion suppresses the premature sister chromatid separation and centriole disengagement in these cells. We suggest that astrin contributes to the regulatory network that controls separase activity.  相似文献   

20.
The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号