共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Marisa Ferreira-Marques André Carvalho Ana Catarina Franco Ana Leal Mariana Botelho Sara Carmo-Silva Rodolfo Águas Luísa Cortes Vasco Lucas Ana Carolina Real Carlos López-Otín Xavier Nissan Luís Pereira de Almeida Cláudia Cavadas Célia A. Aveleira 《Aging cell》2023,22(12):e13983
Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal genetic condition that arises from a single nucleotide alteration in the LMNA gene, leading to the production of a defective lamin A protein known as progerin. The accumulation of progerin accelerates the onset of a dramatic premature aging phenotype in children with HGPS, characterized by low body weight, lipodystrophy, metabolic dysfunction, skin, and musculoskeletal age-related dysfunctions. In most cases, these children die of age-related cardiovascular dysfunction by their early teenage years. The absence of effective treatments for HGPS underscores the critical need to explore novel safe therapeutic strategies. In this study, we show that treatment with the hormone ghrelin increases autophagy, decreases progerin levels, and alleviates other cellular hallmarks of premature aging in human HGPS fibroblasts. Additionally, using a HGPS mouse model (LmnaG609G/G609G mice), we demonstrate that ghrelin administration effectively rescues molecular and histopathological progeroid features, prevents progressive weight loss in later stages, reverses the lipodystrophic phenotype, and extends lifespan of these short-lived mice. Therefore, our findings uncover the potential of modulating ghrelin signaling offers new treatment targets and translational approaches that may improve outcomes and enhance the quality of life for patients with HGPS and other age-related pathologies. 相似文献
4.
5.
6.
Zeming Wu Weiqi Zhang Moshi Song Wei Wang Gang Wei Wei Li Jinghui Lei Yu Huang Yanmei Sang Piu Chan Chang Chen Jing Jing Keiichiro Suzuki Juan Carlos Izpisua Belmonte Guang-Hui Liu 《蛋白质与细胞》2018,9(4):333
Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome (WS) are two of the best characterized human progeroid syndromes. HGPS is caused by a point mutation in lamin A (LMNA) gene, resulting in the production of a truncated protein product—progerin. WS is caused by mutations in WRN gene, encoding a loss-of-function RecQ DNA helicase. Here, by gene editing we created isogenic human embryonic stem cells (ESCs) with heterozygous (G608G/+) or homozygous (G608G/G608G) LMNAmutation and biallelic WRN knockout, for modeling HGPS and WS pathogenesis, respectively. While ESCs and endothelial cells (ECs) did not present any features of premature senescence, HGPS- and WS-mesenchymal stem cells (MSCs) showed aging-associated phenotypes with different kinetics. WS-MSCs had early-onset mild premature aging phenotypes while HGPS-MSCs exhibited late-onset acute premature aging characterisitcs. Taken together, our study compares and contrasts the distinct pathologies underpinning the two premature aging disorders, and provides reliable stem-cell based models to identify new therapeutic strategies for pathological and physiological aging. 相似文献
7.
Premature aging syndromes have gained much attention, not only because of their devastating symptoms but also because they might hold a key to some of the mechanisms underlying aging. The Hutchinson–Gilford progeria syndrome (HGPS) is caused by a mutation in the LMNA gene, which normally produces lamins A and C through alternative splicing. Due to this mutation, HGPS patients express an incompletely processed form of lamin A called progerin. In this issue of EMBO Reports 1 , the Tazi group demonstrates how mice expressing different LMNA isoforms present opposite phenotypes in longevity, fat storage and mitochondrial function. 相似文献
8.
9.
Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS. 相似文献
10.
While rapamycin has been in use for years in transplant patients as an antirejection drug, more recently it has shown promise in treating diseases of aging, such as neurodegenerative disorders and atherosclerosis. We recently reported that rapamycin reverses the cellular phenotype of fibroblasts from children with the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). We found that the causative aberrant protein, progerin, was cleared through autophagic mechanisms when the cells were treated with rapamycin, suggesting a new potential treatment for HGPS. Recent evidence shows that progerin is also present in aged tissues of healthy individuals, suggesting that progerin may contribute to physiological aging. While it is intriguing to speculate that rapamycin may affect normal aging in humans, as it does in lower organisms, it will be important to identify safer analogues of rapamycin for chronic treatments in humans in order to minimize toxicity. In addition to its role in HGPS and normal aging, we discuss the potential of rapamycin for the treatment of age-dependent neurodegenerative diseases. 相似文献
11.
Specific mutations in the human gene encoding lamin A or in the lamin A-processing enzyme, Zmpste24, cause premature aging. New data on mice and humans suggest that these mutations affect adult stem cells by interfering with the Notch and Wnt signaling pathways. 相似文献
12.
Proteomics has revealed differential protein expression and glycosylation in membrane proteins from premature aging Hutchinson-Gilford progeria syndrome fibroblasts (progeria). Progeria is a rare autosomal dominant genetic disorder of premature aging characterized by marked growth retardation and specific, progressive, premature senescent changes of the skin and other tissues. Affected children live to an average age of 13 years. The 1q20-24 region of chromosome 1 which codes for one of these proteins, lamin A/C, has previously been implicated by Brown et al. (1990) who described identical twins with progeria, where cytogenetic analysis showed an inverted insertion in the long arm of the chromosome in 70% of cells. Luengo et al. (2002) similarly reported an interstitial deletion of chromosome 1q23, in a 9-year-old patient with a classic clinical picture of progeria. 相似文献
13.
The fact that the nucleus of a differentiated somatic cell can be reprogrammed in order to sustain embryonic development is now well established. Experiments of somatic cell nuclear transfer (cloning) have proved that a foreign nucleus introduced into an enucleated oocyte can give rise to physiologically normal offsprings, with a normal lifespan. Such evidence of genome expression plasticity is also observed experimentally with heterokaryons, created by the fusion or the nuclear transfer between two somatic cells, where differentiated nuclei are able to express genes characteristic of the host cell. However, the epigenetic mechanisms that permit nuclear plasticity remain poorly understood. In this paper we present the main evidences showing important modifications of the large scale organisation of chromosomal domains and of the DNA methylation pattern upon nuclear transfer and during the first cleavages. These modifications of epigenetic marks, brought by an intimate contact between the chromatin and the recipient oocyte cytoplasmic factors, appear essential for further development. They are established over the first cell cycles of development. The onset of embryonic genome activation and the first cellular differentiation events that occur over the implantation period are two additional check-points of reprogramming that appear to be also highly dependent on epigenetic alterations. Beyond those stages, defective placental functions might be directly responsible for the fetal and postnatal physiopathologies frequently observed in cloned animals. No direct link between preimplantation reprogramming defaults, placental dysfunctions and low development to term has been established yet. The epigenetics studies which are now used to characterise loci specific and probably genotype dependent alterations in cloned animals of different species will provide invaluable help to define the role of epigenesis in the achievement of a developmental program. 相似文献
14.
Genetic mutations that lead to an accumulation of farnesyl-prelamin A cause progeroid syndromes, including Hutchinson-Gilford progeria syndrome. It seemed possible that the farnesylated form of prelamin A might be toxic to mammalian cells, accounting for all the disease phenotypes that are characteristic of progeria. This concept led to the hypothesis that protein farnesyltransferase inhibitors (FTIs) might ameliorate the disease phenotypes of progeria in mouse models. Thus far, two different mouse models of progeria have been examined. In both models, FTIs improved progeria-like disease phenotypes. Here, prelamin A post-translational processing is discussed and several mutations underlying human progeroid syndromes are described. In addition, recent data showing that FTIs ameliorate disease phenotypes in a pair of mouse models of progeria are discussed. 相似文献
15.
Wang L Yang W Ju W Wang P Zhao X Jenkins EC Brown WT Zhong N 《Biochemical and biophysical research communications》2012,417(4):1119-1126
The Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease characterized by segmental premature aging. Applying a two-dimensional chromatographic proteomic approach, the 2D Protein Fractionation System (PF2D), we identified 30 differentially expressed proteins in cultured HGPS fibroblasts. We categorized them into five groups: methylation, calcium ion binding, cytoskeleton, duplication, and regulation of apoptosis. Among these 30 proteins, 23 were down-regulated, while seven were up-regulated in HGPS fibroblasts as compared to normal fibroblasts. Three differentially expressed cytoskeleton proteins, vimentin, actin, and tubulin, were validated via Western blotting and characterized by immunostaining that revealed densely thickened bundles and irregular structures. Furthermore in the HGPS cells, the cell cycle G1 phase was elongated and the concentration of free cytosolic calcium was increased, suggesting intracellular retention of calcium. The results that we obtained have implications for understanding the aging process. 相似文献
16.
Ian García‐Aguirre Alma Alamillo‐Iniesta Ruth Rodríguez‐Prez Griselda Vlez‐Aguilera Elianeth Amaro‐Encarnacin Elizabeth Jimnez‐Gutirrez Alejandra Vsquez‐Limeta Marco Samuel Laredo‐Cisneros Sara L. Morales‐Lzaro Reynaldo Tiburcio‐Flix Arturo Ortega Jonathan J Magaa Steve J. Winder Bulmaro Cisneros 《Aging cell》2019,18(5)
The study of Hutchinson–Gilford progeria syndrome (HGPS) has provided important clues to decipher mechanisms underlying aging. Progerin, a mutant lamin A, disrupts nuclear envelope structure/function, with further impairment of multiple processes that culminate in senescence. Here, we demonstrate that the nuclear protein export pathway is exacerbated in HGPS, due to progerin‐driven overexpression of CRM1, thereby disturbing nucleocytoplasmic partitioning of CRM1‐target proteins. Enhanced nuclear export is central in HGPS, since pharmacological inhibition of CRM1 alleviates all aging hallmarks analyzed, including senescent cellular morphology, lamin B1 downregulation, loss of heterochromatin, nuclear morphology defects, and expanded nucleoli. Exogenous overexpression of CRM1 on the other hand recapitulates the HGPS cellular phenotype in normal fibroblasts. CRM1 levels/activity increases with age in fibroblasts from healthy donors, indicating that altered nuclear export is a common hallmark of pathological and physiological aging. Collectively, our findings provide novel insights into HGPS pathophysiology, identifying CRM1 as potential therapeutic target in HGPS. 相似文献
17.
18.
19.