首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis thaliana plants that lack ceramide kinase, encoded by ACCELERATED CELL DEATH5 (ACD5), display spontaneous programmed cell death late in development and accumulate substrates of ACD5. Here, we compared ceramide accumulation kinetics, defense responses, ultrastructural features, and sites of reactive oxygen species (ROS) production in wild-type and acd5 plants during development and/or Botrytis cinerea infection. Quantitative sphingolipid profiling indicated that ceramide accumulation in acd5 paralleled the appearance of spontaneous cell death, and it was accompanied by autophagy and mitochondrial ROS accumulation. Plants lacking ACD5 differed significantly from the wild type in their responses to B. cinerea, showing earlier and higher increases in ceramides, greater disease, smaller cell wall appositions (papillae), reduced callose deposition and apoplastic ROS, and increased mitochondrial ROS. Together, these data show that ceramide kinase greatly affects sphingolipid metabolism and the site of ROS accumulation during development and infection, which likely explains the developmental and infection-related cell death phenotypes. The acd5 plants also showed an early defect in restricting B. cinerea germination and growth, which occurred prior to the onset of cell death. This early defect in B. cinerea restriction in acd5 points to a role for ceramide phosphate and/or the balance of ceramides in mediating early antifungal responses that are independent of cell death.  相似文献   

2.
Eimert K  Wang SM  Lue WI  Chen J 《The Plant cell》1995,7(10):1703-1712
A recessive Arabidopsis mutation, carbohydrate accumulation mutant1 (cam1), which maps to position 22.8 on chromosome 3, was identified by screening leaves of ethyl methanesulfonate-mutagenized M2 plants stained with iodine for altered starch content. Increased starch content in leaves of the cam1 mutant was observed at the onset of flowering. This mutant also had a delayed floral initiation phenotype with more rosette leaves than the parental line. In addition, activities of several enzymes associated with starch metabolism were altered in the cam1 mutant. The late-flowering mutant gigantea (gi) also manifested an elevated starch level in leaves. However, not all late-flowering mutants had increased leaf starch content. Double mutants cam1 adg1 (for ADP-glucose pyrophosphorylase), cam1 pgm (for phosphoglucomutase), and gi pgm had no observable starch in leaves but showed the late-flowering phenotype, demonstrating that the elevated starch content is not the cause of late floral initiation. The pleiotropic effects of cam1 and gi suggest that they may play regulatory roles in starch metabolism and floral initiation. These data suggest that starch accumulation and floral initiation may share a common regulatory pathway.  相似文献   

3.
4.
Doklady Biochemistry and Biophysics - The nitric oxide (NO) donor sodium nitroprusside upregulated the proline iminopeptidase content in the pea seedling roots. It is assumed that NO activates...  相似文献   

5.
6.
We examined the effect of drought stress on proline accumulation,nitrogenase activity and activities of enzymes related to prolinemetabolism in soybean (Glycine max [L.] Merr.) nodules. Nitrogenase(C2H2 reducing) activity was inhibited 90% or more as a resultof drought stress. This inhibition was substantially reversedafter a 4 h recovery period. Pyrroline-5-carboxylate reductaseactivity in extracts of drought-stressed nodules from 25-d-oldplants was 55% higher than in unstressed nodules, but the sameactivity in preparations from 55-d-old plants was similar tothat of control plants. Extracts of recovering nodules on plantsof both ages had activities near those of controls. Droughtstress increased the activity of the pentose phosphate pathwayby about 65% in extracts of nodules from 55-d-old plants, butthere was no effect in extracts of nodules from younger plants(25-d-old). Proline dehydrogenase activity was 3.7 and 1.6 timeshigher in bacteroids isolated from nodules taken from 25- and55-d-old stressed plants, respectively, than in comparable controlbacteroids. This activity remained high in bacteroids from bothsets of recovering nodules. The amount of proline in extractsfrom stressed nodules was 3- to 4-fold higher than in unstressednodules, despite increased proline dehydrogenase activity andremained high in nodules collected 4 h after rewatering. Thisincrease was observed in both cytoplasmic and bacteroid fractions.The possible physiological significance of these results isdiscussed. Key words: Proline metabolism, pentose phosphate pathway, drought stress, soybean nodules  相似文献   

7.
Little is known about the molecular processes that govern female gametophyte (FG) development and function, and few FG-expressed genes have been identified. We report the identification and phenotypic analysis of 31 new FG mutants in Arabidopsis. These mutants have defects throughout development, indicating that FG-expressed genes govern essentially every step of FG development. To identify genes involved in cell death during FG development, we analyzed this mutant collection for lines with cell death defects. From this analysis, we identified one mutant, gfa2, with a defect in synergid cell death. Additionally, the gfa2 mutant has a defect in fusion of the polar nuclei. We isolated the GFA2 gene and show that it encodes a J-domain-containing protein. Of the J-domain-containing proteins in Saccharomyces cerevisiae (budding yeast), GFA2 is most similar to Mdj1p, which functions as a chaperone in the mitochondrial matrix. GFA2 is targeted to mitochondria in Arabidopsis and partially complements a yeast mdj1 mutant, suggesting that GFA2 is the Arabidopsis ortholog of yeast Mdj1p. These data suggest a role for mitochondria in cell death in plants.  相似文献   

8.
Proline accumulation was often correlated with drought tolerance of plants infected by arbuscular mycorrhizal fungi (AMF), whereas lower proline in some AM plants including citrus was also found under drought stress and the relevant mechanisms have not been fully elaborated. In this study proline accumulation and activity of key enzymes relative to proline biosynthesis (▵1-pyrroline-5-carboxylate synthetase, P5CS; ornithine-δ-aminotransferase, OAT) and degradation (proline dehydrogenase, ProDH) were determined in trifoliate orange (Poncirus trifoliata, a widely used citrus rootstock) inoculated with or without Funneliformis mosseae and under well-watered (WW) or water deficit (WD). AMF colonization significantly increased plant height, stem diameter, leaf number, root volume, biomass production of both leaves and roots and leaf relative water content, irrespectively of water status. Water deficit induced more tissue proline accumulation, in company with an increase of P5CS activity, but a decrease of OAT and ProDH activity, no matter whether under AM or no-AM. Compared with no-AM treatment, AM treatment resulted in lower proline concentration and content in leaf, root, and total plant under both WW and WD. The AMF colonization significantly decreased the activity of both P5CS and OAT in leaf, root, and total plant under WW and WD, except for an insignificant difference of root OAT under WD. The AMF inoculation also generally increased tissue ProDH activity under WW and WD. Plant proline content significantly positively correlated with plant P5CS activity, negatively with plant ProDH activity, but not with plant OAT activity. These results suggest that AM plants may suffer less from WD, thereby inducing lower proline accumulation, which derives from the integration of an inhibition of proline synthesis with an enhancement of proline degradation.  相似文献   

9.
10.
11.
12.
Knowledge of the rate and fitness effects of mutations is essential for understanding the process of evolution. Mutations are inherently difficult to study because they are rare and are frequently eliminated by natural selection. In the ciliate Tetrahymena thermophila, mutations can accumulate in the germline genome without being exposed to selection. We have conducted a mutation accumulation (MA) experiment in this species. Assuming that all mutations are deleterious and have the same effect, we estimate that the deleterious mutation rate per haploid germline genome per generation is U = 0.0047 (95% credible interval: 0.0015, 0.0125), and that germline mutations decrease fitness by s = 11% when expressed in a homozygous state (95% CI: 4.4%, 27%). We also estimate that deleterious mutations are partially recessive on average (h = 0.26; 95% CI: –0.022, 0.62) and that the rate of lethal mutations is <10% of the deleterious mutation rate. Comparisons between the observed evolutionary responses in the germline and somatic genomes and the results from individual-based simulations of MA suggest that the two genomes have similar mutational parameters. These are the first estimates of the deleterious mutation rate and fitness effects from the eukaryotic supergroup Chromalveolata and are within the range of those of other eukaryotes.  相似文献   

13.
FLAGELLIN-SENSING 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is the plant receptor for bacterial flagellin or the flagellin-derived flg22 peptide. Previous work has shown that after flg22 binding, FLS2 releases BIK1 kinase and homologs and associates with BAK1 kinase, and that FLS2 kinase activity is critical for FLS2 function. However, the detailed mechanisms for activation of FLS2 signaling remain unclear. The present study initially identified multiple FLS2 in vitro phosphorylation sites and found that Serine-938 is important for FLS2 function in vivo. FLS2-mediated immune responses are abolished in transgenic plants expressing FLS2S938A, while the acidic phosphomimic mutants FLS2S938D and FLS2S938E conferred responses similar to wild-type FLS2. FLS2-BAK1 association and FLS2-BIK1 disassociation after flg22 exposure still occur with FLS2S938A, demonstrating that flg22-induced BIK1 release and BAK1 binding are not sufficient for FLS2 activity, and that Ser-938 controls other aspects of FLS2 activity. Purified BIK1 still phosphorylated purified FLS2S938A and FLS2S938D mutant kinase domains in vitro. Phosphorylation of BIK1 and homologs after flg22 exposure was disrupted in transgenic Arabidopsis thaliana plants expressing FLS2S938A or FLS2D997A (a kinase catalytic site mutant), but was normally induced in FLS2S938D plants. BIK1 association with FLS2 required a kinase-active FLS2, but FLS2-BAK1 association did not. Hence FLS2-BIK1 dissociation and FLS2-BAK1 association are not sufficient for FLS2-mediated defense activation, but the proposed FLS2 phosphorylation site Ser-938 and FLS2 kinase activity are needed both for overall defense activation and for appropriate flg22-stimulated phosphorylation of BIK1 and homologs.  相似文献   

14.
15.
ACTIN-RELATED PROTEINS 2 and 3 form the major subunits of the ARP2/3 complex, which is known as an important regulator of actin organization in diverse organisms. Here, we report that two genes, WURM and DISTORTED1, which are important for cell shape control in Arabidopsis, encode the plant ARP2 and ARP3 orthologs, respectively. Mutations in these genes result in misdirected expansion of various cell types: trichome expansion is randomized, pavement cells fail to produce lobes, hypocotyl cells curl out of the normal epidermal plane, and root hairs are sinuous. At the subcellular level, cell shape changes are linked to severe filamentous actin aggregation and compromised vacuole fusion. Because all seven subunits of the ARP2/3 complex are present in plants, our data indicate that this complex may play a pivotal role during plant cell morphogenesis.  相似文献   

16.
17.
Mobilization of N from leaves of barley (Hordeum vulgare L.) during water stress, and the role of proline as a mobilized species, were examined in plants at the three-leaf stage. The plants responded to water stress by withdrawing about 25% of the total reduced N from the leaf blades via phloem translocation. Most of this N loss was during the first 2 days while translocation of 14C-photosynthate out of the stressed blade still remained active. Free proline accumulation in the blade was initially slow, and became more rapid during the 2nd day of stress. Although a major free amino acid, proline accounted for only about 5% of the total N (soluble + insoluble) retained in severely stressed blades. When the translocation pathway in water-stressed leaves was interrupted just below the blade by a heat girdle, a cold jacket, or by blade excision, N loss from the blade was prevented and proline began to accumulate rapidly on 1st day of stress. Little free proline accumulated in the blades until after the ability to translocate was lost. Proline was, however, probably not a major species of N translocated during stress, because proline N accumulation in heat-girdled stressed leaves was five times slower than the rate of total N export from intact blades.  相似文献   

18.
Forty-five different point mutations in POLG, the gene encoding the catalytic subunit of the human mitochondrial DNA polymerase (pol γ), cause the early onset mitochondrial DNA depletion disorder, Alpers syndrome. Sequence analysis of the C-terminal polymerase region of pol γ revealed a cluster of four Alpers mutations at highly conserved residues in the thumb subdomain (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) and two Alpers mutations at less conserved positions in the adjacent palm subdomain (Q879H, c.2637g→t and T885S, c.2653a→t). Biochemical characterization of purified, recombinant forms of pol γ revealed that Alpers mutations in the thumb subdomain reduced polymerase activity more than 99% relative to the wild-type enzyme, whereas the palm subdomain mutations retained 50–70% wild-type polymerase activity. All six mutant enzymes retained physical and functional interaction with the pol γ accessory subunit (p55), and none of the six mutants exhibited defects in misinsertion fidelity in vitro. However, differential DNA binding by these mutants suggests a possible orientation of the DNA with respect to the polymerase during catalysis. To our knowledge this study represents the first structure-function analysis of the thumb subdomain in pol γ and examines the consequences of mitochondrial disease mutations in this region.As the only DNA polymerase found in animal cell mitochondria, DNA polymerase γ (pol γ)3 bears sole responsibility for DNA synthesis in all replication and repair transactions involving mitochondrial DNA (1, 2). Mammalian cell pol γ is a heterotrimeric complex composed of one catalytic subunit of 140 kDa (p140) and two 55-kDa accessory subunits (p55) that form a dimer (3). The catalytic subunit contains an N-terminal exonuclease domain connected by a linker region to a C-terminal polymerase domain. Whereas the exonuclease domain contains essential motifs I, II, and III for its activity, the polymerase domain comprising the thumb, palm, and finger subdomains contains motifs A, B, and C that are crucial for polymerase activity. The catalytic subunit is a family A DNA polymerase that includes bacterial pol I and T7 DNA polymerase and possesses DNA polymerase, 3′ → 5′ exonuclease, and 5′-deoxyribose phosphate lyase activities (for review, see Refs. 1 and 2). The 55-kDa accessory subunit (p55) confers processive DNA synthesis and tight binding of the pol γ complex to DNA (4, 5).Depletion of mtDNA as well as the accumulation of deletions and point mutations in mtDNA have been observed in several mitochondrial disorders (for review, see Ref. 6). mtDNA depletion syndromes are caused by defects in nuclear genes responsible for replication and maintenance of the mitochondrial genome (7). Mutation of POLG, the gene encoding the catalytic subunit of pol γ, is frequently involved in disorders linked to mutagenesis of mtDNA (8, 9). Presently, more than 150 point mutations in POLG are linked with a wide variety of mitochondrial diseases, including the autosomal dominant (ad) and recessive forms of progressive external ophthalmoplegia (PEO), Alpers syndrome, parkinsonism, ataxia-neuropathy syndromes, and male infertility (tools.niehs.nih.gov/polg) (9).Alpers syndrome, a hepatocerebral mtDNA depletion disorder, and myocerebrohepatopathy are rare heritable autosomal recessive diseases primarily affecting young children (1012). These diseases generally manifest during the first few weeks to years of life, and symptoms gradually develop in a stepwise manner eventually leading to death. Alpers syndrome is characterized by refractory seizures, psychomotor regression, and hepatic failure (11, 12). Mutation of POLG was first linked to Alpers syndrome in 2004 (13), and to date 45 different point mutations in POLG (18 localized to the polymerase domain) are associated with Alpers syndrome (9, 14, 15). However, only two Alpers mutations (A467T and W748S, both in the linker region) have been biochemically characterized (16, 17).During the initial cloning and sequencing of the human, Drosophila, and chicken pol γ genes, we noted a highly conserved region N-terminal to motif A in the polymerase domain that was specific to pol γ (18). This region corresponds to part of the thumb subdomain that tracks DNA into the active site of both Escherichia coli pol I and T7 DNA polymerase (1921). A high concentration of disease mutations, many associated with Alpers syndrome, is found in the thumb subdomain.Here we investigated six mitochondrial disease mutations clustered in the N-terminal portion of the polymerase domain of the enzyme (Fig. 1A). Four mutations (G848S, c.2542g→a; T851A, c.2551a→g; R852C, c.2554c→t; R853Q, c.2558g→a) reside in the thumb subdomain and two (Q879H, c.2637g→t and T885S, c.2653a→t) are located in the palm subdomain. These mutations are associated with Alpers, PEO, mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), ataxia-neuropathy syndrome, Leigh syndrome, and myocerebrohepatopathy (
POLG mutationDiseaseGeneticsReference
G848SAlpers syndromeIn trans with A467T, Q497H, T251I-P587L, or W748S-E1143G in Alpers syndrome15, 35, 4350
Leigh syndromeIn trans with R232H in Leigh syndrome49
MELASIn trans with R627Q in MELAS38
PEO with ataxia-neuropathyIn trans with G746S and E1143G in PEO with ataxia50
PEOIn trans with T251I and P587L in PEO51, 52
T851AAlpers syndromeIn trans with R1047W48, 53
In trans with H277C
R852CAlpers syndromeIn trans with A467T14, 48, 50
In cis with G11D and in trans with W748S-E1143G or A467T
Ataxia-neuropathyIn trans with G11D-R627Q15
R853QMyocerebrohepatopathyIn trans with T251I-P587L15
Q879HAlpers syndrome with valproate-induced hepatic failureIn cis with E1143G and in trans with A467T-T885S35, 54
T885SAlpers syndrome with valproate-induced hepatic failureIn cis with A467T and in trans with Q879H-E1143G35, 54
Open in a separate windowOpen in a separate windowFIGURE 1.POLG mutations characterized in this study. A, the location of the six mutations characterized is shown in red in the primary sequence of pol γ. Four mutations, the G848S, T851A, R852C, and R853Q, are located in the thumb domain, whereas two mutations, the Q879H and T885S, are in the palm domain of the polymerase region. B, sequence alignment of pol γ from yeast to humans. The amino acids characterized in this study are shown in red. Yellow-highlighted amino acids are highly conserved, and blue-highlighted amino acids are moderately conserved.  相似文献   

19.
Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis   总被引:3,自引:0,他引:3  
Fabro G  Kovács I  Pavet V  Szabados L  Alvarez ME 《Molecular plant-microbe interactions : MPMI》2004,17(4):343-350
  相似文献   

20.
NaCl胁迫下海马齿(Sesuvium portulacastrum L.)植株内游离脯氨酸的合成积累途径     
钱大文  周鸿凯  江大可  孙泽荣  陈晓宏  袁建活 《中国野生植物资源》2013,32(3)
以海马齿(Sesuvium portulacastrum L.)为材料,测定了在6个NaCl胁迫水平上(0、0.2、0.4、0.6、0.8、1.0mol· L-1)的植株内游离脯氨酸的含量及其δ-OAT、PSCS、POD、SOD等酶的活性.结果表明:在NaCl胁迫下,海马齿植株内游离脯氨酸积累量比CK显著地增多了14.5%~33.5%,δ-OAT和P5CS活性分别比对照(CK)增强3.1%~10.1%和26.7% ~46.1%,因此,在NaCl胁迫下海马齿植株内游离脯氨酸合成积累的两个途径均被启动和发生合成积累作用,并表现出以Glu→Pro途径为主,Orn→Pro途径为辅;在5个NaCl胁迫水平上,海马齿植株内游离脯氨酸有显著的积累效应,在0.6 mol·L-1处理水平时达到积累量的高峰值.同时,δ-OAT、P5CS、POD、SOD等酶的活性呈现出与游离脯氨酸积累量有大致相同的变化趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号