共查询到20条相似文献,搜索用时 11 毫秒
1.
Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B cells 总被引:2,自引:0,他引:2
In the presence of 7 mM glucose, dibutyryl cyclic AMP induced electrical activity in otherwise silent mouse pancreatic B cells. This activity was blocked by cobalt or D600, two inhibitors of Ca2+ influx. Under similar conditions, dibutyryl cyclic AMP stimulated 45Ca2+ influx (5-min uptake) in islet cells; this effect was abolished by cobalt and partially inhibited by D600. The nucleotide also accelerated 86Rb+ efflux from preloaded islets, did not modify glucose utilization and markedly increased insulin release. Its effects on release were inhibited by cobalt, but not by D600. These results show that insulin release can occur without electrical activity in B cells and suggest that cyclic AMP not only mobilizes intracellular Ca, but also facilitates Ca2+ influx in insulin secreting cells. 相似文献
2.
We asked if the mechanisms of exocytosis and its regulation in epithelial cells share features with those in excitable cells. Cultured dog pancreatic duct epithelial cells were loaded with an oxidizable neurotransmitter, dopamine or serotonin, and the subsequent release of these exogenous molecules during exocytosis was detected by carbon-fiber amperometry. Loaded cells displayed spontaneous exocytosis that may represent constitutive membrane transport. The quantal amperometric events induced by fusion of single vesicles had a rapid onset and decay, resembling those in adrenal chromaffin cells and serotonin-secreting leech neurons. Quantal events were frequently preceded by a "foot," assumed to be leak of transmitters through a transient fusion pore, suggesting that those cell types share a common fusion mechanism. As in neurons and endocrine cells, exocytosis in the epithelial cells could be evoked by elevating cytoplasmic Ca(2+) using ionomycin. Unlike in neurons, hyperosmotic solutions decreased exocytosis in the epithelial cells, and giant amperometric events composed of many concurrent quantal events were observed occasionally. Agents known to increase intracellular cAMP in the cells, such as forskolin, epinephrine, vasoactive intestinal peptide, or 8-Br-cAMP, increased the rate of exocytosis. The forskolin effect was inhibited by the Rp-isomer of cAMPS, a specific antagonist of protein kinase A, whereas the Sp-isomer, a specific agonist of PKA, evoked exocytosis. Thus, PKA is a downstream effector of cAMP. Finally, activation of protein kinase C by phorbol-12-myristate-13-acetate also increased exocytosis. The PMA effect was not mimicked by the inactive analogue, 4alpha-phorbol-12,13-didecanoate, and it was blocked by the PKC antagonist, bisindolylmaleimide I. Elevation of intracellular Ca(2+) was not needed for the actions of forskolin or PMA. In summary, exocytosis in epithelial cells can be stimulated directly by Ca(2+), PKA, or PKC, and is mediated by physical mechanisms similar to those in neurons and endocrine cells. 相似文献
3.
Synaptogyrins constitute a family of synaptic vesicle proteins of unknown function. With the full-length structure of a new brain synaptogyrin isoform, we now show that the synaptogyrin family in vertebrates includes two neuronal and one ubiquitous isoform. All of these synaptogyrins are composed of a short conserved N-terminal cytoplasmic sequence, four homologous transmembrane regions, and a variable cytoplasmic C-terminal tail that is tyrosine-phosphorylated. The localization, abundance, and conservation of synaptogyrins suggest a function in exocytosis. To test this, we employed a secretion assay in PC12 cells expressing transfected human growth hormone (hGH) as a reporter protein. When Ca2+-dependent hGH secretion from PC12 cells was triggered by high K+ or alpha-latrotoxin, co-transfection of all synaptogyrins with hGH inhibited hGH exocytosis as strongly as co-transfection of tetanus toxin light chain. Synaptophysin I, which is distantly related to synaptogyrins, was also inhibitory but less active. Inhibition was independent of the amount of hGH expressed but correlated with the amount of synaptogyrin transfected. Inhibition of exocytosis was not observed with several other synaptic proteins, suggesting specificity. Analysis of the regions of synaptogyrin required for inhibition revealed that the conserved N-terminal domain of synaptogyrin is essential for inhibition, whereas the long C-terminal cytoplasmic tail is largely dispensable. Our results suggest that synaptogyrins are conserved components of the exocytotic apparatus, which function as regulators of Ca2+-dependent exocytosis. 相似文献
4.
Regulation of exocytosis by purinergic receptors in pancreatic duct epithelial cells 总被引:2,自引:0,他引:2
Jung SR Kim MH Hille B Nguyen TD Koh DS 《American journal of physiology. Cell physiology》2004,286(3):C573-C579
In epithelial cells, several intracellular signals regulate the secretion of large molecules such as mucin via exocytosis and the transport of ions through channels and transporters. Using carbon fiber amperometry, we previously reported that exocytosis of secretory granules in dog pancreatic duct epithelial cells (PDEC) can be stimulated by pharmacological activation of cAMP-dependent protein kinase (PKA) or protein kinase C (PKC), as well as by an increase of intracellular free Ca2+ concentration ([Ca2+]i). In this study, we examined whether exocytosis in these cells is modulated by activation of endogenous P2Y receptors, which increase cAMP and [Ca2+]i. Low concentrations of ATP (<10 µM) induced intracellular Ca2+ oscillation but no significant exocytosis. In contrast, 100 µM ATP induced a sustained [Ca2+]i rise and increased the exocytosis rate sevenfold. The contribution of Ca2+ or cAMP pathways to exocytosis was tested by using the Ca2+ chelator BAPTA or the PKA inhibitors H-89 or Rp-8-bromoadenosine 3',5'-cyclic monophosphorothioate. Removal of [Ca2+]i rise or inhibition of PKA each partially reduced exocytosis; when combined, they abolished exocytosis. In conclusion, ATP at concentrations >10 µM stimulates exocytosis from PDEC through both Ca2+ and cAMP pathways. secretion; amperometry; photometry; calcium, adenosine 3',5'-cyclic monophosphate 相似文献
5.
Xiong W Liu T Wang Y Chen X Sun L Guo N Zheng H Zheng L Ruat M Han W Zhang CX Zhou Z 《PloS one》2011,6(10):e24573
Aim
Neurotransmitter release is elicited by an elevation of intracellular Ca2+ concentration ([Ca2+]i). The action potential triggers Ca2+ influx through Ca2+ channels which causes local changes of [Ca2+]i for vesicle release. However, any direct role of extracellular Ca2+ (besides Ca2+ influx) on Ca2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG) neurons and chromaffin cells, widely used models for studying vesicle exocytosis.Results
Using photolysis of caged Ca2+ and caffeine-induced release of stored Ca2+, we found that extracellular Ca2+ inhibited exocytosis following moderate [Ca2+]i rises (2–3 µM). The IC50 for extracellular Ca2+ inhibition of exocytosis (ECIE) was 1.38 mM and a physiological reduction (∼30%) of extracellular Ca2+ concentration ([Ca2+]o) significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca2+]o. The calcimimetics Mg2+, Cd2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca2+-sensing receptor (CaSR) was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE.Conclusion/Significance
As an extension of the classic Ca2+ hypothesis of synaptic release, physiological levels of extracellular Ca2+ play dual roles in evoked exocytosis by providing a source of Ca2+ influx, and by directly regulating quantal size and release probability in neuronal cells. 相似文献6.
Exocytosis of acidic synaptic vesicles may produce local extracellular acidification, but this effect has not been measured directly and its magnitude may depend on the geometry and pH-buffering capacity of both the vesicles and the extracellular space. Here we have used SNARF dye immobilized by conjugation to dextran to measure the release of protons from PC12 cells. The PC12 cells were stimulated by exposure to depolarizing K(+)-rich solution and activation was verified by fluorescence measurement of intracellular Ca(2+) and the release kinetics of GFP-labeled vesicles. Confocal imaging of the pH-dependent fluorescence from the immobile extracellular SNARF dye showed transient acidification around the cell bodies and neurites of activated PC12 cells. The local acidification was abolished when extracellular solution was devoid of Ca(2+) or strong pH-buffering was imposed with 10mM of HEPES. We conclude that the release of secretory vesicles induces local rises in proton concentrations that are co-released from synaptic vesicles with the primary neurotransmitter, and propose that the co-released protons may modulate the signaling in confined micro-domains of synapses. 相似文献
7.
Protease-activated receptor-2 increases exocytosis via multiple signal transduction pathways in pancreatic duct epithelial cells 总被引:1,自引:0,他引:1
Kim MH Choi BH Jung SR Sernka TJ Kim S Kim KT Hille B Nguyen TD Koh DS 《The Journal of biological chemistry》2008,283(27):18711-18720
Protease-activated receptor-2 (PAR-2) is activated when trypsin cleaves its NH(2) terminus to expose a tethered ligand. We previously demonstrated that PAR-2 activates ion channels in pancreatic duct epithelial cells (PDEC). Using real-time optical fluorescent probes, cyan fluorescence protein-Epac1-yellow fluorescence protein for cAMP, PH(PLC-delta1)-enhanced green fluorescent protein for phosphatidylinositol 4,5-bisphosphate, and protein kinase Cgamma (PKCgamma)-C1-yellow fluorescence protein for diacylglycerol, we now define the signaling pathways mediating PAR-2 effect in dog PDEC. Although PAR-2 activation does not stimulate a cAMP increase, it induces phospholipase C to hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol. Intracellular Ca(2+) mobilization from inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores and a subsequent Ca(2+) influx through store-operated Ca(2+) channels cause a biphasic increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), measured with Indo-1 dye. Single-cell amperometry demonstrated that this increase in [Ca(2+)](i) in turn causes a biphasic increase in exocytosis. A protein kinase assay revealed that trypsin also activates PKC isozymes to stimulate additional exocytosis. Paralleling the increased exocytosis, mucin secretion from PDEC was also induced by trypsin or the PAR-2 activating peptide. Consistent with the serosal localization of PAR-2, 1 microm luminal trypsin did not induce exocytosis in polarized PDEC monolayers; on the other hand, 10 microm trypsin at 37 degrees C damaged the epithelial barrier sufficiently so that it could reach and activate the serosal PAR-2 to stimulate exocytosis. Thus, in PDEC, PAR-2 activation increases [Ca(2+)](i) and activates PKC to stimulate exocytosis and mucin secretion. These functions may mediate the reported protective role of PAR-2 in different models of pancreatitis. 相似文献
8.
At least four different isoforms of phosphodiesterases (PDEs) are responsible for the hydrolysis of cAMP in cardiac cells. However, their distribution, localization and functional coupling to physiological effectors (such as ion channels, contractile proteins, etc.) vary significantly among various animal species and cardiac tissues. Because the activity of cardiac Ca2+ channels is strongly regulated by cAMP-dependent phosphorylation, Ca(2+)-channel current (ICa) measured in isolated cardiac myocytes may be used as a probe for studying cAMP metabolism. When the activity of adenylyl cyclase is bypassed by intracellular perfusion with submaximal concentrations of cAMP, effects of specific PDE inhibitors on ICa amplitude are mainly determined by their effects on PDE activity. This approach can be used to evaluate in vivo the functional coupling of various PDE isozymes to Ca2+ channels and their differential participation in the hormonal regulation of ICa and cardiac function. Combined with in vitro biochemical studies, such an experimental approach has permitted the discovery of hormonal inhibition of PDE activity in cardiac myocytes. 相似文献
9.
J A McRoberts G Beuerlein K Dharmsathaphorn 《The Journal of biological chemistry》1985,260(26):14163-14172
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion. 相似文献
10.
Namkung W Lee JA Ahn W Han W Kwon SW Ahn DS Kim KH Lee MG 《The Journal of biological chemistry》2003,278(1):200-207
Pancreatic duct cells secrete bicarbonate-rich fluids, which are important for maintaining the patency of pancreatic ductal trees as well as intestinal digestive function. The bulk of bicarbonate secretion in the luminal membrane of duct cells is mediated by a Cl(-)-dependent mechanism (Cl(-)/HCO(3)(-) exchange), and we previously reported that the mechanism is CFTR-dependent and cAMP-activated (Lee, M. G., Choi, J. Y., Luo, X., Strickland, E., Thomas, P. J., and Muallem, S. (1999) J. Biol. Chem. 274, 14670-14677). In the present study, we provide comprehensive evidence that calcium signaling also activates the same CFTR- and Cl(-)-dependent HCO(3)(-) transport. ATP and trypsin evoked intracellular calcium signaling in pancreatic duct-derived cells through the activation of purinergic and protease-activated receptors, respectively. Cl(-)/HCO(3)(-) exchange activity was measured by recording pH(i) in response to [Cl(-)](o) changes of the perfusate. In perfusate containing high concentrations of K(+), which blocks Cl(-) movement through electrogenic or K(+)-coupled pathways, ATP and trypsin highly stimulated luminal Cl(-)/HCO(3)(-) exchange activity in CAPAN-1 cells expressing wild-type CFTR, but not in CFPAC-1 cells that have defective (DeltaF508) CFTR. Notably, adenoviral transfection of wild-type CFTR in CFPAC-1 cells completely restored the stimulatory effect of ATP on luminal Cl(-)/HCO(3)(-) exchange. In addition, the chelation of intracellular calcium by 1,2-bis(2-aminophenoxy)ethane-N,N,N,N'-tetraacetic acid (BAPTA) treatment abolished the effect of calcium agonists on luminal Cl(-)/HCO(3)(-) exchange. These results provide a molecular basis for calcium-induced bicarbonate secretion in pancreatic duct cells and highlight the importance of CFTR in epithelial bicarbonate secretion induced by various stimuli. 相似文献
11.
Our previous study demonstrated that NYD-SP27 is a novel inhibitory PLC isoform expressed endogenously in human pancreas and upregulated in CFPAC-1 cells. The present study investigated the effect of NYD-SP27 down-regulation on the ATP-stimulated and Ca(2+)-dependent pancreatic anion secretion by CFPAC-1 cell line using short-circuit current (I(SC)) recording. NYD-SP27 antisense-transfected CFPAC-1 (AT-CF) cells exhibited a significantly higher basal transmembrane potential difference and current than those of empty vector-transfected CFPAC-1 (VT-CF) cells. Cl(-) channel blocker, DPC or Glibenclamide (1mM), and inhibitor of Na(+)-K(+)-Cl(-) cotransporter, bumetanide (100 microM) significantly inhibited the basal current in AT-CF cells. The inhibitor of adenylate cyclase, MDL12330A (20 microM), and Ca(2+)-dependent Cl(-) channel (CaCC) blocker, DIDS (100 microM) also significantly reduced the basal current in AT-CF. Apical application of ATP (10 microM) stimulated a fast transient I(SC) increase in VT-CF cells, but a more sustained rise with slower decline in AT-CF cells. Pretreatment with BAPTA-AM (50 microM) reduced the ATP-induced I(SC) response in AT-CF cells by 77.9%. PMA (1 microM), a PKC activator, inhibited the ATP-stimulated current increase (the transient peak) in VT-CF cells, but had no effect on the AT-CF cells. However, PKC inhibitor, staurosporine (40 microM) could inhibit the ATP-induced I(SC) response in AT-CF cells. The present results confirm the previously proposed inhibitory role of NYD-SP27 in the PLC pathway and demonstrate that the suppression of its expression could result in an enhancement of ATP-stimulated Ca(2+) dependent pancreatic anion secretion. 相似文献
12.
Ca2+-activated ATPase (EC 3.6.1.15) in canine cardiac sarcoplasmic reticulum was stimulated 50–80% by cyclic adenosine 3′ : 5′-monophosphate. The relationship of this stimulation to cyclic AMP-dependent membrane phosphorylation with phosphoester bands was studied. Cyclic AMP stimulation of ATPase activity was specific for Ca2+-activated ATPase and was half-maximal at about 0.1 μM which is similar to the concentration required for half-maximal stimulation of membrane phosphorylation by endogenous cyclic AMP-stimulated protein kinase (EC 2.7.1.37). Cyclic AMP stimulation of Ca2+-activated ATPase was calcium dependent and maximal at calculated Ca2+ concentrations of 2.0 μM. Cyclic AMP-dependent Ca2+-activated ATPase correlated well with the cyclic AMP-dependent membrane phosphorylation of which 80% was 20 000 molecular weight protein identified by sodium dodecyl sulfate discontinuous polyacrylamide gel electrophoresis. In trypsin-treated microsomes, cyclic AMP did not stimulate Ca2+-activated ATPase or phosphorylation of the 20 000 molecular weight membrane protein. An endogenous calcium-stimulated protein kinase (probably phosphorylase b kinase) with an apparent Km for ATP of 0.21–0.32 mM was present and appeared to be involved in the cyclic AMP-dependent phosphorylation of the 20 000 molecular weight protein which was calcium dependent. Cyclic guanosine 3′ : 5′-monophosphate did not inhibit any of the stimulatory effects of cyclic AMP. These data suggest that the cyclic AMP stimulation of Ca2+-activated ATPase in cardiac sarcoplasmic reticulum is mediated by the 20 000 molecular weight phosphoprotein product of a series of kinase reactions similar to those activating phosphorylase b. 相似文献
13.
Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis 总被引:7,自引:0,他引:7
Synaptotagmin is a proposed Ca2+ sensor on the vesicle for regulated exocytosis and exhibits Ca2+-dependent binding to phospholipids, syntaxin, and SNAP-25 in vitro, but the mechanism by which Ca2+ triggers membrane fusion is uncertain. Previous studies suggested that SNAP-25 plays a role in the Ca2+ regulation of secretion. We found that synaptotagmins I and IX associate with SNAP-25 during Ca2+-dependent exocytosis in PC12 cells, and we identified C-terminal amino acids in SNAP-25 (Asp179, Asp186, Asp193) that are required for Ca2+-dependent synaptotagmin binding. Replacement of SNAP-25 in PC12 cells with SNAP-25 containing C-terminal Asp mutations led to a loss-of-function in regulated exocytosis at the Ca2+-dependent fusion step. These results indicate that the Ca2+-dependent interaction of synaptotagmin with SNAP-25 is essential for the Ca2+-dependent triggering of membrane fusion. 相似文献
14.
A thorough re-investigation was undertaken of a variety of factors that might explain the increased uptake of 45Ca2+ by mitochondria isolated from N6, O2'-dibutyryladenosine-3',5'-cyclic monophosphate (DB cyclic AMP)--treated PY815 cells. This showed that mitochondria isolated from DB cyclic AMP treated cells take up 45Ca2+ at a 30 per cent faster rate than mitochondria from untreated cells, although both mitochondria eventually reduce the total external Ca2+ to the same levels. 45Ca2+ precharged mitochondria from DB cyclic AMP-treated cells also leaked 45Ca2+ more slowly than those from untreated cells when they were recovered by filtration. Thus an apparently greater uptake of 45Ca2+ by mitochondria from DB cyclic AMP-treated cells was a consequence of the filtration procedure. In fact, mitochondria from DB cyclic AMP-treated cells contained less total Ca2+ than those from untreated cells, while DB cyclic AMP-treated cells also contained less total Ca2+ than untreated cells. The results suggest that mitochondria do not play an important role in controlling the growth of DB cyclic AMP-treated PY815 cells through effects on cytoplasmic Ca2+ availability. 相似文献
15.
The study investigated the role of protein kinase C (PKC) in the modulation of agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. The short-circuit current (ISC) technique was used to examine the effect of PKC activation and inhibition on subsequent ATP, angiotensin II and ionomycin-activated anion secretion by normal (CAPAN-1) and cystic fibrosis (CFPAC-1) pancreatic duct cells. The ISC responses induced by the Ca2+-mobilizing agents, which had been previously shown to be attributed to anion secretion, were enhanced in both CAPAN-1 and CFPAC-1 cells by PKC inhibitors, staurosporine, calphostin C or chelerythrine. On the contrary, a PKC activator, phorbol 12-myristate 13-acetate (PMA), was found to suppress the agonist-induced ISC in CFPAC-1 cells and the ionomycin-induced ISC in CAPAN-1 cells. An inactive form of PMA, 4alphad-phorbol 12, 13-didecanote (4alphaD), was found to exert insignificant effect on the agonist-induced ISC, indicating a specific effect of PMA. Our data suggest a role of PKC in modulating agonist-induced Ca2+-dependent anion secretion by pancreatic duct cells. Therapeutic strategy to augment Ca2+-activated anion secretion by cystic fibrosis pancreatic duct cells may be achieved by inhibition or down-regulation of PKC. 相似文献
16.
17.
Cyclic AMP raises cytosolic Ca2+ and promotes Ca2+ influx in a clonal pancreatic beta-cell line (HIT T-15) 总被引:1,自引:0,他引:1
The effect on cytosolic Ca2+ concentration ([Ca2+]i) of cAMP analogues and the adenylate cyclase-stimulating agents forskolin, isoproterenol and glucagon has been examined in an insulin-secreting beta-cell line (HIT T-15) using fura 2. All these manipulations of the cAMP messenger system promoted a rise in [Ca2+]i which was blocked by the Ca2+ channel antagonists verapamil and nifedipine or by removal of extracellular Ca2+. The action of the adenylate cyclase activator forskolin was glucose-dependent. The results suggest that cAMP elevates [Ca2+]i in HIT cells by promoting Ca2+ entry through voltage-sensitive Ca2+ channels, not through mobilization of stored Ca2+. Activation of Ca2+ influx may be an important component of the mechanisms by which cAMP potentiates fuel-induced insulin release. 相似文献
18.
Synaptotagmins have been the popular candidates for the Ca2+ sensor that couples local rise in Ca2+ to neurotransmitter release. Studies in worm, fly, and mouse corroborate the likely role for synaptotagmin I, the best-studied synaptotagmin prototype, as a Ca2+ trigger for synaptic vesicle exocytosis. Recent investigations have focused on structural domains of synaptotagmin that are critical for its function. Here we provide a brief overview of synaptotagmin I and discuss recent studies within the framework of neurotransmitter release mechanisms for fast synaptic transmission. 相似文献
19.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2019,1866(7):1218-1229
Weibel-Palade bodies (WPBs) are specialized secretory organelles of endothelial cells that serve important functions in the response to inflammation and vascular injury. WPBs actively respond to different stimuli by regulated exocytosis leading to full or selective release of their contents. Cellular conditions and mechanisms that distinguish between these possibilities are only beginning to emerge. To address this we analyzed dynamic rearrangements of the actin cytoskeleton during histamine-stimulated, Ca2+-dependent WPB exocytosis. We show that most WPB fusion events are followed by a rapid release of von-Willebrand factor (VWF), the large WPB cargo, and that this occurs concomitant with a softening of the actin cortex by the recently described Ca2+-dependent actin reset (CaAR). However, a considerable fraction of WPB fusion events is characterized by a delayed release of VWF and observed after the CaAR reaction peak. These delayed VWF secretions are accompanied by an assembly of actin rings or coats around the WPB post-fusion structures and are also seen following direct elevation of intracellular Ca2+ by plasma membrane wounding. Actin ring/coat assembly at WPB post-fusion structures requires Rho GTPase activity and is significantly reduced upon expression of a dominant-active mutant of the formin INF2 that triggers a permanent CaAR peak-like sequestration of actin to the endoplasmic reticulum. These findings suggest that a rigid actin cortex correlates with a higher proportion of fused WPB which assemble actin rings/coats most likely required for efficient VWF expulsion and/or stabilization of a WPB post-fusion structure.This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. 相似文献
20.
Plasticity and adaptation of Ca2+ signaling and Ca2+-dependent exocytosis in SERCA2(+/-) mice 总被引:3,自引:0,他引:3
Darier's disease (DD) is a high penetrance, autosomal dominant mutation in the ATP2A2 gene, which encodes the SERCA2 Ca2+ pump. Here we have used a mouse model of DD, a SERCA2(+/-) mouse, to define the adaptation of Ca2+ signaling and Ca2+-dependent exocytosis to a deletion of one copy of the SERCA2 gene. The [Ca2+]i transient evoked by maximal agonist stimulation was shorter in cells from SERCA2(+/-) mice, due to an up-regulation of specific plasma membrane Ca2+ pump isoforms. The change in cellular Ca2+ handling caused approximately 50% reduction in [Ca2+]i oscillation frequency. Nonetheless, agonist-stimulated exocytosis was identical in cells from wild-type and SERCA2(+/-) mice. This was due to adaptation in the levels of the Ca2+ sensors for exocytosis synaptotagmins I and III in cells from SERCA2(+/-) mice. Accordingly, exocytosis was approximately 10-fold more sensitive to Ca2+ in cells from SERCA2(+/-) mice. These findings reveal a remarkable plasticity and adaptability of Ca2+ signaling and Ca2+-dependent cellular functions in vivo, and can explain the normal function of most physiological systems in DD patients. 相似文献