首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Expression of the D1.1 ganglioside was studied immunohistochemically in developing cerebella from normal and weaver mutant mice. In the normal cerebellum at postnatal day 7 (P7), D1.1 expression was restricted to the external granule-cell layer (EGL). At later ages, D1.1 disappeared as the developing granule neurons ceased mitosis and began migrating toward the internal granule-cell layer. In the weaver cerebellum, D1.1 was expressed in the EGL in apparently normal fashion at P7, but failed to disappear at later ages. As late as P35, D1.1 immunoreactivity was observed throughout the weaver cerebellar cortex. The relative amounts of D1.1 ganglioside in weaver and normal cerebella were compared by thin layer chromatography of total gangliosides, followed by overlay of the chromatogram with anti-D1.1 and 125I-labelled second antibody. Autoradiograms showed that at P12 and P35 the weaver tissue contains six- to tenfold more D1.1 than normal tissue. These findings suggest that one result of the weaver mutation is prolonged expression of D1.1. We speculate that the D1.1 ganglioside might be involved in adhesive interactions that regulate the timing of granule-cell migration from the EGL. The prolonged expression of D1.1 could be responsible, in part, for the failure of granule-cell migration in the weaver cerebellum.  相似文献   

3.
There is increasing evidence that melanopsin-expressing ganglion cells (ipRGCs) are altered in retinal pathologies. Using a streptozotocin-induced (STZ) model of diabetes, we investigated the impact of diabetic retinopathy on non-visual functions by analyzing ipRGCs morphology and light-induced c-Fos and Period 1–2 clock genes in the central clock (SCN). The ability of STZ-diabetic mice to entrain to light was challenged by exposure animals to 1) successive light/dark (LD) cycle of decreasing or increasing light intensities during the light phase and 2) 6-h advance of the LD cycle. Our results show that diabetes induces morphological changes of ipRGCs, including soma swelling and dendritic varicosities, with no reduction in their total number, associated with decreased c-Fos and clock genes induction by light in the SCN at 12 weeks post-onset of diabetes. In addition, STZ-diabetic mice exhibited a reduction of overall locomotor activity, a decrease of circadian sensitivity to light at low intensities, and a delay in the time to re-entrain after a phase advance of the LD cycle. These novel findings demonstrate that diabetes alters clock genes and behavioral responses of the circadian timing system to light and suggest that diabetic patients may show an increased propensity for circadian disturbances, in particular when they are exposed to chronobiological challenges.  相似文献   

4.
5.

Background

Alzheimer''s disease (AD) is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the ε-4 allele of apolipoprotein E (apoE), the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR) has the highest affinity for apoE and plays an important role in brain cholesterol metabolism.

Methodology/Principal Findings

Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Aβ-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of γ- and α-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network.

Conclusions/Significance

These data suggest that increased APP expression and Aβ exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression.  相似文献   

6.

Objective

The role of mitochondrial function in the complex pathogenesis of type 2 diabetes is not yet completely understood. Therefore, the aim of this study was to investigate serum concentrations of short-, medium- and long-chain acylcarnitines as markers of mitochondrial function in volunteers with normal, impaired or diabetic glucose control.

Methods

Based on a 75 g oral glucose tolerance test, 1019 studied subjects were divided into a group with normal glucose tolerance (NGT; n = 636), isolated impaired fasting glycaemia (IFG; n = 184), impaired glucose tolerance (IGT; n = 87) or type 2 diabetes (T2D; n = 112). Serum concentrations of free carnitine and 24 acylcarnitines were measured by mass spectrometry.

Results

Serum levels of acetylcarnitine (C2), propionylcarnitine (C3), octanoylcarnitine (C8), malonylcarnitine/hydroxybutyrylcarnitine (C3DC+C4OH), hexanoylcarnitine (C6), octenoylcarnitine (C8:1), decanoylcarnitine (C10), decenoylcarnitine (C10:1), dodecanoylcarnitine (C12), tetradecenoylcarnitine (C14:1), tetradecadienylcarnitine (C14:2), hydroxytetradecanoylcarnitine (C14OH), hydroxyhexadecanoylcarnitine (C16OH) and octadecenoylcarnitine (C18:1) were significantly different among the groups (all p<0.05 adjusted for age, gender and BMI). Between the prediabetic states C14:1, C14:2 and C18:1 showed significantly higher serum concentrations in persons with IGT (p<0.05). Compared to T2D the IFG and the IGT subjects showed lower serum concentrations of malonylcarnitine/hydroxybutyrylcarnitine (C3DC+C4OH) (p<0.05).

Conclusion

Alterations in serum concentrations of several acylcarnitines, in particular tetradecenoylcarnitine (C14:1), tetradecadienylcarnitine (C14:2), octadecenoylcarnitine (C18:1) and malonylcarnitine/hydroxybutyrylcarnitine (C3DC+C4OH) are associated not only with T2D but also with prediabetic states.  相似文献   

7.
Gangliosides are known as modulators of transmembrane signaling by regulating various receptor functions. We have found that insulin resistance induced by tumor necrosis factor-alpha (TNF-alpha) in 3T3-L1 adipocytes was accompanied by increased GM3 ganglioside expression caused by elevating GM3 synthase activity and its mRNA. We also demonstrated that TNF-alpha simultaneously produced insulin resistance by uncoupling insulin receptor activity toward insulin receptor substrate-1 (IRS-1) and suppressing insulin-sensitive glucose transport. Pharmacological depletion of GM3 in adipocytes by an inhibitor of glucosylceramide synthase prevented the TNF-alpha-induced defect in insulin-dependent tyrosine phosphorylation of IRS-1 and also counteracted the TNF-alpha-induced serine phosphorylation of IRS-1. Moreover, when the adipocytes were incubated with exogenous GM3, suppression of tyrosine phosphorylation of insulin receptor and IRS-1 and glucose uptake in response to insulin stimulation was observed, demonstrating that GM3 itself is able to mimic the effects of TNF on insulin signaling. We used the obese Zucker fa/fa rat and ob/ob mouse, which are known to overproduce TNF-alpha mRNA in adipose tissues, as typical models of insulin resistance. We found that the levels of GM3 synthase mRNA in adipose tissues of these animals were significantly higher than in their lean counterparts. Taken together, the increased synthesis of cellular GM3 by TNF may participate in the pathological conditions of insulin resistance in type 2 diabetes.  相似文献   

8.
Chung TW  Kim SJ  Choi HJ  Kim KJ  Kim MJ  Kim SH  Lee HJ  Ko JH  Lee YC  Suzuki A  Kim CH 《Glycobiology》2009,19(3):229-239
Angiogenesis is associated with growth, invasion, and metastasis of human solid tumors. Aberrant activation of endothelial cells and induction of microvascular permeability by a vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) signaling pathway is observed in pathological angiogenesis including tumor, wound healing, arthritis, psoriasis, diabetic retinopathy, and others. Here, we show that GM3 regulated the activity of various downstream signaling pathways and biological events through the inhibition of VEGF-stimulated VEGFR-2 activation in vascular endothelial cells in vitro. Furthermore, GM3 strongly blocked VEGF-induced neovascularization in vivo, in models including the chick chorioallantoic membrane and Matrigel plug assay. Interestingly, GM3 suppressed VEGF-induced VEGFR-2 activation by blocking its dimerization and also blocked the binding of VEGF to VEGFR-2 through a GM3-specific interaction with the extracellular domain of VEGFR-2, but not with VEGF. Primary tumor growth in mice was inhibited by subcutaneous injection of GM3. Immunohistochemical analyses showed GM3 inhibition of angiogenesis and tumor cell proliferation. GM3 also resulted in the suppression of VEGF-stimulated microvessel permeability in mouse skin capillaries. These results suggest that GM3 inhibits VEGFR-2-mediated changes in vascular endothelial cell function and angiogenesis, and might be of value in anti-angiogenic therapy.  相似文献   

9.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 30 mg/kg i.p. daily for 7 days, was administered to mice. This dosage regimen resulted in an approximately 50% reduction of striatal dopamine (DA) level. Chronic administration of GM1 ganglioside (II3NeuAc-GgOse Cer), beginning between 1 to 4 days after terminating MPTP dosing, resulted in partial restoration of the striatal DA level. From dose- and time-response studies, it appeared that 30 mg/kg i.p. of GM1 administered daily for approximately 23 days resulted in an approximately 80% restoration of the DA level and complete restoration of the 3,4-dihydroxyphenylacetic acid (DOPAC) content. This dosage of GM1 also restored the turnover rate of DA in the striatum to near normal. Discontinuing GM1 treatment resulted in a fall of DA and DOPAC levels to values found in mice treated with MPTP alone. There was no evidence for regeneration of nerve terminal amine reuptake in the GM1-treated mice as evaluated by DA uptake into synaptosomes. Our biochemical findings in animals suggest that early GM1 ganglioside treatment of individuals with degenerative diseases of dopaminergic nigrostriatal neurons might be fruitful.  相似文献   

10.
Neutron reflectivity has been applied to investigate different mixed asymmetric lipid systems, in the form of single "supported+floating" bilayers, made of phospholipids, cholesterol and GM1 ganglioside (Neu5Acα2-3(Galβ1-3GalNAcβ1-4)Galβ1-4Glcβ1Cer)) in bio-similar mole ratios. Bilayer preparation was carried out layer-by-layer with the Langmuir-Blodgett Langmuir-Schaefer techniques, allowing for compositional asymmetry in the system buildup. It is the first time that such a complex model membrane system is reported. Two important conclusions are drawn. First, it is experimentally shown that the presence of GM1 enforces an asymmetry in cholesterol distribution, opposite to what happens for a GM1-free membrane that, submitted to a similar procedure, results in a full symmetrization of cholesterol distribution. We underline that natural cholesterol has been used. Second, and most interesting, our results suggest that a preferential asymmetric distribution of GM1 and cholesterol is attained in a model membrane with biomimetic composition, revealing that a true coupling between the two molecular species occurs.  相似文献   

11.
The effects of exogenously added glycosphingolipids on the differentiation of mouse myeloid leukemia cells (M1-T22) have been studied. Eight gangliosides and ten neutral glycosphingolipids were tested in terms of their induction of phagocytic activities on the leukemia cells. N-Acetyl-neuraminosyllactosylceramide (NAc-GM3) was the most effective glycolipid for inducing the activity. By the addition of 25 micrograms/ml of NAc-GM3, about 70 percent of the cells acquired phagocytic activity within 20 h incubation. GM1a showed about half the activity of the GM3. In the case of the neutral glycosphingolipids, lactosylceramide (CDH) and globotriaosylceramide (CTH) showed significant effects on the induction of phagocytic activity. Preincubation of the cells with the NAc-GM3 enhanced the effect of dexamethasone as a differentiation inducer on M1-T22 cells. When a human promyelocytic leukemia cell line, HL-60, was preincubated with the NAc-GM3 ganglioside, induction of the phagocytic activity, together with inhibition of the cell growth by phorbol ester (TPA), were markedly enhanced. From these observations, the NAc-GM3 ganglioside seems to act as a modulator of differentiation of mouse myeloid leukemia cells and also of HL-60 cells.  相似文献   

12.
13.
Metabolomic profiling can be used to study disease-induced changes in inflammatory bowel diseases (IBD). The aim of this study was to investigate the difference in the metabolomic profile of males and females as they developed IBD. Using the IL-10 gene-deficient mouse model of IBD and wild-type mice, urine at age 4, 6, 8, 12, 16, and 20 weeks was collected and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Multivariate data analysis was employed to assess differences in metabolomic profiles that occurred as a consequence of IBD development and severity (at week 20). These changes were contrasted to those that occurred as a consequence of gender. Our results demonstrate that both IL-10 gene-deficient and wild-type mice exhibit gender-related changes in urinary metabolomic profile over time. Some male-female separating metabolites are common to both IL-10 gene-deficient and control wild-type mice and, therefore, appear to be related predominantly to gender maturation. In addition, we were able to identify gender-separating metabolites that are unique for IL-10 gene-deficient and wild-type mice and, therefore, may be indicative of a gender-specific involvement in the development and severity of the intestinal inflammation. The comparison of the gender-separating metabolomic profile from IL-10 gene-deficient mice and wild-type mice during the development of IBD allowed us to identify changes in profile patterns that appear to be imperative in the development of intestinal inflammation, but yet central to gender-related differences in IBD development. The knowledge of metabolomic profile differences by gender and by disease severity has potential clinical implications in the design of both biomarkers of disease as well as the development of optimal therapies.  相似文献   

14.
UDP-N-acetylgalactosamine--GM3 acetylgalactosaminyltransferase (GM2-synthase) was studied in a Golgi-rich fraction from rat liver. Activity in a cell-free system required the presence of detergents; octyl glucoside was found to be the most effective in stimulating the enzyme. Optimal activity of GM2-synthase was obtained at pH 7.2, in the presence of 0.8% octyl glucoside, 10 mM Mn2+ and 5 mM CDP-choline. The latter was used to counteract the rapid sugar nucleotide hydrolysis caused by a nucleotide pyrophosphatase activity in the Golgi fraction. The apparent Km values for UDP-N-acetylgalactosamine and added GM3 were 0.035 mM and 0.1 mM, respectively. Different results were obtained if endogenous GM3 only was used as the glycolipid acceptor. In this case, the apparent Km value for UDP-N-acetylgalactosamine was 0.18 mM and Co2+ and Fe2+ exceeded Mn2+ in activating GM2-synthase. Under optimal assay conditions and in the presence of added GM3 and 5 mM CDP-choline, the specific activity of the enriched Golgi fraction was measured to be 25-30 nmol X mg protein-1 X h-1; with endogenous GM3 as the sole glycolipid acceptor, V was calculated to be 9 nmol X mg protein-1 X h-1.  相似文献   

15.
16.
17.
Brain Purines in a Genetic Mouse Model of Lesch-Nyhan Disease   总被引:2,自引:1,他引:2  
Abstract: Mice carrying a mutation in the gene encoding the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) have recently been produced to provide an animal model for Lesch-Nyhan disease. The current-studies were conducted to characterize the consequences of the mutation on the expression of HPRT and to characterize potential changes in brain purine content in these mutants. Our results indicate that the mutant animals have no detectable HPRT-immunoreactive material on western blots and no detectable HPRT enzyme activity in brain tissue homogenates, confirming that they are completely HPRT deficient (HPRT-). Despite the absence of HPRT-mediated purine salvage, the animals have apparently normal brain purine content. However, de novo purine synthesis, as measured by [14C]formate incorporation into brain purines, is accelerated four- to fivefold in the mutant animals. This increase in the synthesis of purines may protect the HPRT- mice from potential depletion of brain purines despite complete impairment of HPRT-mediated purine salvage.  相似文献   

18.
Preincubation of low density lipoproteins (LDL) with low concentrations of the ganglioside GM3 (1-2x 10(-5) M/2.5 x 10(-6) M LDL-protein) results in an increase of LDL-uptake, enhances cholesterol accumulation and cholesteryl ester formation by macrophages. At the same time the lysosomal degradation of LDL in macrophages was inhibited under these conditions. These effects depended on the ganglioside structure and concentration. It is suggested that the effects observed could be caused by GM3-induced modification of LDL to a form that becomes recognized by macrophages.  相似文献   

19.
Our objective was to investigate how sepsis influences cellular dynamics and amyloid formation before and after plaque formation. As such, APP-mice were subjected to a polymicrobial abdominal infection resulting in sepsis at 2 (EarlySepsis) and 4 (LateSepsis) months of age. Behavior was tested before sepsis and at 5 months of age. We could not detect any short-term memory or exploration behavior alterations in APP-mice that were subjected to Early or LateSepsis. Immunohistochemical analysis revealed a lower area of NeuN+ and Iba1+ signal in the cortex of Late compared with EarlySepsis animals (p = 0.016 and p = 0.01), with an increased astrogliosis in LateSepsis animals compared with WT-Sepsis (p = 0.0028), EarlySepsis (p = 0.0032) and the APP-Sham animals (p = 0.048). LateSepsis animals had larger areas of amyloid compared with both EarlySepsis (p = 0.0018) and APP-Sham animals (p = 0.0024). Regardless of the analyzed markers, we were not able to detect any cellular difference at the hippocampal level between groups. We were able to detect an increased inflammatory response around hippocampal plaques in LateSepsis compared with APP-Sham animals (p = 0.0003) and a decrease of AQP4 signal far from Sma+ vessels. We were able to show experimentally that an acute sepsis event before the onset of plaque formation has a minimal effect; however, it could have a major impact after its onset.  相似文献   

20.
Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号