首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Macrophages infected with Mycobacterium tuberculosis (M.tb) are known to be refractory to IFN-γ stimulation. Previous studies have shown that M.tb express components such as the 19-kDa lipoprotein and peptidoglycan that can bind to macrophage receptors including the Toll-like receptor 2 resulting in the loss in IFN-γresponsiveness. However, it is unclear whether this effect is limited to infected macrophages. We have previously shown that M.tb-infected macrophages release exosomes which are 30–100 nm membrane bound vesicles of endosomal origin that function in intercellular communication. These exosomes contain mycobacterial components including the 19-kDa lipoprotein and therefore we hypothesized that macrophages exposed to exosomes may show limited response to IFN-γ stimulation.

Methodology/Principal Findings

Exosomes were isolated from resting as well as M.tb-infected RAW264.7 macrophages. Mouse bone marrow-derived macrophages (BMMØ) were treated with exosomes +/− IFN-γ. Cells were harvested and analyzed for suppression of IFN-γ responsive genes by flow cytometry and real time PCR. We found that exosomes derived from M.tb H37Rv-infected but not from uninfected macrophages inhibited IFN-γ induced MHC class II and CD64 expression on BMMØ. This inhibition was only partially dependent on the presence of lipoproteins but completely dependent on TLR2 and MyD88. The exosomes isolated from infected cells did not inhibit STAT1 Tyrosine phosphorylation but down-regulated IFN-γ induced expression of the class II major histocompatibity complex transactivator; a key regulator of class II MHC expression. Microarray studies showed that subsets of genes induced by IFN-γ were inhibited by exosomes from H37Rv-infeced cells including genes involved in antigen presentation. Moreover, this set of genes partially overlapped with the IFN-γ-induced genes inhibited by H37Rv infection.

Conclusions

Our study suggests that exosomes, as carriers of M.tb pathogen associated molecular patterns (PAMPs), may provide a mechanism by which M.tb may exert its suppression of a host immune response beyond the infected cell.  相似文献   

2.

Background

Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE). Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated.

Objective

To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis.

Methods

Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC) were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively.

Results

We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC.

Conclusions

Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for understanding host-microbe interactions in the pathogenesis of AE.  相似文献   

3.

Background

Exosomes are small extracellular nanovesicles of endocytic origin that mediate different signals between cells, by surface interactions and by shuttling functional RNA from one cell to another. Exosomes are released by many cells including mast cells, dendritic cells, macrophages, epithelial cells and tumour cells. Exosomes differ compared to their donor cells, not only in size, but also in their RNA, protein and lipid composition.

Methodology/Principal Findings

In this study, we show that exosomes, released by mouse mast cells exposed to oxidative stress, differ in their mRNA content. Also, we show that these exosomes can influence the response of other cells to oxidative stress by providing recipient cells with a resistance against oxidative stress, observed as an attenuated loss of cell viability. Furthermore, Affymetrix microarray analysis revealed that the exosomal mRNA content not only differs between exosomes and donor cells, but also between exosomes derived from cells grown under different conditions; oxidative stress and normal conditions. Finally, we also show that exposure to UV-light affects the biological functions associated with exosomes released under oxidative stress.

Conclusions/Significance

These results argue that the exosomal shuttle of RNA is involved in cell-to-cell communication, by influencing the response of recipient cells to an external stress stimulus.  相似文献   

4.

Background

Mycobacterium avium is the principal etiologic agent of non-tuberculous lymphadenitis in children. It is also a known pathogen for birds and other animals. Genetic typing of M. avium isolates has led to a proposal to expand the set of subspecies to include M. avium subsp. hominissuis. Isolates associated with disease in humans belong to this subspecies.

Methodology/Principal Findings

Peripheral blood mononuclear cells from six healthy blood donors were stimulated in vitro with ten isolates of M. avium avium and 11 isolates of M. avium hominissuis followed by multiplex bead array quantification of cytokines in supernatants. M. avium hominissuis isolates induced significantly more IL-10 and significantly less IL-12p70, TNF, IFN-γ and IL-17 when compared to M. avium avium isolates. All strains induced high levels of IL-17, but had very low levels of IL-12p70.

Conclusion/Significance

The strong association between M. avium subsp. hominissuis and disease in humans and the clear differences in the human immune response to M. avium subsp. hominissuis compared to M. avium subsp. avium isolates, as demonstrated in this study, suggest that genetic differences between M. avium isolates play an important role in the pathogenicity in humans.  相似文献   

5.
6.

Introduction

Osteoarthritis (OA) is a whole joint disease, and characterized by progressive degradation of articular cartilage, synovial hyperplasia, bone remodeling and angiogenesis in various joint tissues. Exosomes are a type of microvesicles (MVs) that may play a role in tissue-tissue and cell-cell communication in homeostasis and diseases. We hypothesized that exosomes function in a novel regulatory network that contributes to OA pathogenesis and examined the function of exosomes in communication among joint tissue cells.

Methods

Human synovial fibroblasts (SFB) and articular chondrocytes were obtained from normal knee joints. Exosomes isolated from conditioned medium of SFB were analyzed for size, numbers, markers and function. Normal articular chondrocytes were treated with exosomes from SFB, and Interleukin-1β (IL-1β) stimulated SFB. OA-related genes expression was quantified using real-time PCR. To analyze exosome effects on cartilage tissue, we performed glycosaminoglycan release assay. Angiogenic activity of these exosomes was tested in migration and tube formation assays. Cytokines and miRNAs in exosomes were analyzed by Bio-Plex multiplex assay and NanoString analysis.

Results

Exosomes from IL-1β stimulated SFB significantly up-regulated MMP-13 and ADAMTS-5 expression in articular chondrocytes, and down-regulated COL2A1 and ACAN compared with SFB derived exosomes. Migration and tube formation activity were significantly higher in human umbilical vein endothelial cells (HUVECs) treated with the exosomes from IL-1β stimulated SFB, which also induced significantly more proteoglycan release from cartilage explants. Inflammatory cytokines, IL-6, MMP-3 and VEGF in exosomes were only detectable at low level. IL-1β, TNFα MMP-9 and MMP-13 were not detectable in exosomes. NanoString analysis showed that levels of 50 miRNAs were differentially expressed in exosomes from IL-1β stimulated SFB compared to non-stimulated SFB.

Conclusions

Exosomes from IL-1β stimulated SFB induce OA-like changes both in vitro and in ex vivo models. Exosomes represent a novel mechanism by which pathogenic signals are communicated among different cell types in OA-affected joints.  相似文献   

7.

Background

Mesenchymal stem cells (MSCs) promote tumor growth by differentiating into carcinoma-associated fibroblasts (CAFs) and composing the tumor microenvironment. However, the mechanisms responsible for the transition of MSCs to CAFs are not well understood. Exosomes regulate cellular activities by mediating cell-cell communication. In this study, we aimed to investigate whether cancer cell-derived exosomes were involved in regulating the differentiation of human umbilical cord-derived MSCs (hucMSCs) to CAFs.

Methodology/Principal Findings

We first showed that gastric cancer cell-derived exosomes induced the expression of CAF markers in hucMSCs. We then demonstrated that gastric cancer cell-derived exosomes stimulated the phosphorylation of Smad-2 in hucMSCs. We further confirmed that TGF-β receptor 1 kinase inhibitor attenuated Smad-2 phosphorylation and CAF marker expression in hucMSCs after exposure to gastric cancer cell-derived exosomes.

Conclusion/Significance

Our results suggest that gastric cancer cells triggered the differentiation of hucMSCs to CAFs by exosomes-mediated TGF-β transfer and TGF-β/Smad pathway activation, which may represent a novel mechanism for MSCs to CAFs transition in cancer.  相似文献   

8.
9.

Background

Neutrophils play an important role in the pathophysiology of RSV, though RSV does not appear to directly activate neutrophils in the lower airways. Therefore locally produced cytokines or other molecules released by virally-infected airway epithelial cells are likely responsible for recruiting and activating neutrophils. Heat shock proteins (HSPs) are generally regarded as intracellular proteins acting as molecular chaperones; however, HSP72 can also be released from cells, and the implications of this release are not fully understood.

Methods

Human bronchial epithelial cells (16HBE14o-) were infected with RSV and Hsp72 levels were measured by Western blot and ELISA. Tracheal aspirates were obtained from critically ill children infected with RSV and analyzed for Hsp72 levels by ELISA. Primary human neutrophils and differentiated HL-60 cells were cultured with Hsp72 and supernatants analyzed for cytokine production. In some cases, cells were pretreated with polymyxin B prior to treatment with Hsp72. IκBα was assessed by Western blot and EMSA''s were performed to determine NF-κB activation. HL-60 cells were pretreated with neutralizing antibody against TLR4 prior to Hsp72 treatment. Neutrophils were harvested from the bone marrow of wild type or TLR4-deficient mice prior to treatment with Hsp72.

Results

Infection of 16HBE14o- with RSV showed an induction of intracellular Hsp72 levels as well as extracellular release of Hsp72. Primary human neutrophils from normal donors and differentiated HL-60 cells treated with increasing concentrations of Hsp72 resulted in increased cytokine (IL-8 and TNFα) production. This effect was independent of the low levels of endotoxin in the Hsp72 preparation. Hsp72 mediated cytokine production via activation of NF-κB translocation and DNA binding. Using bone marrow-derived neutrophils from wild type and TLR4-mutant mice, we showed that Hsp72 directly activates neutrophil-derived cytokine production via the activation of TLR4.

Conclusion

Collectively these data suggest that extracellular Hsp72 is released from virally infected airway epithelial cells resulting in the recruitment and activation of neutrophils.  相似文献   

10.

Background

Shedding microvesicles are membrane released vesicles derived directly from the plasma membrane. Exosomes are released membrane vesicles of late endosomal origin that share structural and biochemical characteristics with prostasomes. Microvesicles/exosomes can mediate messages between cells and affect various cell-related processes in their target cells. We describe newly detected microvesicles/exosomes from cardiomyocytes and depict some of their biological functions.

Methodology/Principal Findings

Microvesicles/exosomes from media of cultured cardiomyocytes derived from adult mouse heart were isolated by differential centrifugation including preparative ultracentrifugation and identified by transmission electron microscopy and flow cytometry. They were surrounded by a bilayered membrane and flow cytometry revealed presence of both caveolin-3 and flotillin-1 while clathrin and annexin-2 were not detected. Microvesicle/exosome mRNA was identified and out of 1520 detected mRNA, 423 could be directly connected in a biological network. Furthermore, by a specific technique involving TDT polymerase, 343 different chromosomal DNA sequences were identified in the microvesicles/exosomes. Microvesicle/exosomal DNA transfer was possible into target fibroblasts, where exosomes stained for DNA were seen in the fibroblast cytosol and even in the nuclei. The gene expression was affected in fibroblasts transfected by microvesicles/exosomes and among 333 gene expression changes there were 175 upregulations and 158 downregulations compared with controls.

Conclusions/Significance

Our study suggests that microvesicles/exosomes released from cardiomyocytes, where we propose that exosomes derived from cardiomyocytes could be denoted “cardiosomes”, can be involved in a metabolic course of events in target cells by facilitating an array of metabolism-related processes including gene expression changes.  相似文献   

11.

Background

Exosomes play a major role in cell-to-cell communication, targeting cells to transfer exosomal molecules including proteins, mRNAs, and microRNAs (miRNAs) by an endocytosis-like pathway. miRNAs are small noncoding RNA molecules on average 22 nucleotides in length that regulate numerous biological processes including cancer pathogenesis and mediate gene down-regulation by targeting mRNAs to induce RNA degradation and/or interfering with translation. Recent reports imply that miRNAs can be stably detected in circulating plasma and serum since miRNAs are packaged by exosomes to be protected from RNA degradation. Thus, profiling exosomal miRNAs are in need to clarify intercellular signaling and discover a novel disease marker as well.

Methodology/Principal Findings

Exosomes were isolated from cultured cancer cell lines and their quality was validated by analyses of transmission electron microscopy and western blotting. One of the cell lines tested, a metastatic gastric cancer cell line, AZ-P7a, showed the highest RNA yield in the released exosomes and distinctive shape in morphology. In addition, RNAs were isolated from cells and culture media, and profiles of these three miRNA fractions were obtained using microarray analysis. By comparing signal intensities of microarray data and the following validation using RT-PCR analysis, we found that let-7 miRNA family was abundant in both the intracellular and extracellular fractions from AZ-P7a cells, while low metastatic AZ-521, the parental cell line of AZ-P7a, as well as other cancer cell lines showed no such propensity.

Conclusions/Significance

The enrichment of let-7 miRNA family in the extracellular fractions, particularly, in the exosomes from AZ-P7a cells may reflect their oncogenic characteristics including tumorigenesis and metastasis. Since let-7 miRNAs generally play a tumor-suppressive role as targeting oncogenes such as RAS and HMGA2, our results suggest that AZ-P7a cells release let-7 miRNAs via exosomes into the extracellular environment to maintain their oncogenesis.  相似文献   

12.

Background

Extracellular vesicles (EVs) are structures with phospholipid bilayer membranes and 100–1000 nm diameters. These vesicles are released from cells upon activation of surface receptors and/or apoptosis. The production of EVs by dendritic cells, mast cells, macrophages, and B and T lymphocytes has been extensively reported in the literature. EVs may express MHC class II and other membrane surface molecules and carry antigens. The aim of this study was to investigate the role of EVs from Leishmania-infected macrophages as immune modulatory particles.

Methodology/Principal Findings

In this work it was shown that BALB/c mouse bone marrow-derived macrophages, either infected in vitro with Leishmania amazonensis or left uninfected, release comparable amounts of 50–300 nm-diameter extracellular vesicles (EVs). The EVs were characterized by flow cytometry and electron microscopy. The incubation of naïve macrophages with these EVs for 48 hours led to a statistically significant increase in the production of the cytokines IL-12, IL-1β, and TNF-α.

Conclusions/Significance

EVs derived from macrophages infected with L. amazonensis induce other macrophages, which in vivo could be bystander cells, to produce the proinflammatory cytokines IL-12, IL-1β and TNF-α. This could contribute both to modulate the immune system in favor of a Th1 immune response and to the elimination of the Leishmania, leading, therefore, to the control the infection.  相似文献   

13.
14.

Background

Hormone-refractory prostate cancer remains hindered by inevitable progression of resistance to first-line treatment with docetaxel. Recent studies suggest that phenotypic changes associated with cancer may be transferred from cell-to-cell via microvesicles/exosomes. Here we aimed to investigate phenotypic changes associated with docetaxel-resistance in order to help determine the complexity of this problem and to assess the relevance of secreted exosomes in prostate cancer.

Methodology/Principal Findings

Docetaxel-resistant variants of DU145 and 22Rv1 were established and characterised in terms of cross-resistance, morphology, proliferation, motility, invasion, anoikis, colony formation, exosomes secretion their and functional relevance. Preliminary analysis of exosomes from relevant serum specimens was also performed. Acquired docetaxel-resistance conferred cross-resistance to doxorubicin and induced alterations in motility, invasion, proliferation and anchorage-independent growth. Exosomes expelled from DU145 and 22Rv1 docetaxel-resistant variants (DU145RD and 22Rv1RD) conferred docetaxel-resistance to DU145, 22Rv1 and LNCap cells, which may be partly due to exosomal MDR-1/P-gp transfer. Exosomes from prostate cancer patients’ sera induced increased cell proliferation and invasion, compared to exosomes from age-matched controls. Furthermore, exosomes from sera of patients undergoing a course of docetaxel treatment compared to matched exosomes from the same patients prior to commencing docetaxel treatment, when applied to both DU145 and 22Rv1 cells, showed a correlation between cellular response to docetaxel and patients’ response to treatment with docetaxel.

Conclusions/Significance

Our studies indicate the complex and multifaceted nature of docetaxel-resistance in prostate cancer. Furthermore, our in vitro observations and preliminary clinical studies indicate that exosomes may play an important role in prostate cancer, in cell-cell communication, and thus may offer potential as vehicles containing predictive biomarkers and new therapeutic targets.  相似文献   

15.

Background

Chemotherapy for leishmaniasis, a disease caused by Leishmania parasites, is expensive and causes side effects. Furthermore, parasite resistance constitutes an increasing problem, and new drugs against this disease are needed. In this study, we examine the effect of the compound 8,10,18-trihydroxy-2,6-dolabelladiene (Dolabelladienetriol), on Leishmania growth in macrophages. The ability of this compound to modulate macrophage function is also described.

Methodology/Principal Findings

Leishmania-infected macrophages were treated with Dolabelladienetriol, and parasite growth was measured using an infectivity index. Nitric oxide (NO), TNF-α and TGF-β production were assayed in macrophages using specific assays. NF-kB nuclear translocation was analyzed by western blot. Dolabelladienetriol inhibited Leishmania in a dose-dependent manner; the IC50 was 44 µM. Dolabelladienetriol diminished NO, TNF-α and TGF-β production in uninfected and Leishmania-infected macrophages and reduced NF-kB nuclear translocation. Dolabelladienetriol inhibited Leishmania infection even when the parasite growth was exacerbated by either IL-10 or TGF-β. In addition, Dolabelladienetriol inhibited Leishmania growth in HIV-1-co-infected human macrophages.

Conclusion

Our results indicate that Dolabelladienetriol significantly inhibits Leishmania in macrophages even in the presence of factors that exacerbate parasite growth, such as IL-10, TGF-β and HIV-1 co-infection. Our results suggest that Dolabelladienetriol is a promising candidate for future studies regarding treatment of leishmaniasis, associated or not with HIV-1 infection.  相似文献   

16.
Greenstein RJ  Su L  Brown ST 《PloS one》2012,7(1):e29631

Background

The role of vitamins in the combat of disease is usually conceptualized as acting by modulating the immune response of an infected, eukaryotic host. We hypothesized that some vitamins may directly influence the growth of prokaryotes, particularly mycobacteria.

Methods

The effect of four fat-soluble vitamins was studied in radiometric Bactec® culture. The vitamins were A (including a precursor and three metabolites,) D, E and K. We evaluated eight strains of three mycobacterial species (four of M. avium subspecies paratuberculosis (MAP), two of M. avium and two of M. tb. complex).

Principal Findings

Vitamins A and D cause dose-dependent inhibition of all three mycobacterial species studied. Vitamin A is consistently more inhibitory than vitamin D. The vitamin A precursor, β-carotene, is not inhibitory, whereas three vitamin A metabolites cause inhibition. Vitamin K has no effect. Vitamin E causes negligible inhibition in a single strain.

Significance

We show that vitamin A, its metabolites Retinyl acetate, Retinoic acid and 13-cis Retinoic acid and vitamin D directly inhibit mycobacterial growth in culture. These data are compatible with the hypothesis that complementing the immune response of multicellular organisms, vitamins A and D may have heretofore unproven, unrecognized, independent and probable synergistic, direct antimycobacterial inhibitory activity.  相似文献   

17.

Purpose

To determine whether HIV-1 produces microRNAs and elucidate whether these miRNAs can induce inflammatory response in macrophages (independent of the conventional miRNA function in RNA interference) leading to chronic immune activation.

Methods

Using sensitive quantitative Real Time RT-PCR and sequencing, we detected novel HIV-derived miRNAs in the sera of HIV+ persons, and associated with exosomes. Release of TNFα by macrophages challenged with HIV miRNAs was measured by ELISA.

Results

HIV infection of primary alveolar macrophages produced elevated levels of viral microRNAs vmiR88, vmiR99 and vmiR-TAR in cell extracts and in exosome preparations from conditioned medium. Furthermore, these miRNAs were also detected in exosome fraction of sera from HIV-infected persons. Importantly, vmiR88 and vmiR99 (but not vmiR-TAR) stimulated human macrophage TNFα release, which is dependent on macrophage TLR8 expression. These data support a potential role for HIV-derived vmiRNAs released from infected macrophages as contributing to chronic immune activation in HIV-infected persons, and may represent a novel therapeutic target to limit AIDS pathogenesis.

Conclusion

Novel HIV vmiR88 and vmiR99 are present in the systemic circulation of HIV+ persons and could exhibit biological function (independent of gene silencing) as ligands for TLR8 signaling that promote macrophage TNFα release, and may contribute to chronic immune activation. Targeting novel HIV-derived miRNAs may represent a therapeutic strategy to limit chronic immune activation and AIDS progression.  相似文献   

18.

Background

Survivin is expressed in prostate cancer (PCa), and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment.

Methods

Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively.

Results

Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six) or high (nine) Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls.

Conclusions

These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.  相似文献   

19.

Background

To determine the effects of liposomal targeting of prednisolone phosphate (Lip-PLP) to synovial lining macrophages on M1 and M2 polarization in vitro and during experimental arthritis.

Material and Methods

Experimental arthritis (antigen and immune complex induced) was elicited in mice and prednisolone containing liposomes were given systemically. Synovium was investigated using microarray analysis, RT-PCR and histology. Bone–marrow macrophages were stimulated towards M1 using LPS and IFNγ before treatment by PLP-liposomes. M1 and M2 markers were determined using RT-PCR.

Results

Microarray analysis of biopsies of inflamed synovium during antigen induced arthritis (AIA) showed an increased M1 signature characterized by upregulation of IL-1β, IL-6 and FcγRI starting from day 1 and lasting up until day 7 after arthritis induction. The M2 signature remained low throughout the 7 day course of arthritis. Treatment of AIA with intravenously delivered Lip-PLP strongly suppressed joint swelling and synovial infiltration whereas colloidal gold containing liposomes exclusively targeted the macrophages within the inflamed synovial intima layer. In vitro studies showed that Lip-PLP phagocytosed by M1 macrophages resulted in a suppression of the M1 phenotype and induction of M2 markers (IL-10, TGF-β, IL-1RII, CD163, CD206 and Ym1). In vivo, Lip-PLP treatment strongly suppressed M1 markers (TNF-α, IL-1β, IL-6, IL-12p40, iNOS, FcγRI, Ciita and CD86) after local M1 activation of lining macrophages with LPS and IFN-γ and during experimental AIA and immune complex arthritis (ICA). In contrast, M2 markers were not significantly upregulated in antigen-induced arthritis and down regulated in immune complex arthritis.

Conclusion

This study clearly shows that systemic treatment with PLP-liposomes selectively targets synovial lining macrophages and inhibits M1 activation. In contrast to in vitro findings, PLP-liposomes do not cause a shift of synovial lining macrophages towards M2.  相似文献   

20.

Background

In a previous work we showed for the first time that human tumor cells secrete Hsp60 via exosomes, which are considered immunologically active microvesicles involved in tumor progression. This finding raised questions concerning the route followed by Hsp60 to reach the exosomes, its location in them, and whether Hsp60 can be secreted also via other mechanisms, e.g., by the Golgi. We addressed these issues in the work presented here.

Principal Findings

We found that Hsp60 localizes in the tumor cell plasma membrane, is associated with lipid rafts, and ends up in the exosomal membrane. We also found evidence that Hsp60 localizes in the Golgi apparatus and its secretion is prevented by an inhibitor of this organelle.

Conclusions/Significance

We propose a multistage process for the translocation of Hsp60 from the inside to the outside of the cell that includes a combination of protein traffic pathways and, ultimately, presence of the chaperonin in the circulating blood. The new information presented should help in designing future strategies for research and for developing diagnostic-monitoring means useful in clinical oncology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号