首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new model for grass functional genomics is described based on Brachypodium distachyon, which in the evolution of the Pooideae diverged just prior to the clade of "core pooid" genera that contain the majority of important temperate cereals and forage grasses. Diploid ecotypes of B. distachyon (2n = 10) have five easily distinguishable chromosomes that display high levels of chiasma formation at meiosis. The B. distachyon nuclear genome was indistinguishable in size from that of Arabidopsis, making it the simplest genome described in grasses to date. B. distachyon is a self-fertile, inbreeding annual with a life cycle of less than 4 months. These features, coupled with its small size (approximately 20 cm at maturity), lack of seed-head shatter, and undemanding growth requirements should make it amenable to high-throughput genetics and mutant screens. Immature embryos exhibited a high capacity for plant regeneration via somatic embryogenesis. Regenerated plants display very low levels of albinism and have normal fertility. A simple transformation system has been developed based on microprojectile bombardment of embryogenic callus and hygromycin selection. Selected B. distachyon ecotypes were resistant to all tested cereal-adapted Blumeria graminis species and cereal brown rusts (Puccinia reconditia). In contrast, different ecotypes displayed resistance or disease symptoms following challenge with the rice blast pathogen (Magnaporthe grisea) and wheat/barley yellow stripe rusts (Puccinia striformis). Despite its small stature, B. distachyon has large seeds that should prove useful for studies on grain filling. Such biological characteristics represent important traits for study in temperate cereals.  相似文献   

2.
3.
Dedicated bioenergy crops require certain characteristics to be economically viable and environmentally sustainable. Perennial grasses, which can provide large amounts of biomass over multiple years, are one option being investigated to grow on marginal agricultural land. Recently, a grass species (Brachypodium distachyon) has been developed as a model to better understand grass physiology and ecology. Here, we report on the flowering time variability of natural Brachypodium accessions in response to temperature and light cues. Changes in both environmental parameters greatly influence when a given accession will flower, and natural Brachypodium accessions broadly group into winter and spring annuals. Similar to what has been discovered in wheat and barley, we find that a portion of the phenotypic variation is associated with changes in expression of orthologs of VRN genes, and thus, VRN genes are a possible target for modifying flowering time in grass family bioenergy crops.  相似文献   

4.
We show that in the temperate grass, Brachypodium distachyon, PHYTOCHROME C (PHYC), is necessary for photoperiodic flowering. In loss-of-function phyC mutants, flowering is extremely delayed in inductive photoperiods. PHYC was identified as the causative locus by utilizing a mapping by sequencing pipeline (Cloudmap) optimized for identification of induced mutations in Brachypodium. In phyC mutants the expression of Brachypodium homologs of key flowering time genes in the photoperiod pathway such as GIGANTEA (GI), PHOTOPERIOD 1 (PPD1/PRR37), CONSTANS (CO), and florigen/FT are greatly attenuated. PHYC also controls the day-length dependence of leaf size as the effect of day length on leaf size is abolished in phyC mutants. The control of genes upstream of florigen production by PHYC was likely to have been a key feature of the evolution of a long-day flowering response in temperate pooid grasses.  相似文献   

5.
二穗短柄草(Brachypodium distachyon)是一种温带禾本科植物,其植株矮小,自花授粉,生活周期短,生长条件简单,基因组小,易于进行遗传转化,与小麦、柳枝稷同属禾本科早熟禾亚科,是研究小麦、大麦等经济作物以及柳枝稷等能源植物的比较适合的模式植物。最近,二穗短柄草基因组测序及注释正式完成,有必要对其研究进展进行全面的总结。综述了二穗短柄草的基因组特征、基因表达模式、遗传转化等方面的最新研究进展,并对今后的研究方向作了展望,以促进对禾谷类经济作物和能源植物的深入研究。  相似文献   

6.
Epitope databases and the protein sequences of published plant genomes are suitable to identify some of the proteins causing food allergies and sensitivities. Brachypodium distachyon, a diploid wild grass with a sequenced genome and low prolamin content, is the closest relative of the allergen cereals, such as wheat or barley. Using the Brachypodium genome sequence, a workflow has been developed to identify potentially harmful proteins which may cause either celiac disease or wheat allergy-related symptoms. Seed tissue-specific expression of the potential allergens has been determined, and intact epitopes following an in silico digestion with several endopeptidases have been identified. Molecular function of allergen proteins has been evaluated using Gene Ontology terms. Biologically overrepresented proteins and potentially allergen protein families have been identified.  相似文献   

7.
Journal of Plant Growth Regulation - To characterize polyamine (PA) biosynthetic pathways in Brachypodium distachyon, we analyzed the gene-expression patterns and PA contents in various organs....  相似文献   

8.
ABSTRACT: BACKGROUND: Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition proteins (IRIP) genes, fructosyltransferase (FST) genes, and many C-repeat binding factor (CBF) genes are Pooideae specific and important in low temperature responses. Here we use comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand B. distachyon's potential as a model species for agriculturally important temperate grasses RESULTS: Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. CONCLUSIONS: We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.  相似文献   

9.
10.
To investigate its susceptibility to ergot infection, we inoculated Brachypodium distachyon with Claviceps purpurea and compared the infection symptoms with those on rye (Secale cereale). We showed that, after inoculation of Brachypodium with Claviceps, the same disease symptoms occurred in comparable temporal and spatial patterns to those on rye. The infection rate of Claviceps on this host was reduced compared with rye, but the disease could be surveyed by fungal genomic DNA quantification. Mutants of Claviceps which were virulence attenuated on rye were also affected on Brachypodium. We were able to show that pathogenesis‐related gene expression changed in a typical manner for biotrophic pathogen attack. Our results indicated that the ClavicepsBrachypodium interaction was dependent on salicylic acid, cytokinin and auxin. We consider Brachypodium to be a suitable and useful alternative host; the increased sensitivity compared with rye will be valuable for the identification of infection mechanisms. Future progess in understanding the Claviceps–plant interaction will be facilitated by the use of a well‐characterized model host system.  相似文献   

11.
12.
The biotechnological approach to improve performance or yield of crops or for engineering metabolic pathways requires the expression of a number of transgenes, each with a specific promoter to avoid induction of silencing mechanisms. In maize (Zea mays), used as a model for cereals, an efficient Agrobacterium tumefaciens-mediated transformation system has been established that is applied for translational research. In the current transformation vectors, the promoters of the 35S gene of the cauliflower mosaic virus and of the ubiquitin gene of maize are often used to drive the bialaphos-selectable marker and the transgene, respectively. To expand the number of promoters, genes with either constitutive or seed-specific expression were selected in Brachypodium distachyon, a model grass distantly related to maize. After the corresponding Brachypodium promoters had been fused to the β-glucuronidase reporter gene, their activity was followed throughout maize development and quantified in a fluorimetric assay with the 4-methylumbelliferyl β-D-glucuronide substrate. The promoters pBdEF1α and pBdUBI10 were constitutively and highly active in maize, whereas pBdGLU1 was clearly endosperm-specific, hence, expanding the toolbox for transgene analysis in maize. The data indicate that Brachypodium is an excellent resource for promoters for transgenic research in heterologous cereal species.  相似文献   

13.
麦类作物是人类主要的食物来源,其遗传改良对于保障世界粮食生产具有重要作用。获得麦类作物的基因组和功能基因组信息是作物遗传育种学家解析种质资源高产及抗逆机理,并准确选择目标性状、实现分子设计育种目标的有效途径。目前,二穗短柄草(Brachypodium distachyum)是早熟禾亚科中唯一完成全基因组测序的植物。以二穗短柄草为模式植物,利用比较基因组学方法获得早熟禾亚科中基因组庞大而复杂的麦类作物的相关信息,必将加速麦类作物的遗传改良进程。本文重点介绍近十年来短柄草在麦类作物比较基因组学方面的研究进展。  相似文献   

14.
15.

Background and Aims

Brachypodium is a small genus of temperate grasses that comprises 12–15 species. Brachypodium distachyon is now well established as a model species for temperate cereals and forage grasses. In contrast to B. distachyon, other members of the genus have been poorly investigated at the chromosome level or not at all.

Methods

Twenty accessions comprising six species and two subspecies of Brachypodium were analysed cytogenetically. Measurements of nuclear genome size were made by flow cytometry. Chromosomal localization of 18–5·8–25S rDNA and 5S rDNA loci was performed by dual-colour fluorescence in situ hybridization (FISH) on enzymatically digested root-tip meristematic cells. For comparative phylogenetic analyses genomic in situ hybridization (GISH) applied to somatic chromosome preparations was used.

Key Results

All Brachypodium species examined have rather small genomes and chromosomes. Their chromosome numbers and genome sizes vary from 2n = 10 and 0·631 pg/2C in B. distachyon to 2n = 38 and 2·57 pg/2C in B. retusum, respectively. Genotypes with 18 and 28 chromosomes were found among B. pinnatum accessions. GISH analysis revealed that B. pinnatum with 28 chromosomes is most likely an interspecific hybrid between B. distachyon (2n = 10) and B. pinnatum (2n = 18). Two other species, B. phoenicoides and B. retusum, are also allopolyploids and B. distachyon or a close relative seems to be one of their putative ancestral species. In chromosomes of all species examined the 45S rDNA loci are distally distributed whereas loci for 5S rDNA are pericentromeric.

Conclusions

The increasing significance of B. distachyon as a model grass emphasizes the need to understand the evolutionary relationships in the genus Brachypodium and to ensure consistency in the biological nomenclature of its species. Modern molecular cytogenetic techniques such as FISH and GISH are suitable for comparative phylogenetic analyses and may provide informative chromosome- and/or genome-specific landmarks.  相似文献   

16.
A fast and efficient microprojectile bombardment-mediated transformation protocol is reported for the grass species Brachypodium distachyon, a proposed alternative model plant to Oryza sativa for functional genomics in grasses. Embryogenic calli derived from immature embryos were transformed by a construct containing the uidA (coding for beta-glucuronidase) and bar (coding for phosphinothricin acetyl transferase) genes, and bialaphos, a non-selective herbicide, was used as the selection agent throughout all phases of the tissue culture. Average transformation efficiencies of 5.3% were achieved, and for single bombardments transformation efficiencies of up to 14% were observed. The time frame from the bombardment of embryogenic callus to the harvesting of transgenic T1 seeds was 29 weeks and 25 weeks for the diploid and two tetraploid accessions used, respectively. Since the seed-to-seed life cycle is 19 weeks for the diploid and 15 weeks for the tetraploid accessions, our B. distachyon transformation system allows testing of both the T0 and the T1 generation as well as production of T2 seeds within 1 year.  相似文献   

17.
18.
To determine the relative importance of temperate bacteriophage in the horizontal gene transfer of fitness and virulence determinants of Enterococcus faecalis, a panel of 47 bacteremia isolates were treated with the inducing agents mitomycin C, norfloxacin, and UV radiation. Thirty-four phages were purified from culture supernatants and discriminated using pulsed-field gel electrophoresis (PFGE) and restriction mapping. From these analyses the genomes of eight representative phages were pyrosequenced, revealing four distinct groups of phages. Three groups of phages, ΦFL1 to 3, were found to be sequence related, with ΦFL1A to C and ΦFL2A and B sharing the greatest identity (87 to 88%), while ΦFL3A and B share 37 to 41% identity with ΦFL1 and 2. ΦFL4A shares 3 to 12% identity with the phages ΦFL1 to 3. The ΦFL3A and B phages possess a high DNA sequence identity with the morphogenesis and lysis modules of Lactococcus lactis subsp. cremoris prophages. Homologs of the Streptococcus mitis platelet binding phage tail proteins, PblA and PblB, are encoded on each sequenced E. faecalis phage. Few other phage genes encoding potential virulence functions were identified, and there was little evidence of carriage of lysogenic conversion genes distal to endolysin, as has been observed with genomes of many temperate phages from the opportunist pathogens Staphylococcus aureus and Streptococcus pyogenes. E. faecalis JH2-2 lysogens were generated using the eight phages, and these were examined for their relative fitness in Galleria mellonella. Several lysogens exhibited different effects upon survival of G. mellonella compared to their isogenic parent. The eight phages were tested for their ability to package host DNA, and three were shown to be very effective for generalized transduction of naive host cells of the laboratory strains OG1RF and JH2-2.Enterococcus faecalis is a member of the natural flora of humans and colonizes the gastrointestinal and vaginal tracts and the oral cavity. In recent years it has emerged as an important opportunistic nosocomial pathogen and is a causative agent of bacteremia, infective endocarditis, and surgical wound and urinary tract infections. The accumulation of acquired antibiotic resistance determinants, in addition to its intrinsic resistance and tenacity, has given rise to the evolution of clinical isolates of E. faecalis that are therapeutically problematic (19). Greater notoriety was afforded to this species following the observed transfer of the conjugative transposon Tn1546 to Staphylococcus aureus, imparting vancomycin resistance (11). Subsequent analysis has revealed that multiple independent E. faecalis-dependent vanA transfers had occurred in the United States prior to 2007 (50). This places enterococci in an important and dynamic position within the health care system, warranting their increased study.The specific determinants that are proposed to contribute to the virulence of E. faecalis are not universally present, and expression of the cognate genes is variable (21, 37). For example, in a recent study of 106 clonally diverse strains of E. faecalis the metallopeptidase gelatinase (GelE) was shown to be expressed in less than 60% of 106 genotypically positive isolates, whereas expression of cytolysin was less frequently observed (expression in ∼25% of isolates, with 30% being genotypically positive) (33). A proposed pathogenicity island identified with E. faecalis V583 (49) is composed of a variable gene set encoding the virulence determinants enterococcal surface protein, cytolysin, and aggregation substance. This highly variable 150-kb mobile element contains many components of unknown function that are hypothesized to facilitate survival and/or transmission in the health care setting (34, 40, 49).Two sequenced and annotated genomes of E. faecalis have been completed and published to date. These are the blood isolate and first-observed vancomycin-resistant strain V583 (40) and the oral isolate OG1RF, used as a common laboratory strain (8). A major difference between these genomes is the presence in V583 of seven regions containing phage-associated sequences. In contrast, OG1RF contains only one phage remnant, which was proposed by McBride et al. (33) to form part of the core genome, a theory supported by the presence in OG1RF of this phage remnant region together with two CRISPR loci. CRISPR sequences provide sequence-specific resistance to bacteriophages via the assembly of phage DNA sequences interspersed as spacers between repeats, in concert with associated cas genes, which collectively operate as an RNA-based gene silencing mechanism (5, 6, 28, 30, 36, 42). This elegant heritable mechanism is proposed to limit horizontal gene transfer of bacteriophage, transposable elements, and conjugative plasmids (9, 10, 32).Within the firmicute division of Gram-positive bacteria, temperate bacteriophages are key vectors for the horizontal transfer of virulence genes. In Staphylococcus aureus, bacteriophages encode and mobilize an impressive array of immune evasion genes (54, 55) and Panton-Valentine leukocidin (43). Several bacteriophage-encoded virulence determinants also contribute to pathogenesis in group A Streptococcus (2, 3, 4).The role of bacteriophages in the virulence of E. faecalis is not clear. Encoded within seven phage-related sequences of strain V583, there are multiple reported homologs of the Streptococcus mitis platelet-binding proteins PblA and PblB (7) and a ferrochelatase (40). In contrast, the absence of mobile genetic elements (MGEs) in strain OG1RF led Bourgogne et al. (8) to speculate that they did not engender virulence in E. faecalis.In this study we determined the morphology and complete genome sequences of eight induced bacteriophages purified from clinical isolates of E. faecalis. We sought to determine the potential carriage of genes that might contribute to the virulence or fitness of this organism and characterize the capacity of these phages to participate in transduction.  相似文献   

19.
20.
Based on a growing demand on renewable energy, fast growing perennial grasses have been identified as energy crops with a high capacity in sustainable biomass production. Among these grasses, the giant reed Miscanthus x giganteus delivers one of the highest biomass yields. Despite its potential for an extended cultivation, only little is known about putative fungal pathogens that might cause biomass losses. Molecular targets that are related to fungal resistance have not been identified because cellular and molecular tools have not been established in this energy crop. Therefore, our study was aimed to evaluate a method to compare the penetration process of fungal plant pathogens in the model grass Brachypodium distachyon and M. giganteus. In a screening with 13 different fungal species on detached leaves, we identified four filamentous fungi that infected both B. distachyon and M. giganteus and have not been previously described as M. giganteus pathogens. Spray inoculations with these four fungi on intact M. giganteus leaves of whole plants confirmed their pathogenicity. Microscopic analysis of the fungal infections and the hyphal propagation within the leaf tissue revealed that the four newly identified fungi used very similar strategies for penetration and colonization in B. distachyon and M. giganteus. This suggests that B.?distachyon could be suitable to establish model pathosystems for these fungal pathogens that colonize M. giganteus. The already existing genetic tools for B. distachyon might improve the identification of defense-related targets and mechanisms supporting fungal resistance in M. giganteus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号