首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tu SL  Chen LJ  Smith MD  Su YS  Schnell DJ  Li HM 《The Plant cell》2004,16(8):2078-2088
Most chloroplast outer-membrane proteins are synthesized at their mature size without cleavable targeting signals. Their insertion into the outer membrane is insensitive to thermolysin pretreatment of chloroplasts and does not require ATP. It has therefore been assumed that insertion of outer-membrane proteins proceeds through a different pathway from import into the interior of chloroplasts, which requires a thermolysin-sensitive translocon complex and ATP. Here, we show that a model outer-membrane protein, OEP14, competed with the import of a chloroplast interior protein, indicating that the two import pathways partially overlapped. Cross-linking studies showed that, during insertion, OEP14 was associated with Toc75, a thermolysin-resistant component of the outer-membrane protein-conducting channel that mediates the import of interior-targeted precursor proteins. Whereas almost no OEP14 inserted into protein-free liposomes, OEP14 inserted into proteoliposomes containing reconstituted Toc75 with a high efficiency. Taken together, our data indicate that Toc75 mediates OEP14 insertion, and therefore plays a dual role in the targeting of proteins to the outer envelope membrane and interior of chloroplasts.  相似文献   

2.
The plastid outer envelope (OE) is a mixture of components inherited from their prokaryotic ancestor like galactolipids, carotenoids and porin type ion channels supplemented with eukaryotic inventions to make the endosymbiotic process successful as well as to control plastid biogenesis and differentiation. In this review we wanted to highlight the importance of the OE proteins and its evolutionary origin. For a long time, the OE was thought to be a diffusion barrier only, but with the recent discoveries of all kinds of different proteins in the OE it has been shown that the OE can modulate various functions within the cell. The phenotypic changes show that channels like the outer envelope proteins OEP40, OEP16 or JASSY have a pronounced ion selectivity that cannot be replaced by other ion channels present in the OE. Eukaryotic additions, like the GTPase receptors Toc33 and Toc159 or the ubiquitin proteasome system for chloroplast protein quality control, round up the profile of the OE.  相似文献   

3.
Chloroplast precursor proteins encoded in the nucleus depend on their targeting sequences for delivery to chloroplasts. There exist different routes to the chloroplast outer envelope, but a common theme is the involvement of molecular chaperones. Hsp90 (heat-shock protein 90) delivers precursors via its receptor Toc64, which transfers precursors to the core translocase in the outer envelope. In the present paper, we identify an uncharacterized protein in Arabidopsis thaliana OEP61 which shares common features with Toc64, and potentially provides an alternative route to the chloroplasts. Sequence analysis indicates that OEP61 possesses a clamp-type TPR (tetratricopeptide repeat) domain capable of binding molecular chaperones, and a C-terminal TMD (transmembrane domain). Phylogenetic comparisons show sequence similarities between the TPR domain of OEP61 and those of the Toc64 family. Expression of mRNA and protein was detected in all plant tissues, and localization at the chloroplast outer envelope was demonstrated by a combination of microscopy and in vitro import assays. Binding assays show that OEP61 interacts specifically with Hsp70 (heat-shock protein 70) via its TPR clamp domain. Furthermore, OEP61 selectively recognizes chloroplast precursors via their targeting sequences, and a soluble form of OEP61 inhibits chloroplast targeting. We therefore propose that OEP61 is a novel chaperone receptor at the chloroplast outer envelope, mediating Hsp70-dependent protein targeting to chloroplasts.  相似文献   

4.
The molecular composition of chloroplast outer and inner envelope translocons is fairly well established, but little is known about mechanisms and elements involved in import regulation. After synthesis in the cytosol, chloroplast targeted precursor proteins are recognized by outer envelope receptors Toc34 and Toc159. Phosphorylation plays an important role in regulation of Toc34 activity and preprotein binding. Using kinase renaturation assays, we have identified an ATP-dependent 98-kDa outer envelope kinase which is able to selectively phosphorylate Toc34 at a specific site. A 70-kDa outer envelope polypeptide phosphorylating Toc159 was identified by the same strategy. Antiserum against the 98-kDa kinase inhibits phosphorylation of Toc34, whereas labeling of Toc159 remains unaffected. Both kinases do not autophosphorylate in vitro and are unable to utilize myelin basic protein as substrate. We propose that distinct kinases are involved in regulation of chloroplast import via desensitization of preprotein receptors.  相似文献   

5.
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.  相似文献   

6.
OEP7, a 6.7-kDa outer envelope protein of spinach chloroplasts inserts into the outer envelope of the organelle independent of a classical cleavable targeting signal. The insertion of OEP7 was studied to describe the determinants for association with, integration into, and orientation of the protein in the outer envelope of chloroplasts. The insertion of OEP7 into the membrane is independent of outer membrane channel proteins and can be reconstituted with the use of protein-free liposomes. In situ, the binding of OEP7 to the membrane surface is not driven by electrostatic interaction because reduction of phosphatidylglycerol or phosphatidylinositol did not reduce the association with the liposomes. The positively charged amino acids flanking the transmembrane domain at the C terminus are essential to retain the native N(in)-C(out) orientation during insertion into chloroplasts. OEP7 inserts with reversed orientation into liposomes containing the average lipid composition of the outer envelopes. The native like N(in)-C(out) orientation is achieved by reduction of the phoshpatidylglycerol concentration mimicking the composition of the outer leaflet of the outer envelope of chloroplasts. We conclude that the unique lipid composition of the outer leaflet due to lipid asymmetry of the outer envelope is essential for the correct topology of OEP7.  相似文献   

7.
NADPH:protochlorophyllide oxidoreductase (POR) A is a key enzyme of chlorophyll biosynthesis in angiosperms. It is nucleus-encoded, synthesized as a larger precursor in the cytosol and imported into the plastids in a substrate-dependent manner. Plastid envelope membrane proteins, called protochlorophyllide-dependent translocon proteins, Ptcs, have been identified that interact with pPORA during import. Among them are a 16-kDa ortholog of the previously characterized outer envelope protein Oep16 (named Ptc16) and a 33-kDa protein (Ptc33) related to the GTP-binding proteins Toc33 and Toc34 of Arabidopsis. In the present work, we studied the interactions and roles of Ptc16 and Ptc33 during pPORA import. Radiolabeled Ptc16/Oep16 was synthesized from a corresponding cDNA and imported into isolated Arabidopsis plastids. Crosslinking experiments revealed that import of 35S-Oep16/Ptc16 is stimulated by GTP. 35S-Oep16/Ptc16 forms larger complexes with Toc33 but not Toc34. Plastids of the ppi1 mutant of Arabidopsis lacking Toc33, were unable to import pPORA in darkness but imported the small subunit precursor of ribulose-1,5-bisphosphate carboxylase/oxygenase (pSSU), precursor ferredoxin (pFd) as well as pPORB which is a close relative of pPORA. In white light, partial suppressions of pSSU, pFd and pPORB import were observed. Our results unveil a hitherto unrecognized role of Toc33 in pPORA import and suggest photooxidative membrane damage, induced by excess Pchlide accumulating in ppi1 chloroplasts because of the lack of pPORA import, to be the cause of the general drop of protein import.  相似文献   

8.
We demonstrate that basic components of the plastid protein-import apparatus originally found in pea, Toc34, Toc159, and Tic110, are also conserved in evolutionarily younger gymnosperms. We show that multiple isoforms of the preprotein receptor Toc34 differentially accumulate in various stages of needle development, while the amounts of Toc159 drastically decrease during chloroplast morphogenesis. Spruce Toc34 and Toc159 receptors are able to recognise and interact with the angiosperm precursor of the Rubisco small subunit. Young proplastids found in closed buds contain a highly elevated number of protein translocation complexes equipped with only two types of outer envelope receptors, Toc159 and a 30-kDa Toc34-related protein. Photosystem II (PSII) can already be assembled in a fully functional complex at this very early stage of needle development, suggesting that no additional receptor isoforms are needed for translocation of all necessary PSII components. We conclude that the accumulation of evolutionarily conserved plastid preprotein translocation components is differentially regulated during spruce needle development.  相似文献   

9.
A large number of plastid localized proteins are post-translationally imported as precursor proteins from the cytosol into the organelle. Recognition and translocation is accomplished by a subset of chloroplast envelope proteins, which were identified by different but complementary methods. The o uter e nvelope p roteins OEP 86, OEP 75, OEP 70 (a heat shock cognate 70 homologue) and OEP 34 are clearly involved in the import event and can be isolated as one functionally active translocation unit. For three of these proteins cDNA clones have been very recently obtained, namely OEP 86, OEP 75 and OEP 34. OEP 86 seems to be a precursor protein receptor which could be regulated by GTP binding and ATP-dependent phosphorylation-dephosphorylation. OEP 75 is part of the translocation pore traversing the membrane in multiple β-sheets. OEP 34 is tightly associated with OEP 75. It represents a new type of GTP-binding protein which possesses endogenous GTPase activity. Multiple GTP binding and hydrolysis cycles as well as protein phosphorylation-dephosphorylation events might, therefore, regulate the interaction of a precursor protein with the translocation machinery of the outer envelope, making it very distinct from the mitochondrial outer membrane system. Further proteins of the inner envelope membrane, namely IEP 97 and IEP 36, have been implied to function in the translocation event. These recent data allow not only identification of the players in the game but also speculation about mechanisms and regulation of translocation.  相似文献   

10.
Xenia K. Morin  Jürge Soll 《Planta》1997,201(2):119-127
The electron-microscopic technique for immunogold labelling of thawed cryosectioned material (K.T. Tokuyasu, 1989, Histochem J 21: 163–171) has been adapted for use with isolated chloroplasts. Percoll-purified pea (Pisum Sativum L. cv Feltham First) chloroplasts were fixed in a buffered glutaraldehyde solution and then infiltrated with a buffered solution of 10% polyvinylpyrrolidone in 2.07 M sucrose prior to freezing in liquid nitrogen and sectioning in an ultracryomicrotome. Sections were thawed, immunolabelled, and stained with ammonium molybdate in methyl cellulose on Formvar/carbon-coated Cu or Cu/Pd electron-microscope grids. Cryosectioning gave excellent structural preservation and retained antigenicity. The effectiveness of this technique in localizing proteins to their specific chloroplast compartment was assayed using antibodies raised against: (i) the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), a stromal protein, (ii) the chloroplast ATP synthase (CF1), a peripheral thylakoid protein, and (iii) different envelope membrane proteins. Antibodies raised against three members of the chloroplasticouterenvelopeprotein (OEP) import machinery, a 34-kDa protein (OEP34 or IAP34), the channel-forming 75-kDa protein (OEP75 or IAP75), and the 86-kDa precursor protein receptor (OEP86 or IAP86) were tested for their localization. The previous localization of OEP86, OEP75 and OEP34 to the outer envelope by biochemical methods was confirmed by our immuno electronmicroscopic analysis. Additionally, a constituent of the chloroplastic inner envelope protein (IEP) import machinery IEP 110 (IAP 100) was clearly localized to this membrane. Therefore, cryosectioning and immunogold labelling of intact chloroplasts provides a method for studying the localization of chloroplast proteins, especially those residing in the inner and outer envelope membranes.Abbreviations FCS fetal calf serum - IAP import intermediate associated protein - IEP inner envelope protein - OEP outer envelope protein (numbers signifying the relative molecular mass in kilodaltons) - PBS phosphate buffered saline - PVP polyvinyl pyrrolidone - Rubisco ribulose-1,5-biophosphate carboxylase/oxygenase  相似文献   

11.
Toc75 is postulated to form the protein translocation channel in the chloroplastic outer envelope membrane. Proteins homologous to Toc75 are present in a wide range of organisms, with the closest homologs occurring in cyanobacteria. Therefore, an endosymbiotic origin of Toc75 has been postulated. Recently, a gene encoding a paralog to Toc75 was identified in Arabidopsis and its product was named atToc75-V. In the present study, we characterized this new Toc75 paralog, and investigated extensively the relationships among Toc75 homologs from higher plants and bacteria in order to gain insights into the evolutionary origin of the chloroplastic protein translocation channel. First, we found that the native molecular weight of atToc75-V is 80 kDa and renamed it (AtOEP80) Arabidopsis thalianaouter envelope protein of 80 kDa. Second, we found that AtOEP80 and Toc75 utilize different mechanisms for their targeting to the chloroplastic envelope. Toc75 is directed with a cleavable bipartite transit peptide partly via the general import pathway, whereas AtOEP80 contains the targeting information within its mature sequence, and its targeting is independent of the general pathway. Third, we undertook phylogenetic analyses of Toc75 homologs from various organisms, and found that Toc75 and OEP80 represent two independent gene families that are most likely derived from cyanobacterial sequences. Our results suggest that Toc75 and OEP80 diverged early in the evolution of plastids from their common ancestor with modern cyanobacteria.  相似文献   

12.
The NADPH-dependent protochlorophyllide (Pchlide) oxidoreductase (POR) is a photoenzyme that requires light for its catalytic activity and uses Pchlide itself as a photoreceptor. In Arabidopsis there are three PORs denoted PORA, PORB and PORC. The PORA and PORB genes are strongly expressed early in seedling development. In contrast to PORB the import of PORA into plastids of cotyledons is substrate-dependent and organ-specific. These differences in the import reactions between PORA and PORB most likely are due to different import mechanisms that are responsible for the uptake of these proteins. The two major core constituents of the translocon of the outer plastid envelope, Toc159 and Toc34, have been implicated in the binding and recognition of precursors of nuclear-encoded plastid proteins. Their involvement in conferring substrate dependency and organ specificity of PORA import was analyzed in intact Arabidopsis seedlings of wild type and the three mutants ppi3, ppi1 and ppi2 that are deficient in atToc34, atToc33, a closely related isoform of atToc34, and atToc159. Whereas none of these three Toc constituents is required for maintaining the organ specificity and substrate dependency of PORA import, atToc33 is indispensable for the import of PORB in cotyledons and true leaves suggesting that in these parts of the plant translocation of PORA and PORB occurs via two distinct import pathways. The analysis of PORA and PORB import into plastids of intact seedlings revealed an unexpected multiplicity of import routes that differed by their substrate, cell, tissue and organ specificities. This versatility of pathways for protein targeting to plastids suggests that in intact seedlings not only the constituents of the core complex of import channels but also other factors are involved in mediating the import of nuclear-encoded plastid proteins.  相似文献   

13.
Among the genes that have recently been pinpointed to be essential for plant embryo development a large number encodes plastid proteins suggesting that embryogenesis is linked to plastid localized processes. However, nuclear encoded plastid proteins are synthesized as precursors in the cytosol and subsequently have to be transported across the plastid envelopes by a complex import machinery. We supposed that deletion of components of this machinery should allow a more general assessment of the role of plastids in embryogenesis since it will not only affect single proteins but instead inhibit the accumulation of most plastid proteins. Here we have characterized three Arabidopsis thaliana mutants lacking core components of the Toc complex, the protein translocase in the outer plastid envelope membrane, which indeed show embryo lethal phenotypes. Remarkably, embryo development in the atToc75-III mutant, lacking the pore forming component of the translocase, was arrested extremely early at the two-cell stage. In contrast, despite the complete or almost complete lack of the import receptors Toc34 and Toc159, embryo development in the a tToc33/34 and atToc132/159 mutants proceeded slowly and was arrested later at the transition to the globular and the heart stage, respectively. These data demonstrate a strict dependence of cell division and embryo development on functional plastids as well as specific functions of plastids at different stages of embryogenesis. In addition, our analysis suggest that not all components of the translocase are equally essential for plastid protein import in vivo.  相似文献   

14.
beta-Barrel proteins of the Omp85 (Outer membrane protein, 85 kD) superfamily exist in the outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts. Prominent Omp85 proteins in bacteria and mitochondria mediate biogenesis of other beta-barrel proteins and are indispensable for viability. In Arabidopsis (Arabidopsis thaliana) chloroplasts, there are two distinct types of Omp85-related protein: Toc75 (Translocon at the outer envelope membrane of chloroplasts, 75 kD) and OEP80 (Outer Envelope Protein, 80 kD). Toc75 functions as a preprotein translocation channel during chloroplast import, but the role of OEP80 remains elusive. We characterized three T-DNA mutants of the Arabidopsis OEP80 (AtOEP80) gene. Selectable markers associated with the oep80-1 and oep80-2 insertions segregated abnormally, suggesting embryo lethality of the homozygous genotypes. Indeed, no homozygotes were identified among >100 individuals, and heterozygotes of both mutants produced approximately 25% aborted seeds upon self-pollination. Embryo arrest occurred at a relatively late stage (globular embryo proper) as revealed by analysis using Nomarski optics microscopy. This is substantially later than arrest caused by loss of the principal Toc75 isoform, atToc75-III (two-cell stage), suggesting a more specialized role for AtOEP80. Surprisingly, the oep80-3 T-DNA (located in exon 1 between the first and second ATG codons of the open reading frame) did not cause any detectable developmental defects or affect the size of the AtOEP80 protein in chloroplasts. This indicates that the N-terminal region of AtOEP80 is not essential for the targeting, biogenesis, or functionality of the protein, in contrast with atToc75-III, which requires a bipartite targeting sequence.  相似文献   

15.
We have investigated the interactions of two nuclear-encoded preproteins with the chloroplast protein import machinery at three stages in import using a label-transfer crosslinking approach. During energy-independent binding at the outer envelope membrane, preproteins interact with three known components of the outer membrane translocon complex, Toc34, Toc75, and Toc86. Although Toc75 and Toc86 are known to associate with preproteins during import, a role for Toc34 in preprotein binding previously had not been observed. The interaction of Toc34 with preproteins is regulated by the binding, but not hydrolysis of GTP. These data provide the first evidence for a direct role for Toc34 in import, and provide insights into the function of GTP as a regulator of preprotein recognition. Toc75 and Toc86 are the major targets of cross-linking upon insertion of preproteins across the outer envelope membrane, supporting the proposal that both proteins function in translocation at the outer membrane as well as preprotein recognition. The inner membrane proteins, Tic(21) and Tic22, and a previously unidentified protein of 14 kD are the major targets of crosslinking during the late stages in import. These data provide additional support for the roles of these components during protein translocation across the inner membrane. Our results suggest a defined sequence of molecular interactions that result in the transport of nuclear-encoded preproteins from the cytoplasm into the stroma of chloroplasts.  相似文献   

16.
Lung SC  Chuong SD 《The Plant cell》2012,24(4):1560-1578
Although Toc159 is known to be one of the key GTPase receptors for selective recognition of chloroplast preproteins, the mechanism for its targeting to the chloroplast surface remains unclear. To compare the targeting of these GTPase receptors, we identified two Toc159 isoforms and a Toc34 from Bienertia sinuspersici, a single-cell C4 species with dimorphic chloroplasts in individual chlorenchyma cells. Fluorescent protein tagging and immunogold studies revealed that the localization patterns of Toc159 were distinctive from those of Toc34, suggesting different targeting pathways. Bioinformatics analyses indicated that the C-terminal tails (CTs) of Toc159 possess physicochemical and structural properties of chloroplast transit peptides (cTPs). These results were further confirmed by fluorescent protein tagging, which showed the targeting of CT fusion proteins to the chloroplast surface. The CT of Bs Toc159 in reverse orientation functioned as a cleavable cTP that guided the fluorescent protein to the stroma. Moreover, a Bs Toc34 mutant protein was retargeted to the chloroplast envelope using the CTs of Toc159 or reverse sequences of other cTPs, suggesting their conserved functions. Together, our data show that the C terminus and the central GTPase domain represent a novel dual domain–mediated sorting mechanism that might account for the partitioning of Toc159 between the cytosol and the chloroplast envelope for preprotein recognition.  相似文献   

17.
Protein import into chloroplasts   总被引:2,自引:0,他引:2  
Most chloroplastic proteins are encoded in the nucleus, synthesized on cytosolic ribosomes and subsequently imported into the organelle. In general, proteins destined for the chloroplast are synthesized as precursor proteins with a cleavable N-terminal presequence that mediates routing to the inside of the chloroplast. These precursor proteins have to be targeted to the correct organellar membrane surface after their release from the ribosome and furthermore they have to be maintained in a conformation suitable for translocation across the two envelope membranes. Recognition and import of most chloroplastic precursor proteins are accomplished by a jointly used translocation apparatus. Different but complementary studies of several groups converged recently in the identification of the outer envelope proteins OEP86, OEP75, OEP70 (a Hsp 70-related protein), OEP34, and of the inner envelope protein IEP110 as components of this translocation machinery. None of these proteins, except for OEP70, shows any homology to components of other protein translocases. The plastid import machinery thus seems to be an original development in evolution. Following translocation into the organelle, chloroplastic proteins are sorted to their suborganellar destination, i.e., the inner envelope membrane, the thylakoid membrane, and the thylakoid lumen. This structural and evolutionary complexity of chloroplasts is reflected by a variety of routing mechanisms by which proteins reach their final location once inside the organelle. This review will focus on recent advances in the identification of components of the chloroplastic protein import machinery, and new insights into the pathways of inter-and intraorganellar sorting.  相似文献   

18.
Two Arabidopsis Toc34 homologues, atToc34 and atToc33, components of the chloroplast protein import machinery located in the outer envelope membrane, were recently isolated. Both proteins insert into the outer envelope, are supposed to bind GTP and to interact with Toc75 as demonstrated by in vitro import assays. We studied the expression of the two genes by RNA gel blot analysis, promoter-GUS plants and in situ hybridisations as well as immunoblot analysis. The atToc34 and atToc33 genes are expressed in green as well as non-green tissues and are developmentally regulated. Despite these similarities, however, the two Arabidopsis Toc34 homologues are differentially expressed in various plant organs. To gain more insight into the in vivo function of both proteins, antisense plants were created. While antisense plants of atToc33 are characterized by a pale yellowish phenotype, antisense plants of atToc34 show a weaker phenotype. Protein interaction studies using an in vitro translated precursor protein and heterologously expressed atToc34 and atToc33 proteins showed a direct GTP-dependent interaction, but demonstrated different affinities of the two atToc proteins towards the precursor protein. Thus, our results indicate a more specialized function for both atToc34 and atToc33, suggesting specificity for certain imported precursor proteins.  相似文献   

19.
T ranslocon at the o uter envelope membrane of c hloroplasts, 34  kDa (Toc34) is a GTP-binding component of the protein import apparatus within the outer envelope membrane of plastids. The Arabidopsis genome encodes two homologues of Toc34, designated atToc33 and atToc34. In this report, we describe the identification and characterization of two atToc34 knockout mutants, plastid protein import 3-1 ( ppi3-1 ) and ppi3-2 . Aerial tissues of the ppi3 mutants appeared similar to the wild type throughout development, and contained structurally normal chloroplasts that were able to efficiently import the Rubisco small subunit precursor (prSS) in vitro . The absence of an obvious ppi3 phenotype in green tissues presumably reflects the ability of atToc33 to substitute for atToc34 in the mutant, and the relatively high level of expression of the atTOC33 gene in these tissues. In the roots, where atTOC33 is expressed at a much lower level, significant growth defects were observed in both mutants: ppi3 roots were approximately 20–30% shorter than wild-type roots. Attempts to identify a double homozygote lacking atToc34 and atToc33 (by crossing the ppi3 mutants with ppi1 , an atToc33 knockout mutant) were unsuccessful, indicating that the function provided by atToc33/atToc34 is essential during early development. Plants that were homozygous for ppi1 and heterozygous for ppi3 displayed a chlorotic phenotype much more severe than that of the ppi1 single mutant. Furthermore, the siliques of these plants contained approximately 25% aborted seeds, indicating that the double homozygous mutation is embryo lethal. The data demonstrate that atToc33/atToc34 performs a central and essential role during plastid protein import, and indicate that the atToc34 isoform is relatively more important for plastid biogenesis in roots.  相似文献   

20.
While the import of nuclear-encoded chloroplast proteins is relatively well studied, the targeting of proteins to the outer membrane of the chloroplast envelope is not. The insertion of most outer membrane proteins (OMP) is generally considered to occur without the utilization of energy or proteinaceous components. Recently, however, proteins have been shown to be involved in the integration of outer envelope protein 14 (OEP14), whose outer membrane insertion was previously thought to be spontaneous. Here we investigate the insertion of two proteins from Physcomitrella patens, PpOEP64-1 and PpOEP64-2 (formerly known as PpToc64-1 and PpToc64-2), into the outer membrane of chloroplasts. The association of PpOEP64-1 with chloroplasts was not affected by chloroplast pre-treatments. Its insertion into the membrane was affected, however, demonstrating the importance of measuring insertion specifically in these types of assays. We found that the insertion of PpOEP64-1, PpOEP64-2 and two other OMPs, OEP14 and digalactosyldiacylglycerol synthase 1 (DGD1), was reduced by either nucleotide depletion or proteolysis of the chloroplasts. Integration was also inhibited in the presence of an excess of an imported precursor protein. In addition, OEP14 competed with the insertion of the OEP64s and DGD1. These data demonstrate that the targeting of several OMPs involves proteins present in chloroplasts and requires nucleotides. Together with previous reports, our data suggest that OMPs in general do not insert spontaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号