首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(−1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(−2) to Glc(−4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(−2) to Glc(−4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate.  相似文献   

2.
Molecular docking and molecular dynamics (MD) simulations were used to investigate the binding of a cellodextrin chain in a crystal-like conformation to the carbohydrate-binding module (CBM) of Cel9A from Thermobifida fusca. The fiber was found to bind to the CBM in a single and well-defined configuration in-line with the catalytic cleft, supporting the hypothesis that this CBM plays a role in the catalysis by feeding the catalytic domain (CD) with a polysaccharide chain. The results also expand the current known list of residues involved in the binding. The polysaccharide-protein attachment is shown to be mediated by five amine/amide-containing residues. E478 and E559 were found not to interact directly with the sugar chain; instead they seem to be responsible to stabilize the binding motif via hydrogen bonds.  相似文献   

3.
Synergism between cellulases facilitates efficient hydrolysis of microcrystalline cellulose. We hypothesize that the effects of synergism, observed as enhanced extents of hydrolysis, are related to cellulase binding to the substrate in mixtures. In this study, direct measurements of bound concentrations of fluorescence-labeled T. fusca Cel5A, Cel6B, and Cel9A on bacterial microcrystalline cellulose were used to study binding behaviors of cellulases in binary component reactions. The accuracy of the determination of fluorescence-labeled cellulase concentrations in binary component mixtures was in the range of 7-9%. Data at 5 degrees C show that binding levels of cellulases in mixture reactions are only 22-70% of the binding levels in single component reactions. At 50 degrees C, however, most of the cellulase components in the same mixtures bound to extents of 40-126% higher than in the corresponding single component reactions. The degrees of synergistic effect (DSE) observed for the reactions at 50 degrees C were greater than 1, indicating that the components in the mixture acted synergistically, whereas DSE < 1 was generally observed for the reactions at 5 degrees C indicating anti-synergistic behavior. Degrees of synergistic binding (DSB) were also calculated, where anti-synergistic mixtures had DSB < 1 and synergistic mixtures had DSB>1. We conclude that the lower extents of binding at 5 degrees C are due to competition for binding sites by the cellulase components in the mixtures and the enhanced binding extents at 50 degrees C are due to increased availability of binding sites on the substrates brought about by the higher extents of hydrolysis.  相似文献   

4.
Thermomonospora fusca E4 is an unusual 90.4-kDa endocellulase comprised of a catalytic domain (CD), an internal family IIIc cellulose binding domain (CBD), a fibronectinlike domain, and a family II CBD. Constructs containing the CD alone (E4-51), the CD plus the family IIIc CBD (E4-68), and the CD plus the fibronectinlike domain plus the family II CBD (E4-74) were made by using recombinant DNA techniques. The activities of each purified protein on bacterial microcrystalline cellulose (BMCC), filter paper, swollen cellulose, and carboxymethyl cellulose were measured. Only the whole enzyme, E4-90, could reach the target digestion of 4.5% on filter paper. Removal of the internal family IIIc CBD (E4-51 and E4-74) decreased activity markedly on every substrate. E4-74 did bind to BMCC but had almost no hydrolytic activity, while E4-68 retained 32% of the activity on BMCC even though it did not bind. A low-activity mutant of one of the catalytic bases, E4-68 (Asp55Cys), did bind to BMCC, although E4-51 (Asp55Cys) did not. The ratios of soluble to insoluble reducing sugar produced after filter paper hydrolysis by E4-90, E4-68, E4-74, and E4-51 were 6.9, 3.5, 1.3, and 0.6, respectively, indicating that the family IIIc CBD is important for E4 processivity.  相似文献   

5.
Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(-1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(-2) to Glc(-4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(-2) to Glc(-4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate.  相似文献   

6.
The binding and reversibility of Thermobifida fusca intact Cel5A, Cel5B, and Cel48A and their corresponding catalytic domains (CDs) to bacterial microcrystalline cellulose (BMCC) were studied at 5 degrees C. The binding of the intact cellulases and of corresponding CDs to BMCC was irreversible in all regions: Langmuir binding (region I), interstice penetration (region II), and interstice saturation (region III). The three cellulose binding domains (CBMs) bind reversibly in "region I" although their respective CDs do not. The irreversible binding of these enzymes in the Langmuir region does not satisfy the Langmuir assumption; however, the overall fit of the Interstice Saturation model, which includes binding in MBCC interstices as well as on the freely accessible surface (Jung et al., 2002a) is good. The main limitation of the model is that it does not explicitly address a mechanism for forming the enzyme-substrate complex within the active site of the CDs.  相似文献   

7.
Detailed understanding of cell wall degrading enzymes is important for their modeling and industrial applications, including in the production of biofuels. Here we used Cel9A, a processive endocellulase from Thermobifida fusca, to demonstrate that cellulases that contain a catalytic domain (CD) attached to a cellulose binding module (CBM) by a flexible linker exist in three distinct molecular states. By measuring the ability of a soluble competitor to reduce Cel9A activity on an insoluble substrate, we show that the most common state of Cel9A is bound via its CBM, but with its CD unoccupied by the insoluble substrate. These findings are relevant for kinetic modeling and microscopy studies of modular glycoside hydrolases.  相似文献   

8.
To gain insight into the importance of conserved residues in the core domain of HIV-1 IN, we performed site-directed mutagenesis of the full-length enzyme, overexpressed the mutant proteins in E. coli, purified and analyzed their 3-processing, integration and disintegration activities in vitro. Change of E152V in the DD(35)E motif abolished all detectable activities of IN. Alteration of two highly conserved residues, P145 and K156, by isoleucine, resulted in a substantial loss or completely abolished the three activities of the enzyme. Mutant P90D weakly reduced the 3-processing but severely affected the two other IN activities. Results obtained from double and triple mutations, P90D/P145I and P145I/F185K/C280S, clearly suggest a crucial role of P145 in the catalytic function of IN, whereas the mutants V150E, L158F and L172M had no detectable effect on any of the IN activities. Taken together, these results allowed us to conclude that all the conserved amino acids in the core domain of IN are not equally important for catalytic functions: like D64, D116 and E152, our data suggest that P90, P145 and K156 are also essential for all three enzymatic activities of HIV-1 IN in vitro, whereas V150, L158 and L172 appear to be less critical.  相似文献   

9.
The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate.  相似文献   

10.
Mutagenesis experiments suggest that Asp79 in cellulase Cel6A (E2) from Thermobifida fusca has a catalytic role, in spite of the fact that this residue is more than 13 A from the scissile bond in models of the enzyme-substrate complex built upon the crystal structure of the protein. This suggests that there is a substantial conformational shift in the protein upon substrate binding. Molecular mechanics simulations were used to investigate possible alternate conformations of the protein bound to a tetrasaccharide substrate, primarily involving shifts of the loop containing Asp79, and to model the role of water in the active site complex for both the native conformation and alternative low-energy conformations. Several alternative conformations of reasonable energy have been identified, including one in which the overall energy of the enzyme-substrate complex in solution is lower than that of the conformation in the crystal structure. This conformation was found to be stable in molecular dynamics simulations with a cellotetraose substrate and water. In simulations of the substrate complexed with the native protein conformation, the sugar ring in the -1 binding site was observed to make a spontaneous transition from the (4)C(1) conformation to a twist-boat conformer, consistent with generally accepted glycosidase mechanisms. Also, from these simulations Tyr73 and Arg78 were found to have important roles in the active site. Based on the results of these various MD simulations, a new catalytic mechanism is proposed. Using this mechanism, predictions about the effects of changes in Arg78 were made which were confirmed by site-directed mutagenesis.  相似文献   

11.
Cellobiohydrolase Cel48C from Paenibacillus sp. BP-23, an enzyme displaying limited activity on most cellulosic substrates, was assayed for activity in the presence of other bacterial endo- or exocellulases. Significant enhanced activity was observed when Cel48C was incubated in the presence of Paenibacillus sp. BP-23 endoglucanase Cel9B or Thermobifida fusca cellulases Cel6A and Cel6B, indicating that Cel48C acts synergistically with them. Maximum synergism rates on bacterial microcrystalline cellulose or filter paper were obtained with a mixture of Paenibacillus cellulases Cel9B and Cel48C, accompanied by T. fusca exocellulase Cel6B. Synergism was also observed in cell extracts from recombinant clone E. coli pUCel9-Cel48 expressing the two contiguous Paenibacillus cellulases Cel9B and Cel48C. The enhanced cellulolytic activity displayed by the cellulase mixtures assayed could be used as an efficient tool for biotechnological applications like pulp and paper manufacturing.  相似文献   

12.
13.
Endoglucanase Cel6A from Thermobifida fusca hydrolyzes the beta-1,4 linkages in cellulose at accessible points along the polymer. The structure of the catalytic domain of Cel6A from T. fusca in complex with a nonhydrolysable substrate analogue that acts as an inhibitor, methylcellobiosyl-4-thio-beta-cellobioside (Glc(2)-S-Glc(2)), has been determined to 1.5 A resolution. The glycosyl unit in subsite -1 was sterically hindered by Tyr73 and forced into a distorted (2)S(o) conformation. In the enzyme where Tyr73 was mutated to a serine residue, the hindrance was removed and the glycosyl unit in subsite -1 had a relaxed (4)C(1) chair conformation. The relaxed conformation was seen in two complex structures of the mutated enzyme, with cellotetrose (Glc(4)) at 1.64 A and Glc(2)-S-Glc(2) at 1.04 A resolution.  相似文献   

14.
During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases produced by this hyperthermophilic bacterium.  相似文献   

15.
Excitatory amino acid transporters (EAATs) are crucial for glutamate homeostasis in the mammalian central nervous system. They are not only secondary active glutamate transporters but also function as anion channels, and different EAATs vary considerably in glutamate transport rates and associated anion current amplitudes. A naturally occurring mutation, which was identified in a patient with episodic ataxia type 6 and that predicts the substitution of a highly conserved proline at position 290 by arginine (P290R), was recently shown to reduce glutamate uptake and to increase anion conduction by hEAAT1. We here used voltage clamp fluorometry to define how the homologous P259R mutation modifies the functional properties of hEAAT3. P259R inverts the voltage dependence, changes the sodium dependence, and alters the time dependence of hEAAT3 fluorescence signals. Kinetic analysis of fluorescence signals indicate that P259R decelerates a conformational change associated with sodium binding to the glutamate-free mutant transporters. This alteration in the glutamate uptake cycle accounts for the experimentally observed changes in glutamate transport and anion conduction by P259R hEAAT3.  相似文献   

16.
17.
烟草DREBP转录因子结合DRE元件的关键氨基酸   总被引:1,自引:0,他引:1  
从烟草品种本塞母氏中分离出2条DREB类转录因子基因,分别命名为NbDREB1和 NbDREB2.根据测序结果推导出的氨基酸序列分析显示,NbDREB1和NbDREB2都具有典型的AP2/EREBP转录因子家族EREBP亚族A类特征.酵母单杂交结果显示,它们都不具有激活功能.连接pGADT7反式激活载体形成融合基因表达结果显示,NbDREB1能与DRE顺式作用元件结合,NbDREB2则不能.比较NbDREB1和NbDREB2的AP2区,发现两者的第2和49位氨基酸残基不同.对NbDREB2的第2位氨基酸残基N点突变为Y,NbDREB2也显示出与DRE顺式元件结合的活性,表明烟草DREB转录因子的AP2区第2位氨基酸残基Y是识别及结合DRE顺式作用元件必需的氨基酸残基.  相似文献   

18.
Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues that flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.  相似文献   

19.
An involvement of excitatory amino acid (EAA) transmitter-receptor interactions in the development of hypoglycemia-induced neuronal damage has been suggested. We report here on the binding to EAA receptors in the rat caudate nucleus and cerebral cortex, during and following severe insulin-induced hypoglycemia with an isoelectric EEG of 10 or 30 min duration. The binding of alpha-[3H]amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [( 3H]AMPA) to quisqualate receptors, [3H]kainic acid (KA) to kainate receptors, and [3H]glutamate to N-methyl-D-aspartate (NMDA)-sensitive sites was determined by quantitative autoradiography. During EEG isoelectricity, AMPA binding was reduced by approximately 40%, which could represent quisqualate receptor desensitization. One hour following glucose-induced recovery, AMPA binding was no longer different from control level. As the recovery period was prolonged to 1 or 4 weeks, AMPA binding decreased. The decrease was more pronounced in the dorsolateral than in the ventromedial part of the striatum. This correlates with the distribution of neuronal damage, and probably reflects loss of receptor binding sites due to cell death. During the period of EEG silence there was a tendency toward an increase in NMDA displaceable glutamate binding. Following 4 weeks of recovery, binding to NMDA receptors was significantly decreased. Glutamate binding to NMDA-sensitive sites was remarkably resistant to neuronal necrosis and was not significantly different from control values in the dorsolateral caudate 1 week following the hypoglycemic coma. No changes in KA binding were found until 1 week posthypoglycemia, when a significant reduction in binding was noted in the lateral striatum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The receptor tyrosine kinase Eyk, a member of the Axl/Tyro3 subfamily, activates the STAT pathway and transforms cells when constitutively activated. Here, we compared the potentials of the intracellular domains of Eyk molecules derived from c-Eyk and v-Eyk to transform rat 3Y1 fibroblasts. The v-Eyk molecule induced higher numbers of transformants in soft agar and stronger activation of Stat3; levels of Stat1 activation by the two Eyk molecules were similar. A mutation in the sequence Y933VPL, present in c-Eyk, to the v-Eyk sequence Y933VPQ led to increased activation of Stat3 and increased transformation efficiency. However, altering another sequence, Y862VNT, present in both Eyk molecules to F862VNT markedly decreased transformation without impairing Stat3 activation. These results indicate that activation of Stat3 enhances transformation efficiency and cooperates with another pathway to induce transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号