首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Synaptobrevin, also called vesicle-associated membrane protein (VAMP), is a component of the plasma membrane N-methylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which plays a key role in intracellular membrane fusion. Previous studies have revealed that, similar to synaptobrevin in other organisms, the fission yeast synaptobrevin ortholog Syb1 associates with post-Golgi secretory vesicles and is essential for cytokinesis and cell elongation. Here, we report that Syb1 has a role in sporulation. After nitrogen starvation, green fluorescent protein (GFP)-Syb1 is found in intracellular dots. As meiosis proceeds, GFP-Syb1 accumulates around the nucleus and then localizes at the forespore membrane (FSM). We isolated a syb-S1 mutant, which exhibits a defect in sporulation. In syb1-S1 mutants, the FSM begins to form but fails to develop a normal morphology. Electron microscopy shows that an abnormal spore wall is often formed in syb1-S1 mutant spores. Although most syb1-S1 mutant spores are germinated, they are less tolerant to ethanol than wild-type spores. The syb1-S1 allele carries a missense mutation, resulting in replacement of a conserved cysteine residue adjacent to the transmembrane domain, which reduces the stability and abundance of the Syb1 protein. Taken together, these results indicate that Syb1 plays an important role in both FSM assembly and spore wall formation.  相似文献   

2.
The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis.  相似文献   

3.
Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3 + was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC), a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3 + gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3 + suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1 + gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast.  相似文献   

4.
Like animal cells, fission yeast divides by assembling actin filaments into a contractile ring. In addition to formin Cdc12p and profilin, the single tropomyosin isoform SpTm is required for contractile ring assembly. Cdc12p nucleates actin filaments and remains processively associated with the elongating barbed end while driving the addition of profilin-actin. SpTm is thought to stabilize mature filaments, but it is not known how SpTm localizes to the contractile ring and whether SpTm plays a direct role in Cdc12p-mediated actin polymerization. Using “bulk” and single actin filament assays, we discovered that Cdc12p can recruit SpTm to actin filaments and that SpTm has diverse effects on Cdc12p-mediated actin assembly. On its own, SpTm inhibits actin filament elongation and depolymerization. However, Cdc12p completely overcomes the combined inhibition of actin nucleation and barbed end elongation by profilin and SpTm. Furthermore, SpTm increases the length of Cdc12p-nucleated actin filaments by enhancing the elongation rate twofold and by allowing them to anneal end to end. In contrast, SpTm ultimately turns off Cdc12p-mediated elongation by “trapping” Cdc12p within annealed filaments or by dissociating Cdc12p from the barbed end. Therefore, SpTm makes multiple contributions to contractile ring assembly during and after actin polymerization.  相似文献   

5.
Yeast sporulation efficiency is a quantitative trait and is known to vary among experimental populations and natural isolates. Some studies have uncovered the genetic basis of this variation and have identified the role of sporulation genes (IME1, RME1) and sporulation-associated genes (FKH2, PMS1, RAS2, RSF1, SWS2), as well as non-sporulation pathway genes (MKT1, TAO3) in maintaining this variation. However, these studies have been done mostly in experimental populations. Sporulation is a response to nutrient deprivation. Unlike laboratory strains, natural isolates have likely undergone multiple selections for quick adaptation to varying nutrient conditions. As a result, sporulation efficiency in natural isolates may have different genetic factors contributing to phenotypic variation. Using Saccharomyces cerevisiae strains in the genetically and environmentally diverse SGRP collection, we have identified genetic loci associated with sporulation efficiency variation in a set of sporulation and sporulation-associated genes. Using two independent methods for association mapping and correcting for population structure biases, our analysis identified two linked clusters containing 4 non-synonymous mutations in genes – HOS4, MCK1, SET3, and SPO74. Five regulatory polymorphisms in five genes such as MLS1 and CDC10 were also identified as putative candidates. Our results provide candidate genes contributing to phenotypic variation in the sporulation efficiency of natural isolates of yeast.  相似文献   

6.
Carbohydrate Accumulation During the Sporulation of Yeast   总被引:14,自引:8,他引:6       下载免费PDF全文
The sporulation of Saccharomyces cerevisiae is characterized by an increase in dry weight without cell division. At least 67% of the dry weight increase is due to the synthesis of cellular carbohydrates consisting of trehalose and insoluble components. The insoluble carbohydrates accumulate only during the period preceding the actual formation of visible ascospores. The trehalose accumulates throughout the sporulation cycle and is specifically localized in the ascospore.  相似文献   

7.
Fission yeast has two TOR kinases, Tor1 and Tor2. Recent studies have indicated that this microbe has a TSC/Rheb/TOR pathway like higher eukaryotes. Two TOR complexes, namely TORC1 and TORC2, have been identified in this yeast, as in budding yeast and mammals. Fission yeast TORC1, which contains Tor2, and TORC2, which contains Tor1, apparently have opposite functions with regard to the promotion of G1 arrest and sexual development. Rapamycin does not inhibit growth of wild-type fission yeast cells, unlike other eukaryotic cells, but precise analyses have revealed that rapamycin affects certain cellular functions involving TOR in this yeast. It appears that fission yeast has a potential to be an ideal model system to investigate the TOR signaling pathways.  相似文献   

8.
9.
S ummary : Glycerol stimulated sporulation of Saccharomyces cerevisiae Hanson, especially when the cells were precultured in a complex growth medium instead of a chemically defined medium. Optimum spore yields occurred with 1–4% of glycerol but some were produced in 16% glycerol. Sporulation in glycerol was much less sensitive to ammonium sulphate inhibition than it was in acetate. Growth occurred with glycerol as sole carbon source and glutamic acid as sole nitrogen source, but not with ammonium sulphate as the sole nitrogen source.  相似文献   

10.
11.
The fission yeast Schizosaccharomyces pombe grows in a single-celled form or can mate and undergo meiosis and sporulation. Here we show that wild-type S. pombe can also differentiate to form elaborately branched hyphae which invade deep into solid medium. Branches appear in the hyphae adjacent to unseparated septa. Electron microscopy reveals unusual multivesicular structures within the hyphae. Nitrogen deprivation appears to be the main stimulus for hyphal growth. No mitogen-activated protein kinase is necessary for the response. Inhibition of cyclic AMP (cAMP) production or signaling prevents the response, and exogenous cAMP promotes it, suggesting that detection of a good carbon source is required for hyphal growth but not for mating.  相似文献   

12.
Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3ATR/Tel1ATM-dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1TERT), DNA polymerases, Replication Protein A (RPA) complex, Rad3ATR-Rad26ATRIP checkpoint kinase complex, Tel1ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1) and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε) and lagging (Polα) strand DNA polymerases at telomeres to modulate Rad3ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment.  相似文献   

13.
Sporulation of Yeast Harvested During Logarithmic Growth   总被引:22,自引:16,他引:22       下载免费PDF全文
Rapid and abundant sporulation of yeast can be obtained, with cells harvested during logarithmic growth, by employing potassium acetate rather than glucose as a carbon source.  相似文献   

14.
15.
The fission yeast Schizosaccharomyces pombe has been an invaluable model system in studying the regulation of the mitotic cell cycle progression, the mechanics of cell division and cell polarity. Furthermore, classical experiments on its sexual reproduction have yielded results pivotal to current understanding of DNA recombination and meiosis. More recent analysis of fission yeast mating has raised interesting questions on extrinsic stimuli response mechanisms, polarized cell growth and cell-cell fusion. To study these topics in detail we have developed a simple protocol for microscopy of the entire sexual lifecycle. The method described here is easily adjusted to study specific mating stages. Briefly, after being grown to exponential phase in a nitrogen-rich medium, cell cultures are shifted to a nitrogen-deprived medium for periods of time suited to the stage of the sexual lifecycle that will be explored. Cells are then mounted on custom, easily built agarose pad chambers for imaging. This approach allows cells to be monitored from the onset of mating to the final formation of spores.  相似文献   

16.
17.
A genetic system designed to monitor recombination and sporulation in various repair-deficient yeast strains was constructed. Variously heterozygous at seven or eight sites distributed across the genome, the system facilitated sensitive detection of changes in frequency or pattern of meiotic recombination. Ten rad mutants sensitive primarily to UV-irradiation and without terminal blocks in the sporulation process were studied. Seven were defective in excision repair (rad1, rad2, rad3, rad4, rad10, rad14 and rad16), and three were defective in mutagenic repair (rad5, rad9 and rad18). Individually, each mutant displayed behavior consistent with an orthodox meiosis including a wild-type meiotic recombination profile with respect to gene conversion, PMS and intergenic map distances. Accordingly, we conclude that these mutants are without major effect on meiotic heteroduplex formation or correction. However, certain combinations of excision-defective mutants with rad18 exhibited marked ascosporal inviability. Tetraploids homozygous for rad1 and rad18 produce a large proportion of diploid spores containing a recessive lethal.  相似文献   

18.
Repair-Mechanisms and Radiation-Induced Mutations in Fission Yeast   总被引:8,自引:4,他引:4       下载免费PDF全文
Anwar Nasim 《Genetics》1968,59(3):327-333
  相似文献   

19.
20.
Effect of auxin and gibberellic acid on sporulation of a yeast, Saccharomyces ellipsoideus, was studied. When added to the sporulation media, gibberellic acid promoted sporulation. The sporulation rate was higher in the medium SGV with vitamins than in the vitamin-free SG, but the effect of gibberellic acid was more pronounced in the latter. Auxin (IAA, 2,4-D, and NAA) inhibited sporulation in SGV, but promoted it in SG. This sporulation-promoting effect of IAA was reversed by an antiauxin, 2,4,6-T. Preculturing in the presence of added IAA increased sporulation. Added to the preculture medium, gibberellic acid alone showed little effect on sporulation, but in combination with IAA it enhanced sporulation conspicuously. IAA and gibberellic acid were effective in sporulation promotion only when added before the nuclear enlargement occurred in sporulation culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号