共查询到20条相似文献,搜索用时 15 毫秒
1.
Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 microM-100 microM) in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism. 相似文献
2.
The activation of BK channels by Ca(2+) is highly cooperative, with small changes in intracellular Ca(2+) concentration having large effects on open probability (Po). Here we examine the mechanism of cooperative activation of BK channels by Ca(2+). Each of the four subunits of BK channels has a large intracellular COOH terminus with two different high-affinity Ca(2+) sensors: an RCK1 sensor (D362/D367) located on the RCK1 (regulator of conductance of K(+)) domain and a Ca-bowl sensor located on or after the RCK2 domain. To determine interactions among these Ca(2+) sensors, we examine channels with eight different configurations of functional high-affinity Ca(2+) sensors on the four subunits. We find that the RCK1 sensor and Ca bowl contribute about equally to Ca(2+) activation of the channel when there is only one high-affinity Ca(2+) sensor per subunit. We also find that an RCK1 sensor and a Ca bowl on the same subunit are much more effective in increasing Po than when they are on different subunits, indicating positive intrasubunit cooperativity. If it is assumed that BK channels have a gating ring similar to MthK channels with alternating RCK1 and RCK2 domains and that the Ca(2+) sensors act at the flexible (rather than fixed) interfaces between RCK domains, then a comparison of the distribution of Ca(2+) sensors with the observed responses suggest that the interface between RCK1 and RCK2 domains on the same subunit is flexible. On this basis, intrasubunit cooperativity arises because two high-affinity Ca(2+) sensors acting across a flexible interface are more effective in opening the channel than when acting at separate interfaces. An allosteric model incorporating intrasubunit cooperativity nested within intersubunit cooperativity could approximate the Po vs. Ca(2+) response for eight possible subunit configurations of the high-affinity Ca(2+) sensors as well as for three additional configurations from a previous study. 相似文献
3.
Coupling between voltage sensor activation,Ca2+ binding and channel opening in large conductance (BK) potassium channels 下载免费PDF全文
To determine how intracellular Ca(2+) and membrane voltage regulate the gating of large conductance Ca(2+)-activated K(+) (BK) channels, we examined the steady-state and kinetic properties of mSlo1 ionic and gating currents in the presence and absence of Ca(2+) over a wide range of voltage. The activation of unliganded mSlo1 channels can be accounted for by allosteric coupling between voltage sensor activation and the closed (C) to open (O) conformational change (Horrigan, F.T., and R.W. Aldrich. 1999. J. Gen. Physiol. 114:305-336; Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). In 0 Ca(2+), the steady-state gating charge-voltage (Q(SS)-V) relationship is shallower and shifted to more negative voltages than the conductance-voltage (G(K)-V) relationship. Calcium alters the relationship between Q-V and G-V, shifting both to more negative voltages such that they almost superimpose in 70 microM Ca(2+). This change reflects a differential effect of Ca(2+) on voltage sensor activation and channel opening. Ca(2+) has only a small effect on the fast component of ON gating current, indicating that Ca(2+) binding has little effect on voltage sensor activation when channels are closed. In contrast, open probability measured at very negative voltages (less than -80 mV) increases more than 1,000-fold in 70 microM Ca(2+), demonstrating that Ca(2+) increases the C-O equilibrium constant under conditions where voltage sensors are not activated. Thus, Ca(2+) binding and voltage sensor activation act almost independently, to enhance channel opening. This dual-allosteric mechanism can reproduce the steady-state behavior of mSlo1 over a wide range of conditions, with the assumption that activation of individual Ca(2+) sensors or voltage sensors additively affect the energy of the C-O transition and that a weak interaction between Ca(2+) sensors and voltage sensors occurs independent of channel opening. By contrast, macroscopic I(K) kinetics indicate that Ca(2+) and voltage dependencies of C-O transition rates are complex, leading us to propose that the C-O conformational change may be described by a complex energy landscape. 相似文献
4.
Ca2+-dependent gating mechanisms for dSlo, a large-conductance Ca2+-activated K+ (BK) channel. 下载免费PDF全文
The Ca2+-dependent gating mechanism of cloned BK channels from Drosophila (dSlo) was studied. Both a natural variant (A1/C2/E1/G3/IO) and a mutant (S942A) were expressed in Xenopus oocytes, and single-channel currents were recorded from excised patches of membrane. Stability plots were used to define stable segments of data. Unlike native BK channels from rat skeletal muscle in which increasing internal Ca2+ concentration (Cai2+) in the range of 5 to 30 microM increases mean open time, increasing Cai2+ in this range for dSlo had little effect on mean open time. However, further increases in Cai2+ to 300 or 3000 microM then typically increased dSlo mean open time. Kinetic schemes for the observed Ca2+-dependent gating kinetics of dSlo were evaluated by fitting two-dimensional dwell-time distributions using maximum likelihood techniques and by comparing observed dependency plots with those predicted by the models. Previously described kinetic schemes that largely account for the Ca2+-dependent kinetics of native BK channels from rat skeletal muscle did not adequately describe the Ca2+ dependence of dSlo. An expanded version of these schemes which, in addition to the Ca2+-activation steps, permitted a Ca2+-facilitated transition from each open state to a closed state, could approximate the Ca2+-dependent kinetics of dSlo, suggesting that Ca2+ may exert dual effects on gating. 相似文献
5.
Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BK(Ca) gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BK(Ca) activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BK(Ca) channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition. 相似文献
6.
Victor P.T. Pau Karin Abarca-Heidemann Brad S. Rothberg 《The Journal of general physiology》2010,135(5):509-526
MthK is a Ca2+-gated K+ channel whose activity is inhibited by cytoplasmic H+. To determine possible mechanisms underlying the channel’s proton sensitivity and the relation between H+ inhibition and Ca2+-dependent gating, we recorded current through MthK channels incorporated into planar lipid bilayers. Each bilayer recording was obtained at up to six different [Ca2+] (ranging from nominally 0 to 30 mM) at a given [H+], in which the solutions bathing the cytoplasmic side of the channels were changed via a perfusion system to ensure complete solution exchanges. We observed a steep relation between [Ca2+] and open probability (Po), with a mean Hill coefficient (nH) of 9.9 ± 0.9. Neither the maximal Po (0.93 ± 0.005) nor nH changed significantly as a function of [H+] over pH ranging from 6.5 to 9.0. In addition, MthK channel activation in the nominal absence of Ca2+ was not H+ sensitive over pH ranging from 7.3 to 9.0. However, increasing [H+] raised the EC50 for Ca2+ activation by ∼4.7-fold per tenfold increase in [H+], displaying a linear relation between log(EC50) and log([H+]) (i.e., pH) over pH ranging from 6.5 to 9.0. Collectively, these results suggest that H+ binding does not directly modulate either the channel’s closed–open equilibrium or the allosteric coupling between Ca2+ binding and channel opening. We can account for the Ca2+ activation and proton sensitivity of MthK gating quantitatively by assuming that Ca2+ allosterically activates MthK, whereas H+ opposes activation by destabilizing the binding of Ca2+. 相似文献
7.
Javaherian AD Yusifov T Pantazis A Franklin S Gandhi CS Olcese R 《The Journal of biological chemistry》2011,286(23):20701-20709
Large-conductance voltage- and Ca(2+)-dependent K(+) (BK, also known as MaxiK) channels are homo-tetrameric proteins with a broad expression pattern that potently regulate cellular excitability and Ca(2+) homeostasis. Their activation results from the complex synergy between the transmembrane voltage sensors and a large (>300 kDa) C-terminal, cytoplasmic complex (the "gating ring"), which confers sensitivity to intracellular Ca(2+) and other ligands. However, the molecular and biophysical operation of the gating ring remains unclear. We have used spectroscopic and particle-scale optical approaches to probe the metal-sensing properties of the human BK gating ring under physiologically relevant conditions. This functional molecular sensor undergoes Ca(2+)- and Mg(2+)-dependent conformational changes at physiologically relevant concentrations, detected by time-resolved and steady-state fluorescence spectroscopy. The lack of detectable Ba(2+)-evoked structural changes defined the metal selectivity of the gating ring. Neutralization of a high-affinity Ca(2+)-binding site (the "calcium bowl") reduced the Ca(2+) and abolished the Mg(2+) dependence of structural rearrangements. In congruence with electrophysiological investigations, these findings provide biochemical evidence that the gating ring possesses an additional high-affinity Ca(2+)-binding site and that Mg(2+) can bind to the calcium bowl with less affinity than Ca(2+). Dynamic light scattering analysis revealed a reversible Ca(2+)-dependent decrease of the hydrodynamic radius of the gating ring, consistent with a more compact overall shape. These structural changes, resolved under physiologically relevant conditions, likely represent the molecular transitions that initiate the ligand-induced activation of the human BK channel. 相似文献
8.
Shaker K+ channels were expressed in outside-out macropatches excised from Xenopus oocytes, and the effects on gating of removal of extracellular Ca2+ were examined in the complete absence of intracellular divalent cations. Removal of extracellular Ca2+ by perfusion with EDTA-containing solution caused a small negative shift in the channel's voltage-activation curve and led to an increased nonselective leak, but did not otherwise alter or disrupt the channels. The results contradict the proposal that Ca2+ is an essential component required for maintenance of ion selectivity and proper gating of Kv-type K+ channels. The large nonselective leak in Ca2+-free conditions was found to be a patch-seal phenomenon related to F- ion in the recording pipette. 相似文献
9.
Single-channel models of intracellular Ca(2+) channels such as the inositol 1,4,5-trisphosphate receptor and ryanodine receptor often assume that Ca(2+)-dependent transitions are mediated by a constant background [Ca(2+)] as opposed to a dynamic [Ca(2+)] representing the formation and collapse of a localized Ca(2+) domain. This assumption neglects the fact that Ca(2+) released by open intracellular Ca(2+) channels may influence subsequent gating through the processes of Ca(2+)-activation or -inactivation. We study the effect of such "residual Ca(2+)" from previous channel opening on the stochastic gating of minimal and realistic single-channel models coupled to a restricted cytoplasmic compartment. Using Monte Carlo simulation as well as analytical and numerical solution of a system of advection-reaction equations for the probability density of the domain [Ca(2+)] conditioned on the state of the channel, we determine how the steady-state open probability (p(open)) of single-channel models of Ca(2+)-regulated Ca(2+) channels depends on the time constant for Ca(2+) domain formation and collapse. As expected, p(open) for a minimal model including Ca(2+) activation increases as the domain time constant becomes large compared to the open and closed dwell times of the channel, that is, on average the channel is activated by residual Ca(2+) from previous openings. Interestingly, p(open) for a channel model that is inactivated by Ca(2+) also increases as a function of the domain time constant when the maximum domain [Ca(2+)] is fixed, because slow formation of the Ca(2+) domain attenuates Ca(2+)-mediated inactivation. Conversely, when the source amplitude of the channel is fixed, increasing the domain time constant leads to elevated domain [Ca(2+)] and decreased open probability. Consistent with these observations, a realistic De Young-Keizer-like IP(3)R model responds to residual Ca(2+) with a steady-state open probability that is a monotonic function of the domain time constant, though minimal models that include both Ca(2+)-activation and -inactivation show more complex behavior. We show how the probability density approach described here can be generalized for arbitrarily complex channel models and for any value of the domain time constant. In addition, we present a comparatively simple numerical procedure for estimating p(open) for models of Ca(2+)-regulated Ca(2+) channels in the limit of a very fast or very slow Ca(2+) domain. When the ordinary differential equation for the [Ca(2+)] in a restricted cytoplasmic compartment is replaced by a partial differential equation for the buffered diffusion of intracellular Ca(2+) in a homogeneous isotropic cytosol, we find the dependence of p(open) on the buffer time constant is qualitatively similar to the above-mentioned results. 相似文献
10.
《The Journal of general physiology》1996,108(3):143-155
In voltage-dependent ion channels, the gating of the channels is determined by the movement of the voltage sensor. This movement reflects the rearrangement of the protein in response to a voltage stimulus, and it can be thought of as a net displacement of elementary charges (e0) through the membrane (z: effective number of elementary charges). In this paper, we measured z in Shaker IR (inactivation removed) K+ channels, neuronal alpha 1E and alpha 1A, and cardiac alpha 1C Ca2+ channels using two methods: (a) limiting slope analysis of the conductance-voltage relationship and (b) variance analysis, to evaluate the number of active channels in a patch, combined with the measurement of charge movement in the same patch. We found that in Shaker IR K+ channels the two methods agreed with a z congruent to 13. This suggests that all the channels that gate can open and that all the measured charge is coupled to pore opening in a strictly sequential kinetic model. For all Ca2+ channels the limiting slope method gave consistent results regardless of the presence or type of beta subunit tested (z = 8.6). However, as seen with alpha 1E, the variance analysis gave different results depending on the beta subunit used. alpha 1E and alpha 1E beta 1a gave higher z values (z = 14.77 and z = 15.13 respectively) than alpha 1E beta 2a (z = 9.50, which is similar to the limiting slope results). Both the beta 1a and beta 2a subunits, coexpressed with alpha 1E Ca2+ channels facilitated channel opening by shifting the activation curve to more negative potentials, but only the beta 2a subunit increased the maximum open probability. The higher z using variance analysis in alpha 1E and alpha 1E beta 1a can be explained by a set of charges not coupled to pore opening. This set of charges moves in transitions leading to nulls thus not contributing to the ionic current fluctuations but eliciting gating currents. Coexpression of the beta 2a subunit would minimize the fraction of nulls leading to the correct estimation of the number of channels and z. 相似文献
11.
Activation of Ca(2+) release-activated Ca(2+) channels by depletion of intracellular Ca(2+) stores involves physical interactions between the endoplasmic reticulum Ca(2+) sensor, STIM1, and the channels composed of Orai subunits. Recent studies indicate that the Orai3 subtype, in addition to being store-operated, is also activated in a store-independent manner by 2-aminoethyldiphenyl borate (2-APB), a small molecule with complex pharmacology. However, it is unknown whether the store-dependent and -independent activation modes of Orai3 channels operate independently or whether there is cross-talk between these activation states. Here we report that in addition to causing direct activation, 2-APB also regulates store-operated gating of Orai3 channels, causing potentiation at low doses and inhibition at high doses. Inhibition of store-operated gating by 2-APB was accompanied by the suppression of several modes of Orai3 channel regulation that depend on STIM1, suggesting that high doses of 2-APB interrupt STIM1-Orai3 coupling. Conversely, STIM1-bound Orai3 (and Orai1) channels resisted direct gating by high doses of 2-APB. The rate of direct 2-APB activation of Orai3 channels increased linearly with the degree of STIM1-Orai3 uncoupling, suggesting that 2-APB has to first disengage STIM1 before it can directly gate Orai3 channels. Collectively, our results indicate that the store-dependent and -independent modes of Ca(2+) release-activated Ca(2+) channel activation are mutually exclusive: channels bound to STIM1 resist 2-APB gating, whereas 2-APB antagonizes STIM1 gating. 相似文献
12.
To investigate the mechanisms that increase ionic currents when Ca(2+) channels' alpha(1) subunits are co-expressed with the beta-subunits, we compared channel activity of Ca(V)1.2 (alpha(1C)) co-expressed with beta(1a) and beta(2a) in Xenopus oocytes. Normalized by charge movement, ionic currents were near threefold larger with beta(2a) than with beta(1a). At the single-channel level, the open probability (P(o)) was over threefold larger with beta(2a), and traces with high P(o) were more frequent. Among traces with P(o) > 0.1, the mean duration of burst of openings (MBD) were nearly twice as long for alpha(1C)beta(2a) (15.1 +/- 0.7 ms) than for alpha(1C)beta(1a) (8.4 +/- 0.5 ms). Contribution of endogenous beta(3xo) was ruled out by comparing MBDs with alpha(1C)-cRNA alone (4.7 +/- 0.1 ms) with beta(3xo) (14.3 +/- 1.1 ms), and with beta(1b) (8.2 +/- 0.5 ms). Open-channel current amplitude distributions were indistinguishable for alpha(1C)beta(1a) and alpha(1C)beta(2a), indicating that opening and closing kinetics are similar with both subunits. Simulations with constant opening and closing rates reproduced the microscopic kinetics accurately, and therefore we conclude that the conformational change-limiting MBD is differentially regulated by the beta-subunits and contributes to the larger ionic currents associated with beta(2a), whereas closing and opening rates do not change, which should reflect the activity of a separate gate. 相似文献
13.
We studied whether acetaldehyde, which is produced by alcohol consumption, impacts ryanodine receptor (RyR) activity and muscle force. Exposure to 50200 µM acetaldehyde enhanced channel activity of frog RyR and rabbit RyR1 incorporated into lipid bilayers. An increase in acetaldehyde to 1 mM modified channel activity in a time-dependent manner, with a brief activation and then inhibition. Application of 200 µM acetaldehyde to frog fibers increased twitch tension. The maximum rate of rise of tetanus tension was accelerated to 1.5 and 1.74 times the control rate on exposure of fibers to 50 and 200 µM acetaldehyde, respectively. Fluorescence monitoring with fluo 3 demonstrated that 200400 µM acetaldehyde induced Ca2+ release from the sarcoplasmic reticulum (SR) in frog muscles. Acetaldehyde at 1 mM inhibited twitch tension by 12%, with an increased relaxation time after a small, transient twitch potentiation. These results suggest that moderate concentrations of acetaldehyde can elicit Ca2+ release from the SR by increasing the open probability of the RyR channel, resulting in increased tension. However, the effects of acetaldehyde at clinical doses (130 µM) are unlikely to mediate alcohol-induced acute muscle dysfunction. ryanodine receptor; single-channel current; fluo 3 fluorescence; calcium ion release; calcium ion uptake 相似文献
14.
Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength 总被引:10,自引:3,他引:10 下载免费PDF全文
Charybdotoxin (CTX), a small, basic protein from scorpion venom, strongly inhibits the conduction of K ions through high-conductance, Ca2+-activated K+ channels. The interaction of CTX with Ca2+-activated K+ channels from rat skeletal muscle plasma membranes was studied by inserting single channels into uncharged planar phospholipid bilayers. CTX blocks K+ conduction by binding to the external side of the channel, with an apparent dissociation constant of approximately 10 nM at physiological ionic strength. The dwell-time distributions of both blocked and unblocked states are single-exponential. The toxin association rate varies linearly with the CTX concentration, and the dissociation rate is independent of it. CTX is competent to block both open and closed channels; the association rate is sevenfold faster for the open channel, while the dissociation rate is the same for both channel conformations. Membrane depolarization enhances the CTX dissociation rate e-fold/28 mV; if the channel's open probability is maintained constant as voltage varies, then the toxin association rate is voltage independent. Increasing the external solution ionic strength from 20 to 300 mM (with K+, Na+, or arginine+) reduces the association rate by two orders of magnitude, with little effect on the dissociation rate. We conclude that CTX binding to the Ca2+-activated K+ channel is a bimolecular process, and that the CTX interaction senses both voltage and the channel's conformational state. We further propose that a region of fixed negative charge exists near the channel's CTX-binding site. 相似文献
15.
The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, q(eff), of 2.3 +/- 0.6 e(o)). Estimates of q(eff) were little changed for intracellular Ca2+ (Ca2+(i)) ranging from 0.0003 to 1,024 microM. Increasing Ca2+(i) from 0.03 to 1,024 microM shifted the voltage for half maximal activation (V(1/2)) 175 mV in the hyperpolarizing direction. V(1/2) was independent of Ca2+(i) for Ca2+(i) < or = 0.03 microM, indicating that the channel can be activated in the absence of Ca2+(i). Open and closed dwell-time distributions for data obtained at different Ca2+(i) and voltage, but at the same Po, were different, indicating that the major action of voltage is not through concentrating Ca2+ at the binding sites. The voltage dependence of Po arose from a decrease in the mean closing rate with depolarization (q(eff) = -0.5 e(o)) and an increase in the mean opening rate (q(eff) = 1.8 e(o)), consistent with voltage-dependent steps in both the activation and deactivation pathways. A 50-state two-tiered model with separate voltage- and Ca2+-dependent steps was consistent with the major features of the voltage and Ca2+ dependence of the single-channel kinetics over wide ranges of Ca2+(i) (approximately 0 through 1,024 microM), voltage (+80 to -80 mV), and Po (10(-4) to 0.96). In the model, the voltage dependence of the gating arises mainly from voltage-dependent transitions between closed (C-C) and open (O-O) states, with less voltage dependence for transitions between open and closed states (C-O), and with no voltage dependence for Ca2+-binding and unbinding. The two-tiered model can serve as a working hypothesis for the Ca2+- and voltage-dependent gating of the BK channel. 相似文献
16.
Hu-cheng Zhao Hasi Agula Wei Zhang Fa Wang Masahiro Sokabe Lu-ming Li 《Journal of biomechanics》2010,43(15):3015-3019
Large conductance Ca2+-activated K+ (BK) channels are responsible for changes in chemical and physical signals such as Ca2+, Mg2+ and membrane potentials. Previously, we reported that a BK channel cloned from chick heart (SAKCaC) is activated by membrane stretch. Molecular cloning and subsequent functional characterization of SAKCaC have shown that both the membrane stretch and intracellular Ca2+ signal allosterically regulate the channel activity via the linker of the gating ring complex. Here we investigate how these two gating principles interact with each other. We found that stretch force activated SAKCaC in the absence of cytoplasmic Ca2+. Lack of Ca2+ bowl (a calcium binding motif) in SAKCaC diminished the Ca2+-dependent activation, but the mechanosensitivity of channel was intact. We also found that the abrogation of STREX (a proposed mechanosensing apparatus) in SAKCaC abolished the mechanosensitivity without altering the Ca2+ sensitivity of channels. These observations indicate that membrane stretch and intracellular Ca2+ could independently modulate SAKCaC activity. 相似文献
17.
18.
The rise in intracellular Ca2+ mediated by AMPA subtype of glutamate receptors has been implicated in the pathogenesis of motor neuron disease, but the exact route of Ca2+ entry into motor neurons is not clearly known. In the present study, we examined the role of voltage gated calcium channels (VGCCs) in AMPA induced Ca2+ influx and subsequent intracellular signaling events responsible for motor neuron degeneration. AMPA stimulation caused sodium influx in spinal neurons that would depolarize the plasma membrane. The AMPA induced [Ca2+]i rise in motor neurons as well as other spinal neurons was drastically reduced when extracellular sodium was replaced with NMDG, suggesting the involvement of voltage gated calcium channels. AMPA mediated rise in [Ca2+]i was significantly inhibited by L-type VGCC blocker nifedipine, whereas ω-agatoxin-IVA and ω-conotoxin-GVIA, specific blockers of P/Q type and N-type VGCC were not effective. 1-Napthyl-acetyl spermine (NAS), an antagonist of Ca2+ permeable AMPA receptors partially inhibited the AMPA induced [Ca2+]i rise but selectively in motor neurons. Measurement of AMPA induced currents in whole cell voltage clamp mode suggests that a moderate amount of Ca2+ influx occurs through Ca2+ permeable AMPA receptors in a subpopulation of motor neurons. The AMPA induced mitochondrial calcium loading [Ca2+]m, mitochondrial depolarization and neurotoxicity were also significantly reduced in presence of nifedipine. Activation of VGCCs by depolarizing concentration of KCl (30 mM) in extracellular medium increased the [Ca2+]i but no change was observed in mitochondrial Ca2+ and membrane potential. Our results demonstrate that a subpopulation of motor neurons express Ca2+ permeable AMPA receptors, however the larger part of Ca2+ influx occurs through L-type VGCCs subsequent to AMPA receptor activation and consequent mitochondrial dysfunction is the trigger for motor neuron degeneration. Nifedipine is an effective protective agent against AMPA induced mitochondrial stress and degeneration of motor neurons. 相似文献
19.
20.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels. 相似文献