首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant insight into the mechanisms that contribute to dopaminergic neurodegeneration in Parkinson disease has been gained from the analysis of genes linked to rare heritable forms of parkinsonism such as PINK1 and parkin, loss-of-function mutations of which cause autosomal recessive parkinsonism. PINK1 encodes a mitochondrially targeted Ser/Thr kinase and parkin encodes a ubiquitin-protein ligase. Functional studies of PINK1 and Parkin in animal and cellular model systems have shown that both proteins play important roles in maintaining mitochondrial integrity. Genetic studies of PINK1 and Parkin orthologs in flies have shown that PINK1 acts upstream from Parkin in a common pathway that appears to regulate mitochondrial morphology. Mitochondrial morphology is regulated by mitochondrial fission and fusion-promoting proteins, and is important in a variety of contexts, including mitochondrial trafficking and mitochondrial quality control. In particular, mitochondrial fission appears to promote the segregation of terminally dysfunctional mitochondria for degradation in the lysosome through a process termed mitophagy. Recent work has shown that Parkin promotes the degradation of dysfunctional mitochondria in vertebrate cell culture. Here we postulate a model whereby the PINK1/Parkin pathway regulates mitochondrial dynamics in an effort to promote the turnover of damaged mitochondria.  相似文献   

2.
The two Parkinson’s disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkin mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.  相似文献   

3.
Autosomal recessive early-onset Parkinson's disease is most often caused by mutations in the genes encoding the cytosolic E3 ubiquitin ligase Parkin and the mitochondrial serine/threonine kinase PINK1. Studies in Drosophila models and mammalian cells have demonstrated that these proteins regulate various aspects of mitochondrial physiology, including organelle transport, dynamics and turnover. How PINK1 and Parkin orchestrate these processes, and whether they always do so within a common pathway remain to be clarified.We have revisited the role of PINK1 and Parkin in mitochondrial dynamics, and explored its relation to the mitochondrial clearance program controlled by these proteins. We show that PINK1 and Parkin promote Drp1-dependent mitochondrial fission by mechanisms that are at least in part independent. Parkin-mediated mitochondrial fragmentation was abolished by treatments interfering with the calcium/calmodulin/calcineurin signaling pathway, suggesting that it requires dephosphorylation of serine 637 of Drp1. Parkinson's disease-causing mutations with differential impact on mitochondrial morphology and organelle degradation demonstrated that the pro-fission effect of Parkin is not required for efficient mitochondrial clearance. In contrast, the use of Förster energy transfer imaging microscopy revealed that Drp1 and Parkin are co-recruited to mitochondria in proximity of PINK1 following mitochondrial depolarization, indicating spatial coordination between these events in mitochondrial degradation. Our results also hint at a major role of the outer mitochondrial adaptor MiD51 in Drp1 recruitment and Parkin-dependent mitophagy. Altogether, our observations provide new insight into the mechanisms underlying the regulation of mitochondrial dynamics by Parkin and its relation to the mitochondrial clearance program mediated by the PINK1/Parkin pathway.  相似文献   

4.
Mutations in PINK1, a mitochondrially targeted serine/threonine kinase, cause autosomal recessive Parkinson''s disease (PD). Substantial evidence indicates that PINK1 acts with another PD gene, parkin, to regulate mitochondrial morphology and mitophagy. However, loss of PINK1 also causes complex I (CI) deficiency, and has recently been suggested to regulate CI through phosphorylation of NDUFA10/ND42 subunit. To further explore the mechanisms by which PINK1 and Parkin influence mitochondrial integrity, we conducted a screen in Drosophila cells for genes that either phenocopy or suppress mitochondrial hyperfusion caused by pink1 RNAi. Among the genes recovered from this screen was ND42. In Drosophila pink1 mutants, transgenic overexpression of ND42 or its co-chaperone sicily was sufficient to restore CI activity and partially rescue several phenotypes including flight and climbing deficits and mitochondrial disruption in flight muscles. Here, the restoration of CI activity and partial rescue of locomotion does not appear to have a specific requirement for phosphorylation of ND42 at Ser-250. In contrast to pink1 mutants, overexpression of ND42 or sicily failed to rescue any Drosophila parkin mutant phenotypes. We also find that knockdown of the human homologue, NDUFA10, only minimally affecting CCCP-induced mitophagy, and overexpression of NDUFA10 fails to restore Parkin mitochondrial-translocation upon PINK1 loss. These results indicate that the in vivo rescue is due to restoring CI activity rather than promoting mitophagy. Our findings support the emerging view that PINK1 plays a role in regulating CI activity separate from its role with Parkin in mitophagy.  相似文献   

5.
Loss-of-function mutations in PINK1 and Parkin cause parkinsonism in humans and mitochondrial dysfunction in model organisms. Parkin is selectively recruited from the cytosol to damaged mitochondria to trigger their autophagy. How Parkin recognizes damaged mitochondria, however, is unknown. Here, we show that expression of PINK1 on individual mitochondria is regulated by voltage-dependent proteolysis to maintain low levels of PINK1 on healthy, polarized mitochondria, while facilitating the rapid accumulation of PINK1 on mitochondria that sustain damage. PINK1 accumulation on mitochondria is both necessary and sufficient for Parkin recruitment to mitochondria, and disease-causing mutations in PINK1 and Parkin disrupt Parkin recruitment and Parkin-induced mitophagy at distinct steps. These findings provide a biochemical explanation for the genetic epistasis between PINK1 and Parkin in Drosophila melanogaster. In addition, they support a novel model for the negative selection of damaged mitochondria, in which PINK1 signals mitochondrial dysfunction to Parkin, and Parkin promotes their elimination.  相似文献   

6.
Parkinson disease (PD) is the most common movement disorder and is characterized by dopaminergic dysfunction. The majority of PD cases are sporadic; however, the discovery of genes linked to rare familial forms of the disease has provided crucial insight into the molecular mechanisms of disease pathogenesis. Multiple genes mediating familial forms of Parkinson’s disease (PD) have been identified, such as parkin (PARK2) and phosphatase and tensin homologue deleted on chromosome ten (PTEN)-induced putative kinase 1: PINK1 (PARK6). Here, we showed that Parkin directly interacts with PINK1, but did not bind to pathogenic PINK1 mutants. Parkin, but not its pathogenic mutants, stabilizes PINK1 by interfering with its degradation via the ubiquitin-mediated proteasomal pathway. In addition, the interaction between Parkin and PINK1 resulted in reciprocal reduction of their solubility. Our results indicate that Parkin regulates PINK1 stabilization via direct interaction with PINK1, and operates through a common pathway with PINK1 in the pathogenesis of early-onset PD.  相似文献   

7.
Eukaryotes employ elaborate mitochondrial quality control to maintain the function of the power-generating organelle. Mitochondrial quality control is particularly important for the maintenance of neural and muscular tissues. Mitophagy is specialized version of the autophagy pathway. Mitophagy delivers damaged mitochondria to lysosomes for degradation. Recently, a series of elegant studies have demonstrated that two Parkinson's disease-associated genes PINK1 and parkin are involved in the maintenance of healthy mitochondria as mitophagy. Parkin in co-operation with PINK1 specifically recognizes damaged mitochondria with reduced mitochondrial membrane potential (Δψm), rapidly isolates them from the mitochondrial network and eliminates them through the ubiquitin–proteasome and autophagy pathways. Here we introduce and review recent studies that contribute to understanding the molecular mechanisms of mitophagy such as PINK1 and Parkin-mediated mitochondrial regulation. We also discuss how defects in the PINK1–Parkin pathway may cause neurodegeneration in Parkinson's disease.  相似文献   

8.
Parkinson''s disease‐related proteins, PINK1 and Parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1‐Parkin pathway can promote autophagic mitochondrial turnover (mitophagy) following mitochondrial toxification in cell culture, alternative quality control pathways are suggested. To analyse the mechanisms by which the PINK1–Parkin pathway operates in vivo, we developed methods to detect Ser65‐phosphorylated ubiquitin (pS65‐Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1‐dependent pS65‐Ub production, while pS65‐Ub accumulates in unstimulated parkin‐null flies, consistent with blocked degradation. Additionally, we show that pS65‐Ub specifically accumulates on disrupted mitochondria in vivo. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65‐Ub accumulation to the same extent as loss of parkin, and overexpression of parkin promoted turnover of both basal and paraquat‐induced pS65‐Ub in an Atg5‐null background. Thus, we have established that pS65‐Ub immunodetection can be used to analyse Pink1‐Parkin function in vivo as an alternative to reporter constructs. Moreover, our findings suggest that the Pink1‐Parkin pathway can promote mitochondrial turnover independently of canonical autophagy in vivo.  相似文献   

9.
Two genes linked to early onset Parkinson''s disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions.  相似文献   

10.
The PINK1-Parkin pathway plays a critical role in mitochondrial quality control by selectively targeting damaged mitochondria for autophagy. In this issue, Tanaka et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201007013) demonstrate that the AAA-type ATPase p97 acts downstream of PINK1 and Parkin to segregate fusion-incompetent mitochondria for turnover. p97 acts by targeting the mitochondrial fusion-promoting factor mitofusin for degradation through an endoplasmic reticulum-associated degradation (ERAD)-like mechanism.  相似文献   

11.
Loss-of-function mutations in the parkin gene (PARK2) and PINK1 gene (PARK6) are associated with autosomal recessive parkinsonism. PINK1 deficiency was recently linked to mitochondrial pathology in human cells and Drosophila melanogaster, which can be rescued by parkin, suggesting that both genes play a role in maintaining mitochondrial integrity. Here we demonstrate that an acute down-regulation of parkin in human SH-SY5Y cells severely affects mitochondrial morphology and function, a phenotype comparable with that induced by PINK1 deficiency. Alterations in both mitochondrial morphology and ATP production caused by either parkin or PINK1 loss of function could be rescued by the mitochondrial fusion proteins Mfn2 and OPA1 or by a dominant negative mutant of the fission protein Drp1. Both parkin and PINK1 were able to suppress mitochondrial fragmentation induced by Drp1. Moreover, in Drp1-deficient cells the parkin/PINK1 knockdown phenotype did not occur, indicating that mitochondrial alterations observed in parkin- or PINK1-deficient cells are associated with an increase in mitochondrial fission. Notably, mitochondrial fragmentation is an early phenomenon upon PINK1/parkin silencing that also occurs in primary mouse neurons and Drosophila S2 cells. We propose that the discrepant findings in adult flies can be explained by the time of phenotype analysis and suggest that in mammals different strategies may have evolved to cope with dysfunctional mitochondria.Many lines of evidence suggest that mitochondrial dysfunction plays a central role in the pathogenesis of Parkinson disease, starting from the early observation that the complex I inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced acute and irreversible parkinsonism in young drug addicts (for review, see Refs. 13). In support of a crucial role of mitochondria in Parkinson disease, several Parkinson disease-associated gene products directly or indirectly impinge on mitochondrial integrity (for review, see Refs. 46). A clear link between Parkinson disease genes and mitochondria has recently emerged from studies on PINK1 (PTEN-induced putative kinase 1), a mitochondrial serine/threonine kinase, and parkin, a cytosolic E3 ubiquitin ligase. Drosophila parkin null mutants displayed reduced life span, male sterility, and locomotor defects due to apoptotic flight muscle degeneration (7). The earliest manifestation of muscle degeneration and defective spermatogenesis was mitochondrial pathology, exemplified by swollen mitochondria and disintegrated cristae. Remarkably, Drosophila PINK1 null mutants shared marked phenotypic similarities with parkin mutants, and parkin could compensate for the PINK1 loss-of-function phenotype but not vice versa, leading to the conclusion that PINK1 and parkin function in a common genetic pathway with parkin acting downstream of PINK1 (810). We recently demonstrated that PINK1 deficiency in cultured human cells causes alterations in mitochondrial morphology, which can be rescued by wild type parkin but not by pathogenic parkin mutants (11). We now present evidence that parkin plays an essential role in maintaining mitochondrial integrity. RNAi3-mediated knockdown of parkin increases mitochondrial fragmentation and decreases cellular ATP production. Notably, mitochondrial fragmentation induced by PINK1/parkin deficiency is observed not only in human neuroblastoma cells but also in primary mouse neurons and insect S2 cells. Alterations in mitochondrial morphology are early manifestations of parkin/PINK1 silencing that are not caused by an increase in apoptosis. The mitochondrial phenotype observed in parkin- or PINK1-deficient cells can morphologically and functionally be rescued by the increased expression of a dominant negative mutant of the fission-promoting protein Drp1. Moreover, manifestation of the PINK1/parkin knockdown phenotype is dependent on Drp1 expression, indicating that an acute loss of parkin or PINK1 function increases mitochondrial fission.  相似文献   

12.
Parkinson disease (PD) is the second most prevalent neurodegenerative disorder, and thus elucidation of the pathogenic mechanism and establishment of a fundamental cure is essential in terms of public welfare. Fortunately, our understanding of the pathogenesis of two types of recessive familial PDs—early-onset familial PD caused by dysfunction of the PTEN-induced putative kinase 1 (PINK1) gene and autosomal recessive juvenile Parkinsonism (ARJP) caused by a mutation in the Parkin gene—has evolved and continues to expand.Key words: PINK1, parkin, ubiquitin, mitochondria, autophagy, mitophagy, membrane potential, quality controlSince the cloning of PINK1 and Parkin, numerous papers have been published about the corresponding gene products, but the mechanism by which dysfunction of PINK1 and/or Parkin causes PD remain unclear. Parkin encodes a ubiquitin ligase E3, a substrate recognition member of the ubiquitination pathway, whereas PINK1 encodes a mitochondria-targeted serine-threonine kinase that contributes to the maintenance of mitochondrial integrity. Based on their molecular functions, it is clear that Parkin-mediated ubiquitination and PINK1 phosphorylation are key events in disease pathogenesis. The underlying mechanism, however, is not as well defined and claims of pathogenicity, until recently, remained controversial. Although Parkin''s E3 activity was clearly demonstrated in vitro, we were unable to show a clear E3 activity of Parkin in cell/in vivo. In addition, despite a predicted mitochondrial localization signal for PINK1, we were unable to detect PINK1 on mitochondria by either immunoblotting or immunocytochemistry. More confusingly, overexpression of nontagged PINK1 mainly localized to the cytoplasm under steady state conditions.Work by Dr. Youle''s group at the National Institutes of Health in 2008, however, offered new insights. They reported that Parkin associated with depolarized mitochondria and that Parkin-marked mitochondria were subsequently cleared by autophagy. Soon after their publication, we also examined the function of Parkin and PINK1 following a decrease in mitochondrial membrane potential. Our findings, described below (Fig. 1), have contributed to the development of a mechanism explaining pathogenicity.Open in a separate windowFigure 1Model of mitochondrial quality control mediated by PINK1 and Parkin. Under steady-state conditions, the mature 60 kDa PINK1 is constantly cleaved by an unknown protease to a 50 kDa intermediate form that is subsequently degraded, presumably by the proteasome (upper part). The protein, however, is stabilized on depolarized mitochondria because the initial processing event is inhibited by a decrease in mitochondrial membrane potential (lower part). Accumulated PINK1 recruits cytosolic Parkin onto depolarized mitochondria resulting in activation of its E3 activity. Parkin then ubiquitinates a mitochondrial substrate(s). As a consequence, damaged mitochondria are degraded via mitophagy. Ub, ubiquitin.(1) We sought to determine the subcellular localization of endogenous PINK1, and realized that endogenous PINK1 is barely detectable under steady-state conditions. However, a decrease in mitochondrial membrane-potential following treatment with the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) results in the gradual accumulation of endogenous PINK1 on mitochondria. Importantly, when CCCP is washed out, the accumulated endogenous PINK1 rapidly disappears (within 30 min) both in the presence and absence of cycloheximide. These results support the hypothesis that PINK1 is constantly transported to the mitochondria, but is rapidly degraded in a membrane potential-dependent manner (see below for details). We speculate that PINK1 is stabilized by a decrease in mitochondrial membrane potential and as a result accumulates on depolarized mitochondria.(2) We examined the potential role of PINK1 in the mitochondrial recruitment of Parkin. In control MEFs (PINK1+/+), Parkin is selectively recruited to the mitochondria following CCCP treatment, and subsequently results in the selective disappearance of the mitochondria via autophagy (called mitophagy). In sharp contrast, Parkin is not translocated to the mitochondria in PINK1 knockout (PINK1−/−) MEFs following CCCP treatment, and subsequent mitochondrial degradation is also completely impeded. These results suggest that PINK1 is “a Parkin-recruitment factor” that recruits Parkin from the cytoplasm to damaged mitochondria in a membrane potential-dependent manner for mitophagy.(3) We monitored the E3 activity of Parkin using an artificial pseudo-substrate fused to Parkin in cells. Parkin''s E3 activity was repressed under steady-state conditions; however, we find that Parkin ubiquitinates the pseudo-substrate when it is retrieved to the depolarized mitochondria, suggesting that activation of the latent Parkin E3 activity is likewise dependent on a decrease in mitochondrial membrane potential.(4) PINK1 normally exists as either a long (approximately 60 kDa) or a short (approximately 50 kDa) protein. Because the canonical mitochondrial targeting signal (matrix targeting signal) is cleaved after import into the mitochondria, the long form has been designated as the precursor and the short form as the mature PINK1. However, our subcellular localization study of endogenous PINK1 following CCCP treatment shows that the long form is recovered in the mitochondrial fraction, suggesting that it is not the pre-import precursor form. Moreover, by monitoring the degradation process of PINK1 following recovery of membrane potential, we realized that the short form of PINK1 transiently appears soon after CCCP is washed out and then later disappears, suggesting that the processed form of PINK1 is an intermediate in membrane-potential-dependent degradation. In conclusion, these results imply that PINK1 cleavage does not reflect a canonical maturation process accompanying mitochondrial import as initially thought, but rather represents constitutive degradation in healthy mitochondria by a two-step mechanism; i.e., first limited processing and subsequent complete degradation probably via the proteasome.(5) PINK1 accumulation by decrease of membrane potential and subsequent recruitment of Parkin onto mitochondria are presumably etiologically important because they are impeded for the most part by disease-linked mutations of PINK1 or Parkin.These results, together with reports by other groups, strongly suggest that recessive familial PD is caused by dysfunction of quality control for depolarized mitochondria.At present, we do not know whether the aforementioned pathogenic mechanism of recessive familial PD can be generalized to prevalent sporadic PD. However, the clinical symptoms of recessive familial PD caused by dysfunction of PINK1 or Parkin resembles that of idiopathic PD except early-onset pathogenesis, and thus it is plausible that there is a common pathogenic mechanism. We accordingly believe that our results provide solid insight into the molecular mechanisms of PD pathogenesis, not only for familial forms caused by Parkin and PINK1 mutations, but also the major sporadic form of PD.To fully understand the molecular mechanism of PINK1-Parkin-mediated mitophagy, further details need to be addressed including: identifying the protease(s) that processes PINK1 in a mitochondrial membrane-potential dependent manner and that presumably monitors mitochondrial integrity; identifying a physiological substrate(s) of PINK1; determining the molecular mechanism underlying Parkin activation; and identifying the protein(s) linking Parkin-mediated ubiquitination to mitophagy. A detailed mechanism of the aforementioned events will be the focus of future research, however, we feel our conclusion that PINK1 and Parkin function in the removal of depolarized mitochondria is evident and hope that our studies will provide a solid foundation for further studies.  相似文献   

13.
Mitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.Subject terms: Mitophagy, Mechanisms of disease  相似文献   

14.
Parkinson disease (PD) is a complex neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Multiple genes have been associated with PD, including Parkin and PINK1. Recent studies have established that the Parkin and PINK1 proteins function in a common mitochondrial quality control pathway, whereby disruption of the mitochondrial membrane potential leads to PINK1 stabilization at the mitochondrial outer surface. PINK1 accumulation leads to Parkin recruitment from the cytosol, which in turn promotes the degradation of the damaged mitochondria by autophagy (mitophagy). Most studies characterizing PINK1/Parkin mitophagy have relied on high concentrations of chemical uncouplers to trigger mitochondrial depolarization, a stimulus that has been difficult to adapt to neuronal systems and one unlikely to faithfully model the mitochondrial damage that occurs in PD. Here, we report that the short mitochondrial isoform of ARF (smARF), previously identified as an alternate translation product of the tumor suppressor p19ARF, depolarizes mitochondria and promotes mitophagy in a Parkin/PINK1-dependent manner, both in cell lines and in neurons. The work positions smARF upstream of PINK1 and Parkin and demonstrates that mitophagy can be triggered by intrinsic signaling cascades.  相似文献   

15.
Wang H  Song P  Du L  Tian W  Yue W  Liu M  Li D  Wang B  Zhu Y  Cao C  Zhou J  Chen Q 《The Journal of biological chemistry》2011,286(13):11649-11658
Mutations in Parkin, an E3 ubiquitin ligase that regulates protein turnover, represent one of the major causes of familial Parkinson disease, a neurodegenerative disorder characterized by the loss of dopaminergic neurons and impaired mitochondrial functions. The underlying mechanism by which pathogenic Parkin mutations induce mitochondrial abnormality is not fully understood. Here, we demonstrate that Parkin interacts with and subsequently ubiquitinates dynamin-related protein 1 (Drp1), for promoting its proteasome-dependent degradation. Pathogenic mutation or knockdown of Parkin inhibits the ubiquitination and degradation of Drp1, leading to an increased level of Drp1 for mitochondrial fragmentation. These results identify Drp1 as a novel substrate of Parkin and suggest a potential mechanism linking abnormal Parkin expression to mitochondrial dysfunction in the pathogenesis of Parkinson disease.  相似文献   

16.
PINK1 and PARKIN are causal genes for autosomal recessive familial Parkinsonism. PINK1 is a mitochondrial Ser/Thr kinase, whereas Parkin functions as an E3 ubiquitin ligase. Under steady-state conditions, Parkin localizes to the cytoplasm where its E3 activity is repressed. A decrease in mitochondrial membrane potential triggers Parkin E3 activity and recruits it to depolarized mitochondria for ubiquitylation of mitochondrial substrates. The molecular basis for how the E3 activity of Parkin is re-established by mitochondrial damage has yet to be determined. Here we provide in vitro biochemical evidence for ubiquitin-thioester formation on Cys-431 of recombinant Parkin. We also report that Parkin forms a ubiquitin-ester following a decrease in mitochondrial membrane potential in cells, and that this event is essential for substrate ubiquitylation. Importantly, the Parkin RING2 domain acts as a transthiolation or acyl-transferring domain rather than an E2-recruiting domain. Furthermore, formation of the ubiquitin-ester depends on PINK1 phosphorylation of Parkin Ser-65. A phosphorylation-deficient mutation completely inhibited formation of the Parkin ubiquitin-ester intermediate, whereas phosphorylation mimics, such as Ser to Glu substitution, enabled partial formation of the intermediate irrespective of Ser-65 phosphorylation. We propose that PINK1-dependent phosphorylation of Parkin leads to the ubiquitin-ester transfer reaction of the RING2 domain, and that this is an essential step in Parkin activation.  相似文献   

17.
Mutations in several genes, including PINK1 and Parkin, are known to cause autosomal recessive cases of Parkinson disease in humans. These genes operate in the same pathway and play a crucial role in mitochondrial dynamics and maintenance. PINK1 is required to recruit Parkin to mitochondria and initiate mitophagy upon mitochondrial depolarization. In this study, we show that PINK1-dependent Parkin mitochondrial recruitment in response to global mitochondrial damage by carbonyl cyanide m-chlorophenylhydrazine (CCCP) requires active glucose metabolism. Parkin accumulation on mitochondria and subsequent Parkin-dependent mitophagy is abrogated in glucose-free medium or in the presence of 2-deoxy-d-glucose upon CCCP treatment. The defects in Parkin recruitment correlate with intracellular ATP levels and can be attributed to suppression of PINK1 up-regulation in response to mitochondria depolarization. Low levels of ATP appear to prevent PINK1 translation instead of affecting PINK1 mRNA expression or reducing its stability. Consistent with a requirement of ATP for elevated PINK1 levels and Parkin mitochondrial recruitment, local or individual mitochondrial damage via photoirradiation does not affect Parkin recruitment to damaged mitochondria as long as a pool of functional mitochondria is present in the photoirradiated cells even in glucose-free or 2-deoxy-d-glucose-treated conditions. Thus, our data identify ATP as a key regulator for Parkin mitochondrial translocation and sustaining elevated PINK1 levels during mitophagy. PINK1 functions as an AND gate and a metabolic sensor coupling biogenetics of cells and stress signals to mitochondria dynamics.  相似文献   

18.
《Autophagy》2013,9(5):660-662
Much evidence links mitochondrial dysfunction to the death of neurons in Parkinson disease (PD), and is particularly emphasized by our growing understanding of the function of genes linked to recessively inherited PD such as PINK1, parkin and DJ-1. Recent work has revealed an exciting link between the PINK1-Parkin pathway and the autophagic turnover of dysfunctional mitochondrial (mitophagy). We have recently shown that mitofusin is ubiquitinated by Parkin when it is recruited to dysfunctional mitochondria. Recent work also shows that regulated fission and fusion events help segregate dysfunctional mitochondria prior to mitophagy. Here we hypothesize how Parkin-mediated ubiquitination of Mfn may play a role in this mechanism.  相似文献   

19.
Mutations in PINK1 and Parkin result in early-onset autosomal recessive Parkinson’s disease (PD). PINK1/Parkin pathway maintain mitochondrial function by mediating the clearance of damaged mitochondria. However, the role of PINK1/Parkin in maintaining the balance of mtDNA heteroplasmy is still unknown. Here, we isolated mitochondrial DNA (mtDNA) from cortex, striatum and substantia nigra of wildtype (WT), PINK1 knockout (PINK1 KO) and Parkin knockout (Parkin KO) mice to analyze mtDNA heteroplasmy induced by PINK1/Parkin deficiency or aging. Our results showed that the Single Nucleotide Variants (SNVs) of late-onset somatic variants mainly increased with aging. Conversely, the early-onset somatic variants exhibited significant increase in the cortex and substantia nigra of PINK1 KO mice than WT mice of the same age. Increased average variant allele frequency was observed in aged PINK1 KO mice and in substantial nigra of aged Parkin KO mice than in WT mice. Cumulative variant allele frequency in the substantia nigra of PINK1 KO mice was significantly higher than that in WT mice, further supporting the pivotal role of PINK1 in mtDNA maintenance.This study presented a new evidence for PINK1 and Parkin in participating in mitochondrial quality control and provided clues for further revealing the role of PINK1 and Parkin in the pathogenesis of PD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号