共查询到20条相似文献,搜索用时 0 毫秒
1.
Biochemical and Proteomic Analysis of the Magnetosome Membrane in Magnetospirillum gryphiswaldense 下载免费PDF全文
Karen Grünberg Eva-Christina Müller Albrecht Otto Regina Reszka Dietmar Linder Michael Kube Richard Reinhardt Dirk Schüler 《Applied microbiology》2004,70(2):1040-1050
We analyzed the biochemical composition of the magnetosome membrane (MM) in Magnetospirillum gryphiswaldense. Isolated magnetosomes were associated with phospholipids and fatty acids which were similar to phospholipids and fatty acids from other subcellular compartments (i.e., outer and cytoplasmic membranes) but were present in different proportions. The binding characteristics of MM-associated proteins were studied by selective solubilization and limited proteolysis. The MM-associated proteins were further analyzed by various proteomic approaches, including one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Edman and mass spectrometric (electrospray ionization-mass spectrometry-mass spectrometry) sequencing, as well as capillary liquid chromatography-mass spectrometry-mass spectrometry of total tryptic digests of the MM. At least 18 proteins were found to constitute the magnetosome subproteome, and most of these proteins are novel for M. gryphiswaldense. Except for MM22 and Mms16, all bona fide MM proteins (MMPs) were encoded by open reading frames in the mamAB, mamDC, and mms6 clusters in the previously identified putative magnetosome island. Eight of the MMPs display homology to known families, and some of them occur in the MM in multiple homologues. Ten of the MMPs have no known homologues in nonmagnetic organisms and thus represent novel, magnetotactic bacterium-specific protein families. Several MMPs display repetitive or highly acidic sequence patterns, which are known from other biomineralizing systems and thus may have relevance for magnetite formation. 相似文献
2.
Anna Pollithy Tina Romer Claus Lang Frank D. M��ller Jonas Helma Heinrich Leonhardt Ulrich Rothbauer Dirk Sch��ler 《Applied and environmental microbiology》2011,77(17):6165-6171
Numerous applications of conventional and biogenic magnetic nanoparticles (MNPs), such as in diagnostics, immunomagnetic separations, and magnetic cell labeling, require the immobilization of antibodies. This is usually accomplished by chemical conjugation, which, however, has several disadvantages, such as poor efficiency and the need for coupling chemistry. Here, we describe a novel strategy to display a functional camelid antibody fragment (nanobody) from an alpaca (Lama pacos) on the surface of bacterial biogenic magnetic nanoparticles (magnetosomes). Magnetosome-specific expression of a red fluorescent protein (RFP)-binding nanobody (RBP) in vivo was accomplished by genetic fusion of RBP to the magnetosome protein MamC in the magnetite-synthesizing bacterium Magnetospirillum gryphiswaldense. We demonstrate that isolated magnetosomes expressing MamC-RBP efficiently recognize and bind their antigen in vitro and can be used for immunoprecipitation of RFP-tagged proteins and their interaction partners from cell extracts. In addition, we show that coexpression of monomeric RFP (mRFP or its variant mCherry) and MamC-RBP results in intracellular recognition and magnetosome recruitment of RFP within living bacteria. The intracellular expression of a functional nanobody targeted to a specific bacterial compartment opens new possibilities for in vivo synthesis of MNP-immobilized nanobodies. Moreover, intracellular nanotraps can be generated to manipulate bacterial structures in live cells. 相似文献
3.
趋磁螺菌遗传操作体系的建立及磁小体缺失突变株的筛选 总被引:1,自引:0,他引:1
由于MagnetospirillumgryphiswaldenseMSR 1缺少简便有效的遗传操作体系和对常见抗生素的抗性 ,致使对该菌磁小体生物合成的机制等研究工作进展缓慢。为此建立了一套比较简便有效的遗传操作体系 ,其中包括 :以平板封膜培养技术获得单菌落、在选择性培养液中进行接合转移遗传因子 ,以液体培养和磁铁吸附技术筛选突变子。利用此体系 ,通过接合转座诱变技术 ,获得了 2个磁小体缺失突变株 ,为研究该菌磁小体合成的分子遗传学提供了技术支撑 相似文献
4.
Jean-Baptiste Rioux Nadège Philippe Sandrine Pereira David Pignol Long-Fei Wu Nicolas Ginet 《PloS one》2010,5(2)
Magnetotactic bacteria are able to swim navigating along geomagnetic field lines. They synthesize ferromagnetic nanocrystals that are embedded in cytoplasmic membrane invaginations forming magnetosomes. Regularly aligned in the cytoplasm along cytoskeleton filaments, the magnetosome chain effectively forms a compass needle bestowing on bacteria their magnetotactic behaviour. A large genomic island, conserved among magnetotactic bacteria, contains the genes potentially involved in magnetosome formation. One of the genes, mamK has been described as encoding a prokaryotic actin-like protein which when it polymerizes forms in the cytoplasm filamentous structures that provide the scaffold for magnetosome alignment. Here, we have identified a series of genes highly similar to the mam genes in the genome of Magnetospirillum magneticum AMB-1. The newly annotated genes are clustered in a genomic islet distinct and distant from the known magnetosome genomic island and most probably acquired by lateral gene transfer rather than duplication. We focused on a mamK-like gene whose product shares 54.5% identity with the actin-like MamK. Filament bundles of polymerized MamK-like protein were observed in vitro with electron microscopy and in vivo in E. coli cells expressing MamK-like-Venus fusions by fluorescence microscopy. In addition, we demonstrate that mamK-like is transcribed in AMB-1 wild-type and ΔmamK mutant cells and that the actin-like filamentous structures observed in the ΔmamK strain are probably MamK-like polymers. Thus MamK-like is a new member of the prokaryotic actin-like family. This is the first evidence of a functional mam gene encoded outside the magnetosome genomic island. 相似文献
5.
Magnetotactic bacteria (MTB) are capable of synthesizing nano-sized, intracellular membrane-bound magnetosomes. To learn more about the genetic factors involved in magnetosome formation, transposon mutagenesis was carried out by conjugation using a hyperactive mariner transposon to obtain nonmagnetic mutants of Magnetospirillum magneticum AMB-1. A mutant with defect in uvrA gene encoding the DNA binding subunit of the UvrABC complex responsible for the process of nucleotide excision repair, was obtained. Growth, magnetosome formation and maintenance of magnetosome island (MAI) were further analyzed in the absence of UvrA. Interruption of uvrA led to decreased capacity to form magnetosome when cultured in the presence of oxygen. The deficiency in UvrA also resulted in an accelerated loss of the MAI under aerobic conditions indicating that the nucleotide excision repair system guards against the instability of the MAI. The incapacity of MTB to efficiently initiate recombination mediated by RecA rescued the instability of MAI observed in uvrA mutant. Elevated recombination activity resulting from the accumulation of unrepaired mutations may thus account for the instability of MAI in the absence of UvrA. 相似文献
6.
7.
Genes for magnetosome formation in magnetotactic bacteria are clustered in large genomic magnetosome islands (MAI). Spontaneous deletions and rearrangements were frequently observed within these regions upon metabolic stress. This instability was speculated to be due to RecA-dependent homologous recombination between the numerous sequence repeats present within the MAI. Here we show that a RecA-deficient strain of Magnetospirillum gryphiswaldense (IK-1) no longer exhibits genetic instability of magnetosome formation. Strain IK-1 displayed higher sensitivity to oxygen and UV irradiation. Furthermore, the lack of RecA abolished allelic exchange in the mutant. Cells of strain IK-1 displayed a slightly altered (i.e., more elongated) morphology, whereas the absence of RecA did not affect the ability to synthesize wild-type-like magnetosomes. Our data provide evidence that the observed genetic instability of magnetosome formation in the wild type is due predominantly to RecA-mediated recombination. In addition, increased genetic stability could make strain IK-1 a useful tool for the expression of genes and further genetic engineering, as well as for biotechnological production of bacterial magnetosomes. 相似文献
8.
Sarah Borg Julia Hofmann Anna Pollithy Claus Lang Dirk Schüler 《Applied and environmental microbiology》2014,80(8):2609-2616
The alphaproteobacterium Magnetospirillum gryphiswaldense biomineralizes magnetosomes, which consist of monocrystalline magnetite cores enveloped by a phospholipid bilayer containing specific proteins. Magnetosomes represent magnetic nanoparticles with unprecedented magnetic and physicochemical characteristics. These make them potentially useful in a number of biotechnological and biomedical applications. Further functionalization can be achieved by expression of foreign proteins via genetic fusion to magnetosome anchor peptides. However, the available genetic tool set for strong and controlled protein expression in magnetotactic bacteria is very limited. Here, we describe versatile vectors for either inducible or high-level constitutive expression of proteins in M. gryphiswaldense. The combination of an engineered native PmamDC promoter with a codon-optimized egfp gene (Mag-egfp) resulted in an 8-fold increase in constitutive expression and in brighter fluorescence. We further demonstrate that the widely used Ptet promoter is functional and tunable in M. gryphiswaldense. Stable and uniform expression of the EGFP and β-glucuronidase (GusA) reporters was achieved by single-copy chromosomal insertion via Tn5-mediated transposition. In addition, gene duplication by Mag-EGFP–EGFP fusions to MamC resulted in further increased magnetosome expression and fluorescence. Between 80 and 210 (for single MamC–Mag-EGFP) and 200 and 520 (for MamC–Mag-EGFP–EGFP) GFP copies were estimated to be expressed per individual magnetosome particle. 相似文献
9.
10.
11.
Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense 总被引:12,自引:0,他引:12
Grünberg K Müller EC Otto A Reszka R Linder D Kube M Reinhardt R Schüler D 《Applied and environmental microbiology》2004,70(2):1040-1050
We analyzed the biochemical composition of the magnetosome membrane (MM) in Magnetospirillum gryphiswaldense. Isolated magnetosomes were associated with phospholipids and fatty acids which were similar to phospholipids and fatty acids from other subcellular compartments (i.e., outer and cytoplasmic membranes) but were present in different proportions. The binding characteristics of MM-associated proteins were studied by selective solubilization and limited proteolysis. The MM-associated proteins were further analyzed by various proteomic approaches, including one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Edman and mass spectrometric (electrospray ionization-mass spectrometry-mass spectrometry) sequencing, as well as capillary liquid chromatography-mass spectrometry-mass spectrometry of total tryptic digests of the MM. At least 18 proteins were found to constitute the magnetosome subproteome, and most of these proteins are novel for M. gryphiswaldense. Except for MM22 and Mms16, all bona fide MM proteins (MMPs) were encoded by open reading frames in the mamAB, mamDC, and mms6 clusters in the previously identified putative magnetosome island. Eight of the MMPs display homology to known families, and some of them occur in the MM in multiple homologues. Ten of the MMPs have no known homologues in nonmagnetic organisms and thus represent novel, magnetotactic bacterium-specific protein families. Several MMPs display repetitive or highly acidic sequence patterns, which are known from other biomineralizing systems and thus may have relevance for magnetite formation. 相似文献
12.
Growth and magnetite formation in Magnetospirillum gryphiswaldense MSR-1 were found close to the maximum at an extracellular iron concentration of 15–20 μM. Ferrous iron was incorporated by
a slow, diffusion-like process. Several iron chelators including various microbial siderophores were unable to promote transport
of iron into the cells. In contrast, spent culture fluids stimulated the uptake of ferric iron in iron-depleted cells at a
high rate, whereas fresh medium and transport buffer were unable to promote iron uptake. However, no siderophore-like compound
could be detected in spent culture fluids by the Chrome Azurol S assay. Ferric iron uptake followed Michaelis-Menten kinetics
with a K
m of 3 μM and a V
max of 0.86 nmol min–1 (mg dry weight)–1, suggesting a comparatively low-affinity, but high-velocity transport system. Iron incorporation was sensitive to 2,4-dinitrophenol
and carbonylcyanide-m-chlorophenylhydrazone, indicating an energy-dependent transport process.
Received: 21 May 1996 / Accepted: 7 August 1996 相似文献
13.
14.
Qing Wang Meiwen Wang Xu Wang Guohua Guan Ying Li Youliang Peng Jilun Li 《Applied and environmental microbiology》2015,81(23):8044-8053
15.
Xiao K. Wang Qiu F. Ma Wei Jiang Jing Lv Wei D. Pan Tao Song 《Geomicrobiology journal》2013,30(6):296-303
Magnetotactic bacteria synthesize intracellular magnetic particles, magnetosomes, which arrange in chain(s) and confer on cell a magnetic dipolar moment. To explore the function of geomagnetic field to magnetotactic bacteria, the effects of hypomagnetic field on magnetosome formation in Magnetospirillum magneticum AMB-1 were studied. Cells were cultivated in a specially designed device where geomagnetic field was reduced by about 100-fold to less than 500nT. AMB-1 cultures were incubated in hypomagnetic field or geomagnetic field. Results showed that hypomagnetic field had no significant effects on the average number of magnetic particles per bacterium and bacterial iron depletion. However, the growth (OD) of cell at stationary-phase was lower and cellular magnetism (R mag) at exponential growth phase was higher than that of bacteria cultivated in geomagnetic field. Statistic results on transmission electron microscopy (TEM) micrographs showed that the average size of magnetic particles in AMB-1 cells in hypomagnetic field group was larger than that of in geomagnetic field group and more ratio of larger-size magnetic particles (>50 nm) was observed when cultivated 16 h under hypomagnetic field. Furthermore, the influences of hypomagnetic field on gene expression were studied in AMB-1 cells. Quantitative RT-PCR results showed that hypomagnetic field up-regulated mms13, down-regulated mms6 and had no effect on magA. Together, the results showed that hypomagnetic field could affect the growth of AMB-1 at the stationary-phase, the crystallization process of magnetosomes, and mms13, mms6 expressions. In addition, our results suggested that the geomagnetic field plays an important role in the biomineralization of magnetosomes. 相似文献
16.
17.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2017,1861(6):1507-1514
Background: The magnetosome biosynthesis is a genetically controlled process but the physical properties of the magnetosomes can be slightly tuned by modifying the bacterial growth conditions.Methods: We designed two time-resolved experiments in which iron-starved bacteria at the mid-logarithmic phase are transferred to Fe-supplemented medium to induce the magnetosomes biogenesis along the exponential growth or at the stationary phase. We used flow cytometry to determine the cell concentration, transmission electron microscopy to image the magnetosomes, DC and AC magnetometry methods for the magnetic characterization, and X-ray absorption spectroscopy to analyze the magnetosome structure.Results: When the magnetosomes synthesis occurs during the exponential growth phase, they reach larger sizes and higher monodispersity, displaying a stoichiometric magnetite structure, as fingerprinted by the well defined Verwey temperature. On the contrary, the magnetosomes synthesized at the stationary phase reach smaller sizes and display a smeared Verwey transition, that suggests that these magnetosomes may deviate slightly from the perfect stoichiometry.Conclusions: Magnetosomes magnetically closer to stoichiometric magnetite are obtained when bacteria start synthesizing them at the exponential growth phase rather than at the stationary phase.General significance: The growth conditions influence the final properties of the biosynthesized magnetosomes. This article is part of a Special Issue entitled “Recent Advances in Bionanomaterials” Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. 相似文献
18.
19.
Lohsse A Ullrich S Katzmann E Borg S Wanner G Richter M Voigt B Schweder T Schüler D 《PloS one》2011,6(10):e25561
Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches. 相似文献
20.
Oliver Raschdorf Jürgen M. Plitzko Dirk Schüler Frank D. Müller 《Applied and environmental microbiology》2014,80(14):4323-4330
Magnetotactic bacteria have emerged as excellent model systems to study bacterial cell biology, biomineralization, vesicle formation, and protein targeting because of their ability to synthesize single-domain magnetite crystals within unique organelles (magnetosomes). However, only few species are amenable to genetic manipulation, and the limited methods for site-specific mutagenesis are tedious and time-consuming. Here, we report the adaptation and application of a fast and convenient technique for markerless chromosomal manipulation of Magnetospirillum gryphiswaldense using a single antibiotic resistance cassette and galK-based counterselection for marker recycling. We demonstrate the potential of this technique by genomic excision of the phbCAB operon, encoding enzymes for polyhydroxyalkanoate (PHA) synthesis, followed by chromosomal fusion of magnetosome-associated proteins to fluorescent proteins. Because of the absence of interfering PHA particles, these engineered strains are particularly suitable for microscopic analyses of cell biology and magnetosome biosynthesis. 相似文献