首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.

Background

Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic Gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown.

Methodology/Principal Findings

In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine.

Conclusions/Significance

Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.  相似文献   

4.

Aims

Ischemic preconditioning (IPC) is a potent form of endogenous protection. However, IPC-induced cardioprotective effect is significantly blunted in insulin resistance-related diseases and the underlying mechanism is unclear. This study aimed to determine the role of glucose metabolism in IPC-reduced reperfusion injury.

Methods

Normal or streptozotocin (STZ)-treated diabetic rats subjected to 2 cycles of 5 min ischemia/5 min reperfusion prior to myocardial ischemia (30 min)/reperfusion (3 h). Myocardial glucose uptake was determined by 18F-fluorodeoxyglucose-positron emission tomography (PET) scan and gamma-counter biodistribution assay.

Results

IPC exerted significant cardioprotection and markedly improved myocardial glucose uptake 1 h after reperfusion (P<0.01) as evidenced by PET images and gamma-counter biodistribution assay in ischemia/reperfused rats. Meanwhile, myocardial translocation of glucose transporter 4 (GLUT4) to plasma membrane together with myocardial Akt and AMPK phosphorylation were significantly enhanced in preconditioned hearts. Intramyocardial injection of GLUT4 siRNA markedly decreased GLUT4 expression and blocked the cardioprotection of IPC as evidence by increased myocardial infarct size. Moreover, the PI3K inhibitor wortmannin significantly inhibited activation of Akt and AMPK, reduced GLUT4 translocation, glucose uptake and ultimately, depressed IPC-induced cardioprotection. Furthermore, IPC-afforded antiapoptotic effect was markedly blunted in STZ-treated diabetic rats. Exogenous insulin supplementation significantly improved glucose uptake via co-activation of myocardial AMPK and Akt and alleviated ischemia/reperfusion injury as evidenced by reduced myocardial apoptosis and infarction size in STZ-treated rats (P<0.05).

Conclusions

The present study firstly examined the role of myocardial glucose metabolism during reperfusion in IPC using direct genetic modulation in vivo. Augmented glucose uptake via co-activation of myocardial AMPK and Akt in reperfused myocardium is essential to IPC-alleviated reperfusion injury. This intrinsic metabolic modulation and cardioprotective capacity are present in STZ-treated hearts and can be triggered by insulin.  相似文献   

5.

Background

The cardioprotective effects of glucagon-like peptide-1 (GLP-1) and analogs have been previously reported. We tested the hypothesis that albiglutide, a novel long half-life analog of GLP-1, may protect the heart against I/R injury by increasing carbohydrate utilization and improving cardiac energetic efficiency.

Methods/Principal Findings

Sprague-Dawley rats were treated with albiglutide and subjected to 30 min myocardial ischemia followed by 24 h reperfusion. Left ventricle infarct size, hemodynamics, function and energetics were determined. In addition, cardiac glucose disposal, carbohydrate metabolism and metabolic gene expression were assessed. Albiglutide significantly reduced infarct size and concomitantly improved post-ischemic hemodynamics, cardiac function and energetic parameters. Albiglutide markedly increased both in vivo and ex vivo cardiac glucose uptake while reducing lactate efflux. Analysis of metabolic substrate utilization directly in the heart showed that albiglutide increased the relative carbohydrate versus fat oxidation which in part was due to an increase in both glucose and lactate oxidation. Metabolic gene expression analysis indicated upregulation of key glucose metabolism genes in the non-ischemic myocardium by albiglutide.

Conclusion/Significance

Albiglutide reduced myocardial infarct size and improved cardiac function and energetics following myocardial I/R injury. The observed benefits were associated with enhanced myocardial glucose uptake and a shift toward a more energetically favorable substrate metabolism by increasing both glucose and lactate oxidation. These findings suggest that albiglutide may have direct therapeutic potential for improving cardiac energetics and function.  相似文献   

6.

Background

Drug resistance is a major problem in leishmaniasis chemotherapy. RNA expression profiling using DNA microarrays is a suitable approach to study simultaneous events leading to a drug-resistance phenotype. Genomic analysis has been performed primarily with Old World Leishmania species and here we investigate molecular alterations in antimony resistance in the New World species L. amazonensis.

Methods/Principal Findings

We selected populations of L. amazonensis promastigotes for resistance to antimony by step-wise drug pressure. Gene expression of highly resistant mutants was studied using DNA microarrays. RNA expression profiling of antimony-resistant L. amazonensis revealed the overexpression of genes involved in drug resistance including the ABC transporter MRPA and several genes related to thiol metabolism. The MRPA overexpression was validated by quantitative real-time RT-PCR and further analysis revealed that this increased expression was correlated to gene amplification as part of extrachromosomal linear amplicons in some mutants and as part of supernumerary chromosomes in other mutants. The expression of several other genes encoding hypothetical proteins but also nucleobase and glucose transporter encoding genes were found to be modulated.

Conclusions/Significance

Mechanisms classically found in Old World antimony resistant Leishmania were also highlighted in New World antimony-resistant L. amazonensis. These studies were useful to the identification of resistance molecular markers.  相似文献   

7.
8.
Vyas AK  Yang KC  Woo D  Tzekov A  Kovacs A  Jay PY  Hruz PW 《PloS one》2011,6(2):e17178

Background

There is growing awareness of secondary insulin resistance and alterations in myocardial glucose utilization in congestive heart failure. Whether therapies that directly target these changes would be beneficial is unclear. We previously demonstrated that acute blockade of the insulin responsive facilitative glucose transporter GLUT4 precipitates acute decompensated heart failure in mice with advanced dilated cardiomyopathy. Our current objective was to determine whether pharmacologic enhancement of insulin sensitivity and myocardial glucose uptake preserves cardiac function and survival in the setting of primary heart failure.

Methodology/Principal Findings

The GLP-1 agonist exenatide was administered twice daily to a murine model of dilated cardiomyopathy (TG9) starting at 56 days of life. TG9 mice develop congestive heart failure and secondary insulin resistance in a highly predictable manner with death by 12 weeks of age. Glucose homeostasis was assessed by measuring glucose tolerance at 8 and 10 weeks and tissue 2-deoxyglucose uptake at 75 days. Exenatide treatment improved glucose tolerance, myocardial GLUT4 expression and 2-deoxyglucose uptake, cardiac contractility, and survival over control vehicle-treated TG9 mice. Phosphorylation of AMP kinase and AKT was also increased in exenatide-treated animals. Total myocardial GLUT1 levels were not different between groups. Exenatide also abrogated the detrimental effect of the GLUT4 antagonist ritonavir on survival in TG9 mice.

Conclusion/Significance

In heart failure secondary insulin resistance is maladaptive and myocardial glucose uptake is suboptimal. An incretin-based therapy, which addresses these changes, appears beneficial.  相似文献   

9.

Background

Recent studies have suggested that autophagy is utilized by cells as a protective mechanism against Listeria monocytogenes infection.

Methodology/Principal Findings

However we find autophagy has no measurable role in vacuolar escape and intracellular growth in primary cultured bone marrow derived macrophages (BMDMs) deficient for autophagy (atg5−/−). Nevertheless, we provide evidence that the pore forming activity of the cholesterol-dependent cytolysin listeriolysin O (LLO) can induce autophagy subsequent to infection by L. monocytogenes. Infection of BMDMs with L. monocytogenes induced microtubule-associated protein light chain 3 (LC3) lipidation, consistent with autophagy activation, whereas a mutant lacking LLO did not. Infection of BMDMs that express LC3-GFP demonstrated that wild-type L. monocytogenes was encapsulated by LC3-GFP, consistent with autophagy activation, whereas a mutant lacking LLO was not. Bacillus subtilis expressing either LLO or a related cytolysin, perfringolysin O (PFO), induced LC3 colocalization and LC3 lipidation. Further, LLO-containing liposomes also recruited LC3-GFP, indicating that LLO was sufficient to induce targeted autophagy in the absence of infection. The role of autophagy had variable effects depending on the cell type assayed. In atg5−/− mouse embryonic fibroblasts, L. monocytogenes had a primary vacuole escape defect. However, the bacteria escaped and grew normally in atg5−/− BMDMs.

Conclusions/Significance

We propose that membrane damage, such as that caused by LLO, triggers bacterial-targeted autophagy, although autophagy does not affect the fate of wild-type intracellular L. monocytogenes in primary BMDMs.  相似文献   

10.
Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose‐specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6‐phospho‐α‐glucosidase, which in B. subtilis hydrolyses maltose 6′‐P into glucose and glucose 6‐P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose 6‐P into glucose 1‐P and glucose 6‐P. However, purified MalP phosphorolyses maltose but not maltose 6′‐P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose 6′‐P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose 1‐P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose 6′‐P restored growth on maltose. MapP catalyses the dephosphorylation of intracellular maltose 6′‐P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose 1‐P. MapP therefore connects PTS‐mediated maltose uptake to maltose phosphorylase‐catalysed metabolism. Dephosphorylation assays with a wide variety of phospho‐substrates revealed that MapP preferably dephosphorylates disaccharides containing an O‐α‐glycosyl linkage.  相似文献   

11.
Bacillus subtilis is able to utilize arabinopolysaccharides derived from plant biomass. Here, by combining genetic and physiological analyses we characterize the AraNPQ importer and identify primary and secondary transporters of B. subtilis involved in the uptake of arabinosaccharides. We show that the ABC-type importer AraNPQ is involved in the uptake of α-1,5-arabinooligosaccharides, at least up to four l-arabinosyl units. Although this system is the key transporter for α-1,5-arabinotriose and α-1,5-arabinotetraose, the results indicate that α-1,5-arabinobiose also is translocated by the secondary transporter AraE. This broad-specificity proton symporter is the major transporter for arabinose and also is accountable for the uptake of xylose and galactose. In addition, MsmX is shown to be the ATPase that energizes the incomplete AraNPQ importer. Furthermore, the results suggest the existence of at least one more unidentified MsmX-dependent ABC importer responsible for the uptake of nonlinear α-1,2- and α-1,3-arabinooligosaccharides. This study assigns MsmX as a multipurpose B. subtilis ATPase required to energize different saccharide transporters, the arabinooligosaccharide-specific AraNPQ-MsmX system, a putative MsmX-dependent ABC transporter specific for nonlinear arabinooligosaccharides, and the previously characterized maltodextrin-specific MdxEFG-MsmX system.Transport across biological membranes is a fundamental process for life and is accomplished by channels, primary and secondary transporters, and group translocators (19). ATP-binding cassette (ABC) transporters constitute one of the largest families of translocation facilitators and are distributed across all domains of life. Although they are involved in a variety of distinct processes, such as nutrient uptake, resistance to antibiotics and other drugs, lipid trafficking, cell division, sporulation, immune response, and pathogenesis, all ABC transporters, regardless of the polarity of transport (exporters and importers), share a structure and a general mechanism (reviewed in references 3 and 8). Their organization comprises two transmembrane domains (TMDs) coupled to two cytosolic nucleotide-binding domains (NBDs), or ATP-binding cassettes, responsible for ATP binding and hydrolysis-driven conformational changes.The majority of the eukaryotic ABC transporters are exporters facilitating translocation from the cytoplasm. In contrast, prokaryotic ABC permeases are involved mainly in the import of nutrients, vitamins, and trace elements (3, 6, 8). Canonical bacterial ABC importers are dependent predominantly on high-affinity substrate-binding proteins (BPDs) that capture the substrate and deliver it to the transporter. The canonical maltose/maltodextrin importer MalEFGK2 of Escherichia coli/Salmonella enterica serovar Typhimurium (5) is one of the most-characterized members of this superfamily of translocation facilitators, serving as model for ABC importers in general (14, 15). In Gram-negative bacteria, BPDs are proteins located in the periplasmic space between the inner and outer membranes. In Gram-positive organisms, which are devoid of this type of cellular compartment, BPDs often are lipoproteins that are anchored to the extracellular side of the cytoplasmic membrane via its N-terminal domain (3 and 8 and references therein).In nature, the major source of carbohydrates for microorganisms to utilize is plant biomass. Thus, in their natural habitat, such as soil, aquatic environments, or animal digestive tracts, bacteria secrete a vast number of polysaccharolytic enzymes for the degradation of plant-derived polysaccharides. The resulting mono-, di-, and oligosaccharides enter the cell mainly through specific ABC transporters. The number of well-characterized ABC transporters devoted to the uptake of products resulting from the degradation of hemicellulose is very scarce (6), and in Gram-positive organisms only two systems, BxlEFG of Streptomyces thermoviolaceus (31) and XynEFG (29) of Geobacillus staerothermophilus, both dedicated to the transport of xylodextrins, have been characterized in detail.An in silico analysis of the Bacillus subtilis genome estimated the existence of at least 78 ABC transporters based on the identification of 86 NBDs in 78 proteins, 103 MSD proteins, and 37 BPD proteins, which account for about 5% of the protein-coding genes of this model organism (17). At least 10 ABC systems are predicted to be involved in the uptake of sugars (20). One of these ABC importers, AraNPQ, is clustered together with genes encoding enzymes involved in arabinose catabolism and the degradation of arabinooligosaccharides in a large operon, araABDLMNPQ-abfA (23). AraN is the BPD, and AraP and AraQ are the TMDs. This transporter, which lacks the NBD protein partner, was proposed to be involved in the uptake of arabinose oligomers mainly by genomic context and in silico analysis (10, 11, 23).Here, by combining genetic and physiological analyses, we characterize the AraNPQ importer and identify primary and secondary transporters of B. subtilis involved in the uptake of arabinosaccharides. Furthermore, this study assigns the role of MsmX as a multipurpose B. subtilis ATPase required to energize different saccharide transporters.  相似文献   

12.
13.
14.

Objective

To compare the accuracy of formula 1/2ABC with 2/3SH on volume estimation for hypertensive infratentorial hematoma.

Methods

One hundred and forty-seven CT scans diagnosed as hypertensive infratentorial hemorrhage were reviewed. Based on the shape, hematomas were categorized as regular or irregular. Multilobular was defined as a special shape of irregular. Hematoma volume was calculated employing computer-assisted volumetric analysis (CAVA), 1/2ABC and 2/3SH, respectively.

Results

The correlation coefficients between 1/2ABC (or 2/3SH) and CAVA were greater than 0.900 in all subgroups. There were neither significant differences in absolute values of volume deviation nor percentage deviation between 1/2ABC and 2/3SH for regular hemorrhage (P>0.05). While for cerebellar, brainstem and irregular hemorrhages, the absolute values of volume deviation and percentage deviation by formula 1/2ABC were greater than 2/3SH (P<0.05). 1/2ABC and 2/3SH underestimated hematoma volume each by 10% and 5% for cerebellar hemorrhage, 14% and 9% for brainstem hemorrhage, 19% and 16% for regular hemorrhage, 9% and 3% for irregular hemorrhage, respectively. In addition, for the multilobular hemorrhage, 1/2ABC underestimated the volume by 9% while 2/3SH overestimated it by 2%.

Conclusions

For regular hemorrhage volume calculation, the accuracy of 2/3SH is similar to 1/2ABC. While for cerebellar, brainstem or irregular hemorrhages (including multilobular), 2/3SH is more accurate than 1/2ABC.  相似文献   

15.
16.
17.

Background

Phloem feeding insects, such as aphids, feed almost continuously on plant phloem sap, a liquid diet that contains high concentrations of sucrose (a disaccharide comprising of glucose and fructose). To access the available carbon, aphids hydrolyze sucrose in the gut lumen and transport its constituent monosaccharides, glucose and fructose. Although sugar transport plays a critical role in aphid nutrition, the molecular basis of sugar transport in aphids, and more generally across all insects, remains poorly characterized. Here, using the latest release of the pea aphid, Acyrthosiphon pisum, genome we provide an updated gene annotation and expression profile of putative sugar transporters. Finally, gut expressed sugar transporters are functionally expressed in yeast and screened for glucose and fructose transport activity.

Results

In this study, using a de novo approach, we identified 19 sugar porter (SP) family transporters in the A. pisum genome. Gene expression analysis, based on 214, 834 A. pisum expressed sequence tags, supports 17 sugar porter family transporters being actively expressed in adult female aphids. Further analysis, using quantitative PCR identifies 4 transporters, A. pisum sugar transporter 1, 3, 4 and 9 (ApST1, ApST3, ApST4 and ApST9) as highly expressed and/or enriched in gut tissue. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST3 (previously characterized) and ApST4 (reported here) transport glucose and fructose resulting in functional rescue of the yeast mutant. Here we characterize ApST4, a 491 amino acid protein, with 12 predicted transmembrane regions, as a facilitative glucose/fructose transporter. Finally, phylogenetic reconstruction reveals that ApST4, and related, as yet uncharacterized insect transporters are phylogenetically closely related to human GLUT (SLC2A) class I facilitative glucose/fructose transporters.

Conclusions

The gut enhanced expression of ApST4, and the transport specificity of its product is consistent with ApST4 functioning as a gut glucose/fructose transporter. Here, we hypothesize that both ApST3 (reported previously) and ApST4 (reported here) function at the gut interface to import glucose and fructose from the gut lumen.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-647) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

Members of the HMT-1 (heavy metal tolerance factor 1) subfamily of the ATP-binding cassette (ABC) transporter superfamily detoxify heavy metals and have unique topology: they are half-molecule ABC transporters that, in addition to a single transmembrane domain (TMD1) and a single nucleotide-binding domain (NBD1), possess a hydrophobic NH2-terminal extension (NTE). These structural features distinguish HMTs from other ABC transporters in different species including Drosophila and humans. Functional ABC transporters, however, are comprised of at least four-domains (two TMDs and two NDBs) formed from either a single polypeptide or by the association of two or four separate subunits. Whether HMTs act as oligomers and what role the NTE domain plays in their function have not been determined.

Methodology/Principal Findings

In this study, we examined the oligomeric status of Caenorhabditis elegans HMT-1 and the functional significance of its NTE using gel-filtration chromatography in combination with the mating-based split-ubiquitin yeast two-hybrid system (mbSUS) and functional in vivo assays. We found that HMT-1 exists in a protein complex in C. elegans. Studies in S. cerevisiae showed that HMT-1 at a minimum homodimerizes and that oligomerization is essential for HMT-1 to confer cadmium tolerance. We also established that the NTE domain plays an important structural and functional role: it is essential for HMT-1 oligomerization and Cd-detoxification function. However, the NTE itself was not sufficient for oligomerization suggesting that multiple structural features of HMT-1 must associate to form a functional transporter.

Conclusions

The prominence of heavy metals as environmental toxins and the remarkable conservation of HMT-1 structural architecture and function in different species reinforce the value of continued studies of HMT-1 in model systems for identifying functional domains in HMT1 of humans.  相似文献   

19.

Background

PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on glucose uptake and cell viability.

Experimental Design

Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell lines was performed. C33A cells (PIK3CAR88Q and PTENR233*) were treated with increasing concentrations of two allosteric AKT inhibitors (SC-66 and MK-2206) with or without the glucose analogue 2-deoxyglucose (2-DG). Cell viability and activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated by incubation with 18F-fluorodeoxyglucose (FDG). Cell migration was assessed by scratch assay.

Results

Activating PIK3CA (E545K, E542K) and inactivating PTEN (R233*) mutations were identified in human cervical cancer. SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 µg/ml-56%) and MK-2206 (30 µM-49%) treatment decreased cell viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment.

Conclusions

The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT inhibitors may improve response to chemoradiation in cervical cancer.  相似文献   

20.
The physiological functions of two amylolytic enzymes, a maltogenic amylase (MAase) encoded by yvdF and a debranching enzyme (pullulanase) encoded by amyX, in the carbohydrate metabolism of Bacillus subtilis 168 were investigated using yvdF, amyX, and yvdF amyX mutant strains. An immunolocalization study revealed that YvdF was distributed on both sides of the cytoplasmic membrane and in the periplasm during vegetative growth but in the cytoplasm of prespores. Small carbohydrates such as maltoheptaose and β-cyclodextrin (β-CD) taken up by wild-type B. subtilis cells via two distinct transporters, the Mdx and Cyc ABC transporters, respectively, were hydrolyzed immediately to form smaller or linear maltodextrins. On the other hand, the yvdF mutant exhibited limited degradation of the substrates, indicating that, in the wild type, maltodextrins and β-CD were hydrolyzed by MAase while being taken up by the bacterium. With glycogen and branched β-CDs as substrates, pullulanase showed high-level specificity for the hydrolysis of the outer side chains of glycogen with three to five glucosyl residues. To investigate the roles of MAase and pullulanase in glycogen utilization, the following glycogen-overproducing strains were constructed: a glg mutant with a wild-type background, yvdF glg and amyX glg mutants, and a glg mutant with a double mutant (DM) background. The amyX glg and glg DM strains accumulated significantly larger amounts of glycogen than the glg mutant, while the yvdF glg strain accumulated an intermediate amount. Glycogen samples from the amyX glg and glg DM strains exhibited average molecular masses two and three times larger, respectively, than that of glycogen from the glg mutant. The results suggested that glycogen breakdown may be a sequential process that involves pullulanase and MAase, whereby pullulanase hydrolyzes the α-1,6-glycosidic linkage at the branch point to release a linear maltooligosaccharide that is then hydrolyzed into maltose and maltotriose by MAase.Bacillus subtilis can utilize polysaccharides such as starch, glycogen, and amylose as carbon sources by hydrolyzing them into smaller maltodextrins via the action of extracellular α-amylase (AmyE) (14). In B. subtilis, α-glucosidase encoded by malL has been known to contribute to maltodextrin metabolism in the cell (40, 41). Schönert et al. (42) reported that maltose is transported by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) in B. subtilis. They also reported that maltodextrins with degrees of polymerization (DP) of 3 to 7 (G3 to G7) are taken up via a maltodextrin-specific (Mdx) ATP-binding cassette (ABC) transport system (42). This system is made up of a maltodextrin-binding protein (MdxE) and two membrane proteins (MdxF and MdxG), as well as an ATPase (MsmX). The basic model proposed for the transport and metabolism of maltooligosaccharides includes a series of carbohydrate-hydrolyzing and -transferring enzymes. However, the enzymatic hydrolysis of maltodextrins and glycogen, providing a major energy reservoir in prokaryotes, was not reflected in the model, due probably to a lack of experimental analysis. Unlike those in Bacillus spp., the transport and metabolic systems for maltodextrins in Escherichia coli have been investigated extensively (7, 9, 10). A model for maltose metabolism involving an α-glucanotransferase (MalQ), a maltodextrin glucosidase (MalZ), and a maltodextrin phosphorylase (MalP) was proposed previously based on analyses of the breakdown of 14C-labeled maltodextrins in various knockout mutants (10).Ninety bacterial genomes were analyzed to identify the enzymes involved in sugar metabolism, and the results suggested that bacterial enzymes for the synthesis and degradation of glycogen belong to the glucosyltransferase and glycosidase/transglycosidase families, respectively. Free-living bacteria such as B. subtilis carry a minimal set of enzymes for glycogen metabolism, encoded by the glg operon of five genes. The four genes most proximal to the promoter encode enzymes for the synthesis of glycogen, including a branching enzyme (glgB), an ADP-glucose phyrophosphorylase (glgC and glcD), and a glycogen synthase (glgA). On the other hand, the most distal gene, glgP, encodes a glycogen phosphorylase (a member of glycosyltransferase family 35) (13, 18), which degrades glycogen branches by forming glucose-1-phosphate (glucose-1-P). B. subtilis carries two additional enzymes encoded at separate loci, a maltogenic amylase (MAase [YvdF, encoded at 304°]) and a pullulanase (AmyX, encoded at 262°), which have been known to degrade glycogen in vitro (15, 31). These two enzymes are ubiquitous among Bacillus spp. and may play an important role in glycogen and maltodextrin metabolism in the bacteria (see Table S1 in the supplemental material).The MAase YvdF in B. subtilis 168 and its homologue in B. subtilis SUH4-2 share 99% identity at both the nucleotide and amino acid sequence levels (4). MAase (EC 3.2.1.133) is a multisubstrate enzyme that acts on substrates such as cyclodextrin (CD), maltooligosaccharides, pullulan, starch, and glycogen (4). MAase belongs to a subfamily of glycoside hydrolase family 13, along with cyclodextrinase (EC 3.2.1.54), neopullulanase (EC 3.2.1.135), and Thermoactinomyces vulgaris R-47 α-amylase II (46). Although the catalytic properties and tertiary structure of MAase have been studied extensively (33), its physiological role in the bacterial cell is yet to be elucidated. The expression pattern of MAase in B. subtilis 168 has been investigated by monitoring the β-galactosidase activity expressed from the yvdF promoter in defined media containing various carbon sources (20). The yvdF promoter is induced in medium containing maltose, starch, or β-CD but is repressed in the presence of glucose, fructose, sucrose, or glycerol as the sole carbon source. In a previous study, Spo0A, a master regulator determining the life cycle of B. subtilis, was shown to be related to the expression of MAase in a positive manner (20). Kiel et al. (18) reported that the glycogen operon in B. subtilis is turned on during sporulation by RNA polymerase containing σE. This finding indicated that MAase, along with glycogen phosphorylase and pullulanase, might be involved in the metabolism of maltodextrin and glycogen in vivo.Pullulanases are capable of hydrolyzing the α-1,6-glycosidic linkages of pullulan to form maltotriose (2, 11, 15, 28, 31, 38). In particular, type I pullulanases have been reported to hydrolyze the α-1,6-glycosidic linkages in branched oligosaccharides such as starch, amylopectin, and glycogen, forming maltodextrins linked by α-1,4-glycosidic linkages (11). Pullulanase is also known as a debranching enzyme. The enzymatic properties and three-dimensional structure of AmyX from B. subtilis 168 were investigated by Malle et al. (28). However, to date, the physiological function of pullulanase encoded by amyX has not been investigated.The aim of this study was to elucidate the physiological functions of MAase and pullulanase, specifically concentrating on their roles in the degradation of maltodextrin and glycogen in B. subtilis. For this purpose, studies of the localization of the enzymes, the accumulation of glycogen, and the distribution of glycogen side chains were performed using the wild type and knockouts of MAase- and pullulanase-related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号