首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Six mycorrhizal fungi were tested as inoculants for pearl millet (Pennisetum americanum Leeke) grown in pots maintained in a greenhouse. VAM fungi varied in their ability to stimulate plant growth and phosphorus uptake. Inoculation withGigaspora margarita, G. calospora andGlomus fasciculatum increased shoot drymatter 1.3 fold over uninoculated control. In another pot trial, inoculation withGigaspora calospora andGlomus fasciculatum resulted in dry matter and phosphorus uptake equivalent to that produced by adding phosphorus at 8 kg/ha.The influence of inoculatingGigaspora calospora on pearl millet at different levels of phosphorus fertilizer (0 to 60 kg P/ha) as triple superphosphate in sterile and unsterile alfisol soil was also studied. In sterile soil, mycorrhizal inoculation increased dry matter and phosphorus uptake at levels less than 20 kg/ha. At higher P levels the mycorrhizal effect was decreased. These studies performed in sterilized soil suggest that inoculation of pearl millet with efficient VAM fungi could be extremely useful in P deficient soils. However, its practical utility depends on screening and isolation of fungal strains which perform efficiently in natural (unsterilized) field conditions.  相似文献   

2.
Summary The response of tomato (Lycopersicon esculentum Mill) to inoculation with the vasicular arbuscular mycorrhizal (VAM) fungusGlomus fasiculatum andAzotobacter vinelandii singly and in combination was tested in the field. It was found thatG. fasiculatum as well asA. vinelandii significantly increased leaf area, shoot dry weight, nitrogen content phosphorus content and yield in respect to uninoculated control. While, VAM fungal treatment alone could bring about substantial increase in growth, nitrogen content, phosphorus content and yield, its combination withA. vinelandii produced additional effects on leaf area, shoot dry weight, phosphorus content and yield. Contribution No. 304/83 of Indian Institute of Horticultural Research, Bangalore-89.  相似文献   

3.
Field response of wheat to arbuscular mycorrhizal fungi and drought stress   总被引:3,自引:0,他引:3  
Al-Karaki G  McMichael B  Zak J 《Mycorrhiza》2004,14(4):263-269
Mycorrhizal plants often have greater tolerance to drought than nonmycorrhizal plants. This study was conducted to determine the effects of arbuscular mycorrhizal (AM) fungi inoculation on growth, grain yield and mineral acquisition of two winter wheat (Triticum aestivum L.) cultivars grown in the field under well-watered and water-stressed conditions. Wheat seeds were planted in furrows after treatment with or without the AM fungi Glomus mosseae or G. etunicatum. Roots were sampled at four growth stages (leaf, tillering, heading and grain-filling) to quantify AM fungi. There was negligible AM fungi colonization during winter months following seeding (leaf sampling in February), when soil temperature was low. During the spring, AM fungi colonization increased gradually. Mycorrhizal colonization was higher in well-watered plants colonized with AM fungi isolates than water-stressed plants. Plants inoculated with G. etunicatum generally had higher colonization than plants colonized with G. mosseae under both soil moisture conditions. Biomass and grain yields were higher in mycorrhizal than nonmycorrhizal plots irrespective of soil moisture, and G. etunicatum inoculated plants generally had higher biomass and grain yields than those colonized by G. mosseae under either soil moisture condition. The mycorrhizal plants had higher shoot P and Fe concentrations than nonmycorrhizal plants at all samplings regardless of soil moisture conditions. The improved growth, yield and nutrient uptake in wheat plants reported here demonstrate the potential of mycorrhizal inoculation to reduce the effects of drought stress on wheat grown under field conditions in semiarid areas of the world.  相似文献   

4.
The growth response of Hevea brasiliensis to vesicular-arbuscular mycorrhizal (VAM) fungi inoculation was assessed in two field nursery sites containing indigenous mycorrhizal fungi (IMF). Seedling rootstocks were inoculated with mixed VAM-fungal species in a factorial combination with phosphorus (P) fertilizer application, and planted in randomised blocks on sandy (site 1) and clayey (site 2) soils. Plants were harvested after 26 weeks for measurements of shoot dry weight (DW), stem diameter, height, mycorrhizal root colonization and leaf nutrient contents. At site 1, VAM increased shoot DW, stem diameter and plant height only in treatments without P applied. Increases in shoot DW due to VAM were 70% greater than the uninoculated controls although this was reduced to 5% when P was applied. At site 2, VAM inoculation also increased shoot DW and stem diameter but the magnitude of the increases was smaller. Shoot DW response due to VAM was only 29%. At this second site, applying phosphate to uninoculated plants did not increase shoot yields further. Leaf concentrations of all nutrients were unaffected by VAM at both sites, except for copper (Cu) which was increased by VAM in treatments where P was not applied. However, leaf contents of P, potassium (K), magnesium (Mg) and Cu were increased by VAM at site 1, and of leaf nitrogen (N) and K at site 2. These experiments demonstrate that VAM-fungi could be introduced into field nursery sites to improve growth and P uptake by H. brasiliensis. The relevance of VAM-fungi to H. brasiliensis seedling rootstock development and the influence of IMF in determining field responses is discussed.  相似文献   

5.
To test the hypothesis that high levels of soluble phosphate applied in combination with VAM fungi, to citrus plants, can cause growth depression even in the absence of other limiting factors, and also to test if rock phosphate, under these conditions, may be a satisfactory P source, a greenhouse experiment was conducted using sterilized soil with four levels of phosphate (0, 50, 100 and 200 ppm P) supplied either as soluble P or as rock phosphate. Citrus seedlings were either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or left uninoculated. Six months after the start of the experiment, the plants were harvested and shoot dry weight, P and K uptake, root colonization and the number of spores in 50 cm3 of soil were determined. Significant increases were found in dry matter yields and in P and K contents, due to VAM fungus inoculation, at the zero and 50 ppm soluble P levels and at all rock phosphate levels. At 100 ppm soluble P, the development of VAM plants was equilvalent to that of non-VAM plants, and at 200 ppm, growth was significantly less than that of non-VAM plants. Root colonization and sporulation were reduced at higher P levels. The absolute growth depression of VAM plants at the higher P level was likely due to P toxicity. In addition, high leaf P and K concentrations may have interfered with carbohydrate distribution and utilization in these symbioses. Rock phosphate may be used with VAM citrus to substitute for medium amounts of soluble phosphate.  相似文献   

6.
Summary Responses of lentil in unsterile soils at low, medium and high levels of plant available soil P toGlomus fasciculatum inoculation were evaluated. It was observed that growth, dry matter accumulation, nodulation, and nitrogen fixation were considerably improved in VAM inoculated plants over uninoculated control at low and medium levels of plant available soil P.  相似文献   

7.
The influence of soil application of carbofuran on the growth response of groundnut, and both mycorrhizal colonization and sporulation of Glomus clarum was studied in a pot culture experiment. Carbofuran application with or without mycorrhizal inoculation increased the height of the potted plants measured 8 weeks after sowing. Mycorrhizal plants were significantly taller than nonmycorrhizal plants at the final harvest time (14 weeks). Carbofuran, at the recommmended field dose of up to 2 kg/ha, greatly increased shoot dry matter and pod yield in mycorrhizal groundnut. Colonization and sporulation by this VAM fungus were also enhanced significantly at these dose levels. The application of carbofuran at 5 kg/ha inhibited both growth and mycorrhizal status of groundnut.  相似文献   

8.
The response ofCicer arietinum to inoculation withGlomus versiforme under field conditions was investigated in a phosphorus deficient sandy loam soil. Inoculation with the mycorrhizal fungusGlomus versiforme increased the rate of VAM development in chickpea. The weight of nodules and the number of nodules per plant were higher in inoculated than in uninoculated plants. The phosphorus content of the shoots and its total uptake, were increased by either the application of single super-phosphate, or by inoculation withG. versiforme. Inoculation increased shoot dry weights and grain yields by 12% and 25% respectively, as compared with the 33% and 60% increases respectively produced by P-treated plants.  相似文献   

9.
Seven banana cultivars (Musa acuminata, AAA group) were inoculated with two species of vesicular arbuscular mycorrhizal (VAM) fungi (Glomus mosseae and Glomus macrocarpum) in a greenhouse experiment. Inoculated plants had generally greater shoot dry weight and shoot phosphorus concentrations compared to the noninoculated plants. A great variation in dependency on mycorrhizal colonization was observed among the banana cultivars. Cv. Williams showed the highest relative mycorrhizal dependency (RMD) and cv. Poyo the lowest. For all the cultivars studied, inoculation with G. macrocarpum resulted in the highest RMD values. Both root dry weight and root hair length or density of the noninoculated plants were inverserly correlated with the RMD values of cultivars.  相似文献   

10.
The growth response ofCalopogonium caeruleum, a leguminous covercrop in plantation agriculture, to inoculation with two vesicular-arbuscular mycorrhizal (VAM) fungi was investigated in five phosphorus (P)-deficient soils supplied with various levels of rock phosphate. Significant shoot yield increases over the uninoculated controls were obtained in most sterilised or unsterilised soils at all applied P levels, although the inoculant VAM fungi differed in their effectiveness in the soils used. Responses in mycorrhizal root infections, P and nitrogen (N) concentrations in tops and plant nodulation varied. The results are discussed in relation to the edaphic environment of the mycorrhizal association.  相似文献   

11.
Summary Growth and phosphorus uptake of pearl millet (Pennisetum americanum) on an unsterile, phosphorus-deficient soil was improved by the seed inoculation withAzospirillum brasilense or soil inoculation with the vesicular-arbuscular mycorrhizal fungi (Acaulospora,Gigaspora margarita, Glomus fasciculatum). These microorganisms acted synergistically when added simultaneously and the response was significant withAzospirillum brasilense + Gigaspora margarita andAzospirillum brasilense + Glomus fasciculatum combinations over uninoculated control as far as the dry matter content of shoots, root biomass and phosphorus uptake of the millet was concerned.  相似文献   

12.
In a pot experiment, wheat was grown for 50 days in two heat-sterilized low-phosphorus (P) soils supplied with organic P as Na-phytate. Seed inoculation with the phosphatase-producing fungus (PPF) Aspergillus fumigatus or soil inoculation with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae increased shoot and root dry weight and root length, phosphatase activity in the rhizosphere and shoot concentrations of P and to a lesser extent of K and Mg. As a rule, the greatest effects on those parameters were most in the combined inoculation treatment (PPF + VAM). Shoot concentrations of Cu and Zn were only enhanced by VAM, not by PPF. At harvest, depletion of organic P in the rhizosphere soil increased in the order of: sterilized soil < PPF < VAM < PPF + VAM which corresponded with the enhanced P concentrations in the plants. The results demonstrate that organic P in form of Na-Phytate is efficiently used by VAM and that use of organic P can be increased by simultaneous inoculation with phosphatase-producing fungi.  相似文献   

13.
Summary Field inoculation trials with cassava (Manihot esculenta Crantz) were conducted in Quilichao (typic Dystropept soil) and Carimagua (Haplustox soil). In Quilichao, with a large and effective native VA-mycorrhizal (VAM) population, inoculation withGlomus manihotis did not increase cassava yields significantly, neither when different sources and levels of inoculum material were used, nor with different cassava cultivars, or after stabilizing soil temperature through mulching. Field inoculation did result in a decrease of the coefficient of variation with respect to yield. The high dependency of cassava on an effective VAM association was indicated by a marked decrease in yield after eradication of native VAM by soil sterilization. In Carimagua, with a lower native VAM population, mycorrhizal inoculation withG. manihotis increased yields significantly at intermediate levels of 100 kg/ha of applied P, using either inoculum of cassava orPanicum maximum roots or inoculum of a soil-root mixture of maize or tropical kudzu. Higher or lower levels of P decreased the effect of inoculation on yield. There were no significant differences among P sources, ranging from highly soluble triple superphosphate to low solubility rock phosphates. Inoculation with different VAM isolates had a variable effect on cassava yields, and showed that there may be an interaction between P fertilizer level and isolate efficiency. It is concluded that there may be a potential to increase yields or decrease the fertilizer P requirements of cassava through field inoculation with effective VAM isolates, in the vast areas of acid infertile Oxisols and Ultisols with low native VAM fungal populations, represented by Carimagua.  相似文献   

14.
Summary Drought resistance of wheat (Triticum aestivum L.) as influenced by two vesiculararbuscular mycorrhizal (VAM) fungi,Glomus fasciculatum 10 andGlomus deserticola 19, was evaluated. Soil columns 0.15 m diam. by 1.20 m length were used to reduce the influence of limited rooting space. With initial soil water at 0.5 MPa (0.145 kg kg–1), plants were subjected to low-level water stress throughout the experiment and severe water stress for 24 h at one (55 days after transplanting, Feekes scale 10.1) two (55 and 63 days, Feekes 10.1 and 10.2), or three (55, 63, and 70 days, Feekes 10.1, 10.1, and 10.2) periods. After each stress period, one set of plants was watered and grown to maturity without subsequent water stress. A second set of plants was harvested 1 week after stress.G. fasciculatum-inoculated plants harvested 7 days after stress at 55 days had greater leaf area and leaf, total plant, and root weight than non-VAM plants.G. deserticola-inoculated plants had greater leaf area and leaf weight than non-VAM plants. After stress at 55 and 63 days, leaf area, and leaf and total dry weight were again greater for VAM than for non-VAM plants. However, after stress at 55, 63, and 70 days, differences in aboveground biomass between VAM and non-VAM plants were not significant at P=0.05. Aboveground biomass was not affected by VAM species in plants stressed at 55 or 55 and 63 days, butG. fasciculatum-inoculated plants produced more tillers atter stress at 55 days. When grown to maturity, VAM plants which had undergone three stress periods had twice the biomass and grain yield as non-VAM plants subjected to the same stress. The three stress periods reduced number of heads and kernel numbers of weight of non-VAM plants compared to VAM plants.G. fasciculatum-inoculated plants consistently had increased root weight and rooting depth.Contribution from the Agricultural Research Service, USDA, in cooperation with the Nebr. Agric. Exp. Stn., Univ. Nebr.-Lincoln, Lincoln, Nebr. Published as Paper No. 7571 Journal Series, Nebr. Agric. Exp. Stn.  相似文献   

15.
M. Habte  R. L. Fox 《Plant and Soil》1993,151(2):219-226
Five tropical soils were either not inoculated or inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus aggregatum. The degree to which VAM effectiveness was expressed in the soils was evaluated prior and after solution P status was adjusted for optimal VAM activity. VAM effectiveness determined by monitoring P concentrations of pinnules of Leucaena leucocephala leaves as a function of time and as dry matter yield determined at the time of harvest, indicated that in three of the soils VAM effectiveness was either very restricted or altogether unexpressed irrespective of vesicular-arbuscular mycorrhizal fungal (VAMF) inoculation if soil solution P was not optimized for VAM effectiveness. After P optimization, effectiveness was significantly increased by VAMF inoculation although in four of the soils, densities of indigenous VAMF propagules greatly exceeded that attained by the inoculum after it was mixed with soil. Mycorrhizal fungal inoculation effects varied from soil to soil, depending on the extent to which the effectiveness of indigenous and introduced endophytes was enhanced by P optimization and the similarity of inherent soil solution P concentrations to the range known to be optimum for VAM effectiveness. Of the indicator variables monitored, VAMF colonization was least sensitive to treatment effects followed by shoot P concentration measured at the time of harvest.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3781.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources Journal series No. 3781.  相似文献   

16.
Summary Soybean (Glycine max L. Merr. cv. Amsoy 71) plants were grown in a greenhouse in a soil very low in plant-available P, and plants were harvested 5 times over a 21-week growth period. Soybeans were inoculated with one of two species of VAM fungi or received daily one of three nutrient solutions of different P concentrations (0.0, 0.2, or 1.0mMP). Until week 9, the dry weights, leaf areas and developmental stage of soybeans inoculated withG. fasciculatum orG. mosseae were similar to the 1.0 or 0.2mMP-treated plants, respectively. Phosphorus concentrations were significantly lower in VAM plants at weeks 6 and 9 as compared to non-VAM soybeans given 1.0mMP, suggesting P input in VAM plants was immediately used for new growth. Total P input for VAM plants was linear over 21 weeks, and the average rate of P uptake for these plants was 0.19mg P d−1. Estimated specific P uptake rates (SPUR) for the mycorrhizae (VAM roots) were twice that of the control (0.0mMP) roots. The calculated SPURs forG. fasciculatum andG. mosseae hyphae were 95 and 120μg P g−1 VAM d−1 respectively, a 4 to 5 fold increase over non-inoculated roots, indicating more attention must be paid to P assimilation by VAM fungi in P-fixing substrates. Contribution from the Western Regional Research Center, USDA-ARS (CRIS No. 5325-20580-003).  相似文献   

17.
Summary Response ofLeucanea leucocephala to inoculation withGlomus fasciculatum and/or Rhizobium was studied in a phosphorus deficient unsterile soil.G. fasciculatum only inoculation improved nodulation by native rhizobia and Rhizobium only treatment improved colonization of roots by native mycorrhizal fungi. Dual inoculation with both the organisms improved nodulation, mycorrhizal colonization, dry weight, nitrogen and phosphorus content of the plants compared to single inoculation with either organism. Contribution of U.A.S. Research Project DR/AMB-1.  相似文献   

18.
Summary Soybean (Glycine max {L.} Merr.) cultivars were inoculated withGigaspora gigantea andGlomus mosseae to determine mycorrhizal: cultivar relationships as affected by soil pH. The specific cultivarfungal response was dependent on soil pH. Overall cultivar responses in unlimed soil (pH 5.1) were greater forG. gigantea thanG. mosseae. The Bossier —G. gigantea combination was particularly responsive in unlimed soil and showed an increase of 10% in shoot length, 35% in shoot dry weight. 75% in root dry weight, and 397% in nodule dry weight over uninoculated controls. Little cultivar response was observed withG. mosseae inoculation in unlimed soil. In limed soil (pH 6.2), the larger responses were obtained withG. mosseae inoculated plants, although inoculation with eitherG. mosseae orG. gigantea appeared effective. In general, nodulation was greater on mycorrhizal roots than on control roots.  相似文献   

19.
Summary The vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus versiforme increased significantly the growth ofAsparagus officinalis under controlled conditions using Turface as the growth medium. The growth responses, including increases in root fresh weight, numbers of shoots, shoot dry weight, and shoot height follow a pattern similar to other mycorrhizal systems. Indigenous VAM fungi appeared to have negative effects on average shoot fresh and dry weight, number of shoots per pot and average shoot height on one year oldA. officinalis seedlings obtained from the field and grown under controlled conditions. These results may be due either to the high levels of soluble phosphate present in the soil or the ineffectiveness of the particular indigenous fungi as mycorrhizal fungi in asparagus. Indigenous mycorrhizal fungi overwinter in asparagus root crown as vesicles and as external and internal hyphae. Soil obtained from the same fields as the one year old crowns was a good source of mycorrhizal inoculum for sterile seedlings.  相似文献   

20.
Response ofLeucaena leucocephala (Lam) de Wit to rock phosphate application and inoculation with the vesicular-arbuscular mycorrhizal (VAM) fungusGlomus aggregatum (Schenck and Smith emend Koske) was evaluated in a pot experiment. VAM colonization increased as rock phosphate application increased. Using phosphorus concentration in pinnules as an indicator of VAM activity, significant VAM activity occurred at 25 days after planting at the lower levels of rock phosphate application (0, 0.34 and 0.68 g P kg–1). The time required for significant VAM activity was shortened by 5 days at the higher P levels (1.36, 2.72 and 5.44 g P kg–1). The highest VAM activity was associated with the highest rate of rock phosphate application.Inoculation withG. aggregatum significantly increased the uptake of Cu, P and Zn and dry-matter yield at all levels of rock phosphate applied. Copper concentrations in roots of mycorrhizal Leucaena were significantly higher than that of shoots. The results indicated that Leucaena in symbiotic association with VAM fungi effectively utilized P from rock phosphate. However, high rates of rock phosphate are required to attain growth comparable to that obtained with the application of water-soluble phosphate.Contribution from Hawaii Institute of Tropical Agriculture and Human Resources, Journal Series No. 3243.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号