首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yersinia pestis, the causative agent of plague, exports a set of virulence proteins called Yops upon contact with eukaryotic cells. A subset of these Yops is translocated directly into the cytosol of host cells. In this study, a novel protein tag-based reporter system is used to measure the translocation of Yops into cultured eukaryotic cells. The reporter system uses a small bipartite phosphorylatable peptide tag, termed the Elk tag. Translocation of an Elk-tagged protein into eukaryotic cells results in host cell protein kinase-dependent phosphorylation of the tag at a specific serine residue, which can subsequently be detected with phosphospecific antibodies. The YopN, TyeA, SycN, YscB and LcrG proteins function to prevent Yop secretion before host cell contact. The role of these proteins was investigated in the translocation of Elk-tagged YopE (YopE129-Elk) and YopN (YopN293-Elk) into HeLa cells. Y. pestis yopN, tyeA, sycN and yscB deletion mutants showed reduced levels of YopE129-Elk phosphorylation compared with the parent strain, indicating that these mutants translocate reduced amounts of YopE. We also demonstrate that YopN293-Elk is translocated into HeLa cells and that this process is more efficient in a Yersinia yop polymutant strain lacking the six translocated effector Yops. Y. pestis sycN and yscB mutants translocated reduced amounts of YopN293-Elk; however, tyeA and lcrG mutants translocated higher amounts of YopN293-Elk compared with the parent strain. These data suggest that TyeA and LcrG function to suppress the secretion of YopN before host cell contact, whereas SycN and YscB facilitate YopN secretion and subsequent translocation.  相似文献   

2.
An approach for isolation of an autoagglutination factor (AF) from Hms(-) cells of the plague agent has been developed. Purified AF has been obtained and characterized in physicochemical properties. The AF is found to be a complex of a 17.5-kD protein with a low molecular weight peptide component, which binds iron ions and shows siderophore activity. This low molecular weight component is responsible for hydrophobic properties and immunochemical activity of the AF, as well as for its ability to interact with the plague diagnosticum L-413c bacteriophage.  相似文献   

3.
Wild-type strains of plague agent Yersinia pestis are characterized by a pigmentation phenotype (Pgm+), which includes several traits: an ability of cells to adsorb pigments (Hms+), an ability to produce siderophore yersiniabactin (Ybt+) and an ability to cause lethal infections in laboratory animals (Vir+) after subcutaneous injections. All these traits are encoded in the chromosomal pgm-locus, which gets rapidly lost due to deletion. One more trait related with the Pgm+ phenotype was detected in the present study, i.e. its siderophoric activity at 28 degrees C on the indication agar plates containing chrome azurol S (Sid+). After the four phenotypic characteristics of the Pgm+ phenotype were analyzed as well as after the four pgm-locus genes (hmsF, hmsR, irp2 and fyuA/psn) were detected by the method of hybridization and PCR, we compared 33 isogenous Pgm- mutants isolated from typical Y. pestis strain 923 by Hms-. The comparison showed that the mutants differed from each other according to the analyzed properties, which suggested that they were formed by different genetic mechanisms. Apart from the known mechanism of pgm-locus deletion, which causes an irreversible loss of Hms+, Ybt+ and Vir+ properties, two more mechanisms were detected. One of them is related with insertion damages to the pgm-locus genes, which also leads to the loss of the four traits but which can be reversed by the cultivation of cells at low temperature. The other mechanism is predetermined by unknown genetic processes ensuring the formation of mutants, which loose only their Hms+ properties and which can trigger its high-frequency reversion at 28 degrees C.  相似文献   

4.
Yersinia pestis is a Gram-negative bacterium that causes plague. Currently, plague is considered a re-emerging infectious disease and Y. pestis a potential bioterrorism agent. Autotransporters (ATs) are virulence proteins translocated by a variety of pathogenic Gram-negative bacteria across the cell envelope to the cell surface or extracellular environment. In this study, we screened the genome of Yersinia pestis KIM for AT genes whose expression might be relevant for the pathogenicity of this plague-causing organism. By in silico analyses, we identified ten putative AT genes in the genomic sequence of Y. pestis KIM; two of these genes are located within known pathogenicity islands. The expression of all ten putative AT genes in Y. pestis KIM was confirmed by RT-PCR. Five genes, designated yapA, yapC, yapG, yapK and yapN, were subsequently cloned and expressed in Escherichia coli K12 for protein secretion studies. Two forms of the YapA protein (130 kDa and 115 kDa) were found secreted into the culture medium. Protease cleavage at the C terminus of YapA released the protein from the cell surface. Outer membrane localization of YapC (65 kDa), YapG (100 kDa), YapK (130 kDa), and YapN (60 kDa) was established by cell fractionation, and cell surface localization of YapC and YapN was demonstrated by protease accessibility experiments. In functional studies, YapN and YapK showed hemagglutination activity and YapC exhibited autoagglutination activity. Data reported here represent the first study on Y. pestis ATs.  相似文献   

5.
Iron acquisition in Yersinia pestis is fundamental to the success of plague pathogenesis. We have previously identified an approximately 5.6 kb region (yfe) of Y. pestis genomic DNA, capable of restoring iron-deficient growth but not siderophore production to an Escherichia coli mutant (SAB11) incapable of synthesizing the siderophore, enterobactin. The yfe locus of Y. pestis, found in both pigmented (Pgm+) and nonpigmented (Pgm-) strains, comprises five genes arranged in two distinct operons (yfeA-D and yfeE ). The larger of these, yfeABCD, encodes an ABC transport system, whose expression is iron and Fur regulated and is repressed in cells grown in the presence of manganese. Cells from a Pgm-, Yfe- (DeltayfeAB ) mutant strain of Y. pestis exhibited reduced transport of both 55Fe and 54Mn. Furthermore, cells containing an intact yfe locus showed reduced 55Fe uptake when competing amounts of MnCl2 or ZnCl2 were present, whereas 54Mn uptake was inhibited by FeCl3 but not by ZnCl2. Similarly, yfe mutants of Y. pestis exhibited growth defects on media supplemented with the iron chelators 2,2'-dipyridyl or conalbumin. These growth defects were not relieved by supplementation with MnCl2. A ybt-, DeltayfeAB mutant of Y. pestis was completely avirulent in mice infected intravenously (LD50 > 1.7 x 107 cfu) compared with its parental ybt-, yfe+ strain, which had an LD50 of < 12. In addition, compared with its ybt+, yfe+ parent, a ybt+, DeltayfeAB mutant of Y. pestis had an approximately 100-fold increase in the LD50 from a subcutaneous route of infection. These data suggest that the Yfe and Ybt systems may function effectively to accumulate iron during different stages of the infectious process of bubonic plague.  相似文献   

6.
Plague is a flea-borne zoonosis caused by the bacterium Yersinia pestis. Y. pestis mutants lacking the yersiniabactin (Ybt) siderophore-based iron transport system are avirulent when inoculated intradermally but fully virulent when inoculated intravenously in mice. Presumably, Ybt is required to provide sufficient iron at the peripheral injection site, suggesting that Ybt would be an essential virulence factor for flea-borne plague. Here, using a flea-to-mouse transmission model, we show that a Y. pestis strain lacking the Ybt system causes fatal plague at low incidence when transmitted by fleas. Bacteriology and histology analyses revealed that a Ybt-negative strain caused only primary septicemic plague and atypical bubonic plague instead of the typical bubonic form of disease. The results provide new evidence that primary septicemic plague is a distinct clinical entity and suggest that unusual forms of plague may be caused by atypical Y. pestis strains.  相似文献   

7.
Various representatives of the genus Yersinia were found to differ in their sensitivity to the lytic action of bacteriophage Mu cts62, which could serve as an auxiliary test for the differentiation of Y. pestis and Y. pseudotuberculosis. Among the strains under study, the causative agents of plague (34 strains) were sensitive to phage Mu cts62, while the causative agents of enteric yersiniosis (42 strains) and pseudotuberculosis (73 strains), except 3 strains with the properties of Y. pestis, were resistant to this phage.  相似文献   

8.
Pneumonic plague is one of the world's most deadly infectious diseases. The causative bacterium, Yersinia pestis, has the potential to be exploited as a biological weapon, and no vaccine is available. Vaccinating B cell-deficient mice with D27-pLpxL, a live attenuated Y. pestis strain, induces cell-mediated protection against lethal pulmonary Y. pestis challenge. In this article, we demonstrate that prime/boost vaccination with D27-pLpxL confers better protection than prime-only vaccination. The improved survival does not result from enhanced bacterial clearance but is associated with increased levels of IL-17 mRNA and protein in the lungs of challenged mice. The boost also increases pulmonary numbers of IL-17-producing CD4 T cells. Interestingly, most of these cells simultaneously produce canonical type 1 and type 17 cytokines; most produce IL-17 and TNF-α, and many produce IL-17, TNF-α, and IFN-γ. Neutralizing IL-17 counteracts the improved survival associated with prime/boost vaccination without significantly impacting bacterial burden. Thus, IL-17 appears to mediate the enhanced protection conferred by booster immunization. Although neutralizing IL-17 significantly reduces neutrophil recruitment to the lungs of mice challenged with Y. pestis, this impact is equally evident in mice that receive one or two immunizations with D27-pLpxL, suggesting it cannot suffice to account for the improved survival that results from booster immunization. We conclude that IL-17 plays a yet to be identified role in host defense that enhances protection against pulmonary Y. pestis challenge, and we suggest that pneumonic plague vaccines should aim to induce mixed type 1 and type 17 cellular responses.  相似文献   

9.
Yersinia pestis is a bacterium that is transmitted between fleas, which have a body temperature of 26 °C, and mammalian hosts, which have a body temperature of 37 °C. To adapt to the temperature shift, phenotype variations, including virulence, occur. In this study, an antigen microarray including 218 proteins of Y. pestis was used to evaluate antibody responses in a pooled plague serum that was unadsorbed, adsorbed by Y. pestis cultivated at 26 °C, or adsorbed by Y. pestis cultivated at 26 and 37 °C to identify protein expression changes during the temperature shift. We identified 12 proteins as being expressed at 37 °C but not at 26 °C, or expressed at significantly higher levels at 37 °C than at 26 °C. The antibodies against 7 proteins in the serum adsorbed by Y. pestis cultivated at 26 and 37 °C remained positive, suggesting that they were not expressed on the surface of Y. pestis in LB broth in vitro or specifically expressed in vivo. This study proved that protein microarray and antibody profiling comprise a promising technique for monitoring gene expression at the protein level and for better understanding pathogenicity, to find new vaccine targets against plague.  相似文献   

10.
This study identified major surface proteins of the plague bacterium Yersinia pestis. We applied a novel surface biotinylation method, followed by NeutrAvidin (NA) bead capture, on-bead digestion, and identification by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The use of stachyose during biotinylation focused the reaction to the surface. Coupled with NA pulldown and immunoblot analysis, this method determined whether a protein was accessible to the surface. We applied the method to test the hypothesis that the catalase KatY is a surface protein of the plague bacterium Y. pestis. A rabbit serum recognized the catalase KatY as a major putative outer membrane-associated antigen expressed by Y. pestis cells grown at 37 degrees C. Similar findings by other groups had led to speculations that this protein might be exposed to the surface and might be a candidate for evaluation as a protective antigen for an improved plague vaccine. KatY was obtained only in the total membrane fraction, and stachyose greatly reduced its biotinylation as well as that of the periplasmic maltose binding protein, indicating that KatY is not on the bacterial surface. LC-MS-MS analysis of on-bead digests representing ca. 10(9) cells identified highly abundant species, including KatY, Pal, and OmpA, as well as the lipoprotein Pcp, all of which bound in a biotin-specific manner. Pla, Lpp, and OmpX (Ail) bound to the NA beads in a non-biotin-specific manner. There was no contamination from abundant cytoplasmic proteins. We hypothesize that OmpX and Pcp are highly abundant and likely to be important for the Y. pestis pathogenic process. We speculate that a portion of KatY associates with the outer membrane in intact cells but that it is located on the periplasmic side. Consistent with this idea, it did not protect C57BL/6 mice against bubonic plague.  相似文献   

11.
It was shown that aminoglycosides (streptomycin, kanamycin, gentamicin, sisomicin, tobramycin, amikacin) prevented manifestation of postvaccine immunity in albino mice immunized by vaccine strain Yersinia pestis EV. Avirulent strain Y. pestis 363 Monr with chromosome resistance to aminoglycosides of the 1st, 2nd and 3rd generations provided manifestation of antiplague immunity when streptomycin, kanamycin, gentamicin and amikacin were administered for prophylaxis. ED50 achieved 1.0-1.2 x 10(3) CFU and in control group (without treatment) 9.3 x 10(2) CFU. Gentamicin and amikacin were highly effective for experimental plague prophylaxis (90-100% animal survival), but inhibited development of postinfective immunity. Protective index (PI) value was 1.1 x 10(2). It was demonstrated that combination of specific prophylaxis (Y. pestis 363 Monr) and emergency prophylaxis with aminoglycosides in albino mice infected with approximately 1000 LD50 of virulent strain Y. pestis 358 (5 hours after infection) was highly effective and provided protective effect against subsequent infection with plague pathogen. Value of PI was 1.1 x 10(5) and practically did not differ from PI (1.7 x 10(5)) in control group (intact mice, immunized with strains EV [symbol: see text] 363 Monr).  相似文献   

12.
Despite the importance of pneumonic plague, little is known of the early pulmonary immune responses that occur following inhalation of Yersinia pestis. Therefore, we conducted studies to identify the early target cells for uptake of Y. pestis in the lungs following intratracheal or i.v. inoculation. Following intratracheal inoculation, Y. pestis was rapidly internalized primarily by a distinctive population of CD11c+DEC-205+CD11b- cells in the airways, whereas i.v. inoculation resulted in uptake primarily by CD11b+CD11c- macrophages and granulocytes in lung tissues. The airway cells internalized and were infected by Y. pestis, but did not support active replication of the organism. Intratracheal inoculation of Y. pestis resulted in rapid activation of airway CD11c+ cells, followed within 24 h by the selective disappearance of these cells from the airways and lungs and the accumulation of apoptotic CD11c+ cells in draining lymph nodes. When CD11c+ cells in the airways were depleted using liposomal clodronate before infection, this resulted in a significantly increased replication of Y. pestis in the lungs and dissemination to the spleen and draining lymph nodes. These findings suggest that CD11c+ cells in the airways play an important role in suppressing the initial replication and dissemination of inhaled Y. pestis, although these results will also require confirmation using fully virulent strains of Y. pestis. Depletion of these airway cells by Y. pestis may therefore be one strategy the organism uses to overcome pulmonary defenses following inhalation of the organism.  相似文献   

13.
The efficacy of isepamycin vs. other aminoglycosides was studied in vitro and on albino mice with experimental plague due to natural antigen valuable strains of the plague microbe and the pathogen variants deprived of the ability to produce the capsular antigen fraction I (FI- phenotype). The MICs of isepamycin for the strains of the plague microbe (20 FI+ and 20FI-) were 1.0-4.0 mg\l, that did not differ from those of streptomycin, kanamycin, amikacin and tobramycin. The ED50 of isepamycin in the prophylaxis and treatment of the experimental plague of the mice had no statistically significant differences from the ED50 of the other aminoglycosides. The efficacy index of isepamycin was > 10(4), that did not differ from that of streptomycin, amikacin and gentamicin, irrespective of the strain phenotype (Y. pestis 231 FI+ or Y. pestis 231 FI-). The same as the other aminoglycosides, isepamycin in doses equivalent to the human average daily doses, protected 80-100% of the albino mice from death when used in the prophylaxis and therapy of plague irrespective of the strain phenotype. The results of the study made it possible to consider isepamycin as an agent promising for the prophylaxis and treatment of plague.  相似文献   

14.
The temperature-dependent absorption of sufficient exogenous hemin or Congo red to form pigmented colonies of Yersinia pestis has been termed the pigmentation phenotype (Pgm+). Spontaneous mutation to a Pgm- phenotype results in the loss of a number of divergent physiological characteristics, including the ability to store hemin and to bind Congo red at 26 degrees C. In this study, we generated and isolated transposon insertion mutants that are hemin storage negative (Hms-) and therefore unable to form pigmented colonies. These mutations are due to single mini-kan insertions within a 19.5-kilobase (kb) SalI fragment of chromosomal DNA. Restriction site analysis of eight mutants identified a minimum of six potentially different insertion sites spanning an approximately 10-kb hemin storage (hms) locus. The 19.5-kb SalI fragment (containing approximately 18 kb of Y. pestis DNA and the mini-kan insert) was cloned from one of these mutants, KIM6-2012. By using this cloned fragment as a DNA probe, the mechanism of spontaneous mutation to a Pgm- phenotype was identified as a massive deletion event. The deletion spans at least 18 kb of genomic DNA in spontaneous Pgm- mutants from nine separate strains of Y. pestis. DNA adjacent to the mini-kan insert was used to identify a clone containing a wild-type hms locus. A spontaneous Pgm- mutant of Y pestis KIM containing this clone exhibits an Hms+ phenotype. The hms::mini-kan mutations and cloned wild-type hms locus generated in this study will greatly aid in identifying the function of hemin storage in Y. pestis.  相似文献   

15.
A protein microarray containing 144 known or putative virulence-related proteins of Yersinia pestis was used to evaluate the antibody responses of plague patients. Forty-two proteins were found to be expressed in vivo and antibodies against 14 of them were detected in all patients analyzed, providing potential candidates for novel protective antigens and novel serodiagnostic markers in Y. pestis. Moreover, the lack of antibody to LcrV in the five patients in Focus F might be a challenge to our understanding of the pathogenesis of Y. pestis.  相似文献   

16.
Abstract The efficiency of serological identification of Yersinia pestis strains which contain different plasmids was assessed with polyclonal and monoclonal immunoglobulin preparations in the direct fluorescent antibody method. Plague polyclonal luminescent immunoglobulins recognize only those Y. pestis strains which contain pPst, pFra plasmids or both. Anticapsular plague monoclonal antibodies interact only with capsule-forming plague agent strains (pFra+) grown at 37°C. With plague monoclonal lipopolysaccharide antibodies one can identify all Y. pestis strains irrespective of their plasmid content and cultivation temperature. However, these antibodies cross-react with Yersinia pseudotuberculosis bacteria in 60% of cases. The problem of laboratory diagnosis of the plague organism, whatever its plasmid profile, can be solved through the development of a test kit involving two preparations such as plague lipopolysaccharide monoclonal luminescent antibodies and pseudotuberculosisspecific luminescent adsorbed immunoglobulins.  相似文献   

17.
The F1 capsule of Yersinia pestis, encoded by the 100 kb plasmid pFra, is often assumed to be essential for full virulence of Y. pestis. However, virulent strains of Y. pestis that are F1- and either pFra+ or pFra- have been reported. To assess the role of pFra-encoded factors in virulence, mutants in pFra with insertions of the defective transposing bacteriophage Mu dl(Ap lac) were obtained, by using the wild type (wt) and the pLcr-cured derivative of strain C092. Mutants that exhibited temperature regulation of lactose fermentation and retarded electrophoretic mobility of pFra were selected. A total of 15 insertion mutants were isolated in the wt strain (12 of which had a single insertion in the genome, in pFra); and 24 mutants in the isogenic pLcr- derivative. Four of the pLcr+ mutants, and none of the pLcr- mutants, were F1-. All F1- mutants were decreased in virulence for mice compared to the wt parent; and five of the F1+ mutants also were significantly attenuated in mice. Fusion end-joints of insert DNA were cloned into Escherichia coli by using pMLB524, a vector for rescuing operon fusions of lacZ. Recombinants were obtained which contained pFra inserts ranging from < 2kb to approximately 36 kb, and the insertions occurred at several sites on pFra. All of the four F1- mutants tested mapped within the F1 capsule operon (caf1). The remaining five attenuated mutants sequenced were F1+ and mapped outside of but near the operon. Sequencing and complete analysis of the pFra insertions mutants could facilitate identification of new potential virulence factors.  相似文献   

18.
Pleiotropic effects of a Yersinia pestis fur mutation.   总被引:8,自引:4,他引:4       下载免费PDF全文
A Yersinia pestis fur mutation was constructed by insertionally disrupting the fur open reading frame. Analysis of a Fur-regulated beta-galactosidase reporter gene revealed a loss of iron regulation as a result of the fur mutation. trans complementation with the cloned Y. pestis fur gene restored iron regulation. The expression of most iron-regulated proteins was also deregulated by this mutation; however, a number of iron-repressible and two iron-inducible polypeptides retained normal regulation. Mutations in fur or hmsH, a gene encoding an 86-kDa surface protein required for hemin storage, increased the sensitivity of Y. pestis cells to the bacteriocin pesticin. Interestingly, the Y. pestis fur mutant lost temperature control of hemin storage; however, expression of the HmsH polypeptide was not deregulated. When grown with excess iron, a Y. pestis fur mutant possessing the 102-kb pigmentation locus exhibited severe growth inhibition and a dramatic increase in the number of spontaneous nonpigmented chromosomal deletion mutants present at late log phase. These results suggest that the Fur protein of Y. pestis is an important global regulator and that a separate Fur-independent iron regulatory system may exist.  相似文献   

19.
Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.  相似文献   

20.
The lytic activity of plague phage II, serovar 3, with respect to 1,800 bacterial strains has been studied: 760 Yersinia pestis strains, 262 Y. pseudotuberculosis strains, 252 Y. enterocolitica strains, 166 Escherichia coli strains, 90 Shigella strains and 270 strains of other species. The phage has been found to lyse 81.8% of Y. pestis strains, 1 Y. pseudotuberculosis strain and 1 Y. enterocolitica strain. The representatives of other 19 bacterial species have proved to be resistant to the phage. Though having a wide range of action within Y. pestis, the phage does not lyse most of the strains of the causative agent of plague, isolated in certain natural foci. This fact offers promise for using the phage for the differentiation of Y. pestis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号