首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rowland O  Lee R  Franke R  Schreiber L  Kunst L 《FEBS letters》2007,581(18):3538-3544
The cuticle coats the aerial organs of land plants and is composed of a cutin matrix embedded and overlayed with waxes. The Arabidopsis CER3 gene is important for cuticular wax biosynthesis and was reported to correspond to At5g02310 encoding an E3 ubiquitin ligase. Here, we demonstrate that CER3 is not At5g02310 and instead corresponds to WAX2/YRE/FLP1 (At5g57800), a gene of unknown function required for wax biosynthesis. CER3 protein has also been implicated in cutin production because strong cer3 alleles display organ fusions. Leaf cutin analysis of two cer3 alleles did not reveal significant differences in cutin load or composition, indicating that CER3 has no major role in leaf cutin formation.  相似文献   

2.
Lam P  Zhao L  McFarlane HE  Aiga M  Lam V  Hooker TS  Kunst L 《Plant physiology》2012,159(4):1385-1395
The cuticle is a protective layer that coats the primary aerial surfaces of land plants and mediates plant interactions with the environment. It is synthesized by epidermal cells and is composed of a cutin polyester matrix that is embedded and covered with cuticular waxes. Recently, we have discovered a novel regulatory mechanism of cuticular wax biosynthesis that involves the ECERIFERUM7 (CER7) ribonuclease, a core subunit of the exosome. We hypothesized that at the onset of wax production, the CER7 ribonuclease degrades an mRNA specifying a repressor of CER3, a wax biosynthetic gene whose protein product is required for wax formation via the decarbonylation pathway. In the absence of this repressor, CER3 is expressed, leading to wax production. To identify the putative repressor of CER3 and to unravel the mechanism of CER7-mediated regulation of wax production, we performed a screen for suppressors of the cer7 mutant. Our screen resulted in the isolation of components of the RNA-silencing machinery, RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, implicating RNA silencing in the control of cuticular wax deposition during inflorescence stem development in Arabidopsis (Arabidopsis thaliana).  相似文献   

3.
4.
We have identified a new Arabidopsis mutant, yore-yore (yre), which has small trichomes and glossy stems. Adhesion between epidermal cells was observed in the organs of the yre shoot. The cloned YRE had high homology to plant genes involved in epicuticular wax synthesis, such as ECERIFERUM1 (CER1) and maize GLOSSY1. The phenotype of transgenic plants harboring double-stranded RNA interference (dsRNAi) YRE was quite similar to that of the yre mutant. The amount of epicuticular wax extracted from leaves and stems of yre-1 was approximately one-sixth of that from the wild type. YRE promoter::GUS and in situ hybridization revealed that YRE was specifically expressed in cells of the L1 layer of the shoot apical meristem and young leaves, stems, siliques, and lateral root primordia. Strong expression was detected in developing trichomes. The trichome structure of cer1 was normal, whereas that of the yre cer1 double mutant was heavily deformed, indicating that epicuticular wax is required for normal growth of trichomes. Double mutants of yre and trichome-morphology mutants, glabra2 (gl2) and transparent testa glabra1 (ttg1), showed that the phenotype of the trichome structure was additive, suggesting that the wax-requiring pathway is distinct from the trichome development pathway controlled by GL2 and TTG1.  相似文献   

5.
Chen X  Goodwin SM  Boroff VL  Liu X  Jenks MA 《The Plant cell》2003,15(5):1170-1185
Insertional mutagenesis of Arabidopsis ecotype C24 was used to identify a novel mutant, designated wax2, that had alterations in both cuticle membrane and cuticular waxes. Arabidopsis mutants with altered cuticle membrane have not been reported previously. Compared with the wild type, the cuticle membrane of wax2 stems weighed 20.2% less, and when viewed using electron microscopy, it was 36.4% thicker, less opaque, and structurally disorganized. The total wax amount on wax2 leaves and stems was reduced by >78% and showed proportional deficiencies in the aldehydes, alkanes, secondary alcohols, and ketones, with increased acids, primary alcohols, and esters. Besides altered cuticle membranes, wax2 displayed postgenital fusion between aerial organs (especially in flower buds), reduced fertility under low humidity, increased epidermal permeability, and a reduction in stomatal index on adaxial and abaxial leaf surfaces. Thus, wax2 reveals a potential role for the cuticle as a suppressor of postgenital fusion and epidermal diffusion and as a mediator of both fertility and the development of epidermal architecture (via effects on stomatal index). The cloned WAX2 gene (verified by three independent allelic insertion mutants with identical phenotypes) codes for a predicted 632-amino acid integral membrane protein with a molecular mass of 72.3 kD and a theoretical pI of 8.78. WAX2 has six transmembrane domains, a His-rich diiron binding region at the N-terminal region, and a large soluble C-terminal domain. The N-terminal portion of WAX2 is homologous with members of the sterol desaturase family, whereas the C terminus of WAX2 is most similar to members of the short-chain dehydrogenase/reductase family. WAX2 has 32% identity to CER1, a protein required for wax production but not for cuticle membrane production. Based on these analyses, we predict that WAX2 has a metabolic function associated with both cuticle membrane and wax synthesis. These studies provide new insight into the genetics and biochemistry of plant cuticle production and elucidate new associations between the cuticle and diverse aspects of plant development.  相似文献   

6.
Y Xia  B J Nikolau    P S Schnable 《The Plant cell》1996,8(8):1291-1304
Cuticular waxes are complex mixtures of very long chain fatty acids and their derivatives that cover plant surfaces. Mutants of the ECERIFERUM2 (cer2) gene of Arabidopsis condition bright green stems and siliques, indicative of the relatively low abundance of the cuticular wax crystals that comprise the wax bloom on wild-type plants. We cloned the CER2 gene via chromosome walking. Three lines of evidence establish that the cloned sequence represents the CER2 gene: (1) this sequence is capable of complementing the cer2 mutant phenotype in transgenic plants; (2) the corresponding DNA sequence isolated from plants homozygous for the cer2-2 mutant allele contains a sequence polymorphism that generates a premature stop codon; and (3) the deduced CER2 protein sequence exhibits sequence similarity to that of a maize gene (glossy2) that also is involved in cuticular wax accumulation. The CER2 gene encodes a novel protein with a predicted mass of 47 kD. We studied the expression pattern of the CER2 gene by in situ hybridization and analysis of transgenic Arabidopsis plants carrying a CER2-beta-glucuronidase gene fusion that includes 1.0 kb immediately upstream of CER2 and 0.2 kb of CER2 coding sequences. These studies demonstrate that the CER2 gene is expressed in an organ- and tissue-specific manner; CER2 is expressed at high levels only in the epidermis of young siliques and stems. This finding is consistent with the visible phenotype associated with mutants of the CER2 gene. Hence, the 1.2-kb fragment of the CER2 gene used to construct the CER2-beta-glucuronidase gene fusion includes all of the genetic information required for the epidermis-specific accumulation of CER2 mRNA.  相似文献   

7.
8.
9.
10.
11.
12.
We present cuticular wax chemical profiles for the leaves and stems of Arabidopsis wildtype Landsberg erecta and eleven isogenic eceriferum mutants: cer5, cer10 to cer15, and cer17 to cer20. These cer mutants have wax profiles that are different from those of wildtype in chemical chain length distribution, amount per chemical class, and/or total wax load. Analyses of detailed leaf and stem wax profiles for these cer mutants have allowed us to place some of these mutants at specific steps in wax production. The cer13 gene is predicted to affect release of the 30 carbon fatty acid from the elongation complex or the reduction of C30 fatty acid to C30 aldehyde. The CER19 gene product is predicted to be involved in C28 to C30 fatty acyl-CoA elongation. The CER20 gene is predicted to affect the oxidation of C29 alkane to C29 secondary alcohol. Several predicted gene products affect only stem specific steps in the wax pathway.  相似文献   

13.
In prokaryotic and eukaryotic cells, the 3′-5′-exonucleolytic decay and processing of RNAs are essential for RNA metabolism. However, the understanding of the mechanism of 3′-5′-exonucleolytic decay in plants is very limited. Here, we report the characterization of an Arabidopsis (Arabidopsis thaliana) transfer DNA insertional mutant that shows severe growth defects in early seedling growth, including delayed germination and cotyledon expansion, thinner yellow/pale-green leaves, and a slower growth rate. High-efficiency thermal asymmetric interlaced polymerase chain reaction analysis showed that the insertional locus was in the sixth exon of AT4G27490, encoding a predicted 3′-5′-exonuclease, that contained a conserved RNase phosphorolytic domain with high similarity to RRP41, designated RRP41L. Interestingly, we detected highly accumulated messenger RNAs (mRNAs) that encode seed storage protein and abscisic acid (ABA) biosynthesis and signaling pathway-related protein during the early growth stage in rrp41l mutants. The mRNA decay kinetics analysis for seed storage proteins, 9-cis-epoxycarotenoid dioxygenases, and ABA INSENSITIVEs revealed that RRP41L catalyzed the decay of these mRNAs in the cytoplasm. Consistent with these results, the rrp41l mutant was more sensitive to ABA in germination and root growth than wild-type plants, whereas overexpression lines of RRP41L were more resistant to ABA in germination and root growth than wild-type plants. RRP41L was localized to both the cytoplasm and nucleus, and RRP41L was preferentially expressed in seedlings. Altogether, our results showed that RRP41L plays an important role in seed germination and early seedling growth by mediating specific cytoplasmic mRNA decay in Arabidopsis.RNA decay is an essential step in gene expression regulation that influences many aspects of development and growth. In eukaryotes, mRNA decay is normally initiated by the removal of the poly(A) tail (Couttet et al., 1997; Parker and Song, 2004) and then enters one of two decay pathways: (1) the decapping complex cleaves the 5′ cap, after which the 5′-3′-exoribonuclease, such as XRN1 in animals and yeast (Saccharomyces cerevisiae) and XRN4 in plants, hydrolyzes the mRNA from the 5′ end (Hsu and Stevens, 1993; Kastenmayer and Green, 2000; Garneau et al., 2007; Rymarquis et al., 2011), and (2) the mRNA decays from the 3′ end by the 3′-5′-exonuclease.In eukaryotic cells, the 3′-5′-exonuclease can act alone to process the substrate in some cases, but the vast majority of 3′-5′-exonuclease activity is attributed to the exosome, which is an evolutionarily conserved macromolecular complex that mediates numerous reactions of 3′-5′ RNA processing/degradation and is essential for viability (Mitchell et al., 1997; Estévez et al., 2003). The structure of the exosome has been determined in archaea and eukaryotes, with the core forming a ring-shaped structure (Büttner et al., 2005; Lorentzen et al., 2005; Liu et al., 2006). In eukaryotes, the salient feature of the ring is defined by three distinct heterodimers of six RNase phosphorolytic (PH) domain-type proteins, MTR3-RRP42, RRP41-RRP45, and RRP43-RRP46 (Lehner and Sanderson, 2004; Hernández et al., 2006; Liu et al., 2006). However, the six-protein ring is not stable on its own in vitro and requires three subunits that contain S1 and KH domains (RRP4 links RRP41 and RRP42, RRP40 links RRP45 and RRP46, and CSL4 contacts MTR3 and RRP43) to form a stable core complex (Liu et al., 2006). In yeast, the loss of any individual subunit of the nine-component conserved core is lethal, resulting in similar ribosomal RNA (rRNA) processing defect profiles (Allmang et al., 1999a, 1999b). Moreover, x-ray crystallographic analysis of the human exosome revealed that all of its core subunits are required for its integrity (Liu et al., 2006). Using tandem affinity purification tagging in Arabidopsis (Arabidopsis thaliana) transgenic lines that expressed tagged versions of RRP4 and RRP41, Chekanova et al. (2007) first purified and characterized the exosome complex and revealed that the plant exosome complex contains six RNase PH domain-containing proteins and three S1 and/or KH domain proteins. Although the composition and structure of the plant exosome is similar to other eukaryotes, the function of individual subunits of the exosome appears to be different in Arabidopsis. Down-regulation of distinct subunits of the core complex results in different defects in plant development and RNA-processing profiles. For example, csl4 null mutant plants did not manifest any obvious phenotype, and the null mutation affected only a subset of exosome targets (Chekanova et al., 2007). Therefore, the CSL4 subunit appears to be nonessential for exosome function in Arabidopsis. However, the CSL4 subunit is essential for viability in yeast (Baker et al., 1998; Allmang et al., 1999b). In contrast, the rrp4 mutant shows seed arrest during early stages of embryonic development. RRP41 was shown to be essential for the development of female gametophytes, and homozygous rrp41 is lethal (Chekanova et al., 2007). Additionally, RRP45 is encoded by duplicate genes: RRP45A and RRP45B. Arabidopsis single mutants that lack either RRP45A or RRP45B have no phenotype or only a mild one, respectively, whereas simultaneous down-regulation of both proteins is lethal (Hooker et al., 2007). These data indicate that subunits of the Arabidopsis exosome core complex have specialized roles in plant growth and development and make unequal contributions to the activity of the exosome in vivo. However, the functions of other predicted core subunits of the exosome, with the exception of those mentioned above, are still unclear in Arabidopsis.Here, we report the characterization of an Arabidopsis transfer DNA (T-DNA) insertional mutant that displays severe defects in early seedling growth. High-efficiency thermal asymmetric interlaced (hiTAIL)-PCR analysis revealed that the insertional locus was in the sixth exon of AT4G27490, encoding a predicted 3′-5′-exonuclease that contained a conserved RNase PH domain. A previous study presumed that AT4G27490 was one subunit of the core exosome in Arabidopsis, a homolog of yeast Mtr3 (Chekanova et al., 2007), but another study suggested that it was a homolog of yeast Rrp41 (Zimmer et al., 2008). Here, we refer to AT4G27490 as RRP41L. Interestingly, we detected highly accumulated mRNAs that encode seed storage protein (SSP) and abscisic acid (ABA) biosynthesis and signaling pathway-related protein during the early growth stage in the rrp41l mutant. The mRNA decay kinetics analysis for SSPs, 9-cis-epoxycarotenoid dioxygenases (NCEDs), and ABA INSENSITIVEs (ABIs) revealed that RRP41L catalyzed the decay of these mRNAs in the cytoplasm. Consistent with these results, the rrp41l mutant was more sensitive in seed germination and root growth than wild-type plants, whereas the overexpression (OE) lines of RRP41L were more resistant to ABA in seed germination and root growth than wild-type plants. RRP41L is localized to both the cytoplasm and nucleus, and RRP41L is preferentially expressed in seedlings. Collectively, our results showed that RRP41L plays an important role in seed germination and early seedling growth by mediating specific cytoplasmic mRNA decay in Arabidopsis.  相似文献   

14.
15.
Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.  相似文献   

16.
17.
Plant aerial organs are covered by cuticular waxes, which form a hydrophobic crystal layer that mainly serves as a waterproof barrier. Cuticular wax is a complex mixture of very long chain lipids deriving from fatty acids, predominantly of chain lengths from 26 to 34 carbons, which result from acyl‐CoA elongase activity. The biochemical mechanism of elongation is well characterized; however, little is known about the specific proteins involved in the elongation of compounds with more than 26 carbons available as precursors of wax synthesis. In this context, we characterized the three Arabidopsis genes of the CER2‐like family: CER2, CER26 and CER26‐like . Expression pattern analysis showed that the three genes are differentially expressed in an organ‐ and tissue‐specific manner. Using individual T–DNA insertion mutants, together with a cer2 cer26 double mutant, we characterized the specific impact of the inactivation of the different genes on cuticular waxes. In particular, whereas the cer2 mutation impaired the production of wax components longer than 28 carbons, the cer26 mutant was found to be affected in the production of wax components longer than 30 carbons. The analysis of the acyl‐CoA pool in the respective transgenic lines confirmed that inactivation of both genes specifically affects the fatty acid elongation process beyond 26 carbons. Furthermore, ectopic expression of CER26 in transgenic plants demonstrates that CER26 facilitates the elongation of the very long chain fatty acids of 30 carbons or more, with high tissular and substrate specificity.  相似文献   

18.
Very long chain lipids contribute to the hydrophobic cuticle on the surface of all land plants and are an essential component of the extracellular pollen coat in the Brassicaceae. Mutations in Arabidopsis CER genes eliminate very long chain lipids from the cuticle surface and, in some cases, from the pollen coat. In Arabidopsis, the loss of pollen coat lipids can disrupt interactions with the stigma, inhibiting pollen hydration and causing sterility. We have positionally cloned CER6 and demonstrate that a wild-type copy complements the cer6-2 defect. In addition, we have identified a fertile, intragenic suppressor, cer6-2R, that partially restores pollen coat lipids but does not rescue the stem wax defect, suggesting an intriguing difference in the requirements for CER6 activity on stems and the pollen coat. Importantly, analysis of this suppressor demonstrates that low amounts of very long chain lipids are sufficient for pollen hydration and germination. The predicted CER6 amino acid sequence resembles that of fatty acid-condensing enzymes, consistent with its role in the production of epicuticular and pollen coat lipids >28 carbons long. DNA sequence analysis revealed the nature of the cer6-1, cer6-2, and cer6-2R mutations, and segregation analysis showed that CER6 is identical to CUT1, a cDNA previously mapped to a different chromosome arm. Instead, we have determined that a new gene, CER60, with a high degree of nucleotide and amino acid similarity to CER6, resides at the original CUT1 locus.  相似文献   

19.
In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum-localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.  相似文献   

20.
The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function.The extension of fatty acids to lengths greater than 28 carbons (C28) is an exceptional process in plant metabolism in that it requires unique biochemical machinery, and the elongation products are used for the synthesis of specialized plant metabolites. Derivatives of C30 to C34 fatty acids make up the bulk of plant cuticular wax, which coats all of a plant’s primary aerial surfaces. Cuticular wax serves as a barrier against transpirational water loss (Riederer and Schreiber, 2001) and protects the plant from both biotic (Eigenbrode, 1996) and abiotic (Grace and van Gardingen, 1996) stresses. C30 to C34 fatty acid-derived lipids are also components of the pollen coat, where they function in pollen hydration and germination on dry stigma (Elleman et al., 1992; Preuss et al., 1993).The core complex that elongates long-chain fatty acids (C16–C18) to very-long-chain fatty acids (VLCFAs; C20–C34) consists of four interacting proteins localized to the endoplasmic reticulum (ER). β-Keto-acyl-CoA synthases (KCSs), also known as condensing enzymes, catalyze the first reaction required for VLCFA elongation, condensing malonyl-CoA with an acyl-CoA (n) to produce a β-keto-acyl-CoA (n + 2). Condensation is both a specific and rate-limiting step in elongation (Millar and Kunst, 1997). Chain length specificity of KCSs is of particular importance because VLCFA length determines the downstream use of the fatty acid (for review, see Joubès et al., 2008; Haslam and Kunst, 2013a). There are two families of condensing enzymes in Arabidopsis (Arabidopsis thaliana). The ELONGATION-DEFECTIVE (ELO)-LIKE family is homologous to yeast (Saccharomyces cerevisiae) ELOs, and has putative functions in sphingolipid biosynthesis (Quist et al., 2009). Although our current understanding of plant ELO-LIKE physiological function and biochemical activity is limited, the mechanism of yeast Elo protein activity has been thoroughly investigated (Denic and Weissman, 2007). The FATTY ACID ELONGATION1 (FAE1)-type family is homologous to the first condensing enzyme identified in Arabidopsis, which is required for the synthesis of C20 to C22 VLCFAs in Arabidopsis oilseeds. Many of the 21 FAE1-type condensing enzymes of Arabidopsis have been characterized using reverse genetics and heterologous expression in yeast (Trenkamp et al., 2004; Blacklock and Jaworski, 2006; Paul et al., 2006; Tresch et al., 2012). This work has revealed the intriguing caveat that, although FAE1-type KCSs are involved in the synthesis of diverse downstream metabolites and use a broad range of acyl chain lengths, none are able to efficiently elongate VLCFAs beyond C28 (for review, see Haslam and Kunst, 2013a), which is essential for the production of cuticular wax components.Eceriferum2 (cer2) and glossy2 (gl2) mutants of Arabidopsis and Zea mays, respectively, are deficient in specific VLCFA-derived waxes longer than C28 (Bianchi et al., 1975; McNevin et al., 1993; Jenks et al., 1995). Both mutations were mapped to genes that do not resemble any component of the elongase complex (Tacke et al., 1995; Xia et al., 1996), but are homologous to the BAHD family of acyltransferases (St-Pierre et al., 1998). However, site-directed mutagenesis of conserved acyltransferase catalytic site amino acids in CER2 revealed that this motif is not required for CER2 function in cuticular wax synthesis (Haslam et al., 2012).CER6 is a condensing enzyme necessary for the accumulation of stem cuticular waxes in Arabidopsis, but when expressed in yeast, CER6 can only elongate VLCFAs to C28. When CER2 is expressed in yeast, it has no elongation activity. However, coexpression of CER2 and CER6 results in efficient production of C30 VLCFAs. Coexpression of CER2 with LfKCS45, a condensing enzyme from the crucifer Lesquerella fendleri that generates C28 and a small amount of C30 VLCFAs (Moon et al., 2004), does not alter product chain length (Haslam et al., 2012). Based on these observations, it was hypothesized that CER2 modifies the chain length specificity of the core elongase complex by interaction with specific KCS enzymes (Haslam et al., 2012).CER2 homologs are found in diverse flowering plant lineages, and many species have multiple CER2 homologs (Tuominen et al., 2011). A BLAST search of proteins from Arabidopsis identified two sequences with substantial similarity to CER2. NP_193120 is 36% identical to CER2, and is encoded by the gene At4g13840. We named this gene CER2-LIKE1 (also known as CER26) (Pascal et al., 2013). NP_566741 is 38% identical to CER2, and is encoded by the gene At3g23840. We named this gene CER2-LIKE2 (also named CER26-LIKE) (Pascal et al., 2013). Characterization of a cer2-like1 null mutant revealed a role for the CER2-LIKE1 protein in the elongation of leaf wax precursors beyond C30, analogous to the role of CER2 in C28 elongation in stems (Haslam et al., 2012; Pascal et al., 2013). cer2 cer2-like1 double mutants are deficient in the formation of wax components longer than C28 in both stems and leaves. As the cer2 single mutant has no leaf wax phenotype, the additive effect of these two mutations on leaf wax composition indicates that there is partial functional redundancy between the two genes.A comprehensive investigation of the biochemical and physiological functions of CER2-LIKE proteins is necessary. Beyond the value of knowing the specific roles of each homolog, such an investigation has potential to elucidate the nature of CER2-LIKE protein function. With this objective, we used our data to address the following questions: (1) Do CER2-LIKE proteins function with CER6 alone, or can they modify the activity of other FAE1-type condensing enzymes? (2) Do CER2-LIKE proteins have different effects on the substrate specificity of the same condensing enzyme, or is substrate specificity determined exclusively by the condensing enzyme? (3) What is the physiological relevance of the subtle changes in acyl lipid chain length that CER2-LIKE proteins induce?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号