首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core protein from bovine nasal proteoglycan has been obtained by cyanogen bromide cleavage and by removal of most of the glycosaminoglycan side chains by hydrogen fluoride treatment. Amino acid analysis of the cyanogen bromide fragment shows it to consist mainly of proline, serine, glycine and glutamic acid (glutamine). End-group analyses of the fragment and HF stripped core reveal and N-terminal residue to be valine in each case. The stripped core has been subjected to sequencing and some sequential information is presented. Based upon the amino acid analysis, sequence information and other properties, conformation analysis indicates that the most likely conformation is that of a flexible extended chain containing β-turns. The existence of a common N-terminal residue indicates that it is the C-terminal region which lies in the region of the hyaluronic acid backbone in intact proteoglycan. Furthermore, enzymatic cleavage of core protein which occurs in proteoglycan turnover, aging and degenerative diseases, probably does not occur by a stepwise cleavage from the N terminus of proteoglycan but by a more drastic degradation process.  相似文献   

2.
Synthesis and structure of proteoglycan core protein   总被引:2,自引:0,他引:2  
Studies of the structure and synthesis of cartilage proteoglycan core protein have been carried out. Deglycosylation of completed, secreted proteoglycan by HF-pyridine treatment yielded an intact homogeneous core protein of approximately 210,000 daltons, with a blocked amino-terminus. Greater than 95% of chondroitin sulfate chains and 80% of N- and O-linked oligosaccharides were removed by the procedure, which made the product an excellent xylosyltransferase acceptor. Little alteration of core protein structure occurred during the HF-pyridine treatment as shown by complete immunoreactivity with antiserums prepared against hyaluronidase-digested proteoglycan. In other studies, the initially synthesized precursor for proteoglycan core protein was found to be approximately 376,000 daltons and localized to the rough membrane fractions. This precursor already contained N-linked oligosaccharides, and was also able to accept xylose, thereby initiating chondroitin sulfate chains. The precursor was translocated intact in an energy-dependent manner to smooth membrane-Golgi fractions where further processing of high mannose type of oligosaccharides and addition of glycosaminoglycan chains occurred. The subcellular distribution pattern of the chondroitin sulfate-synthesizing enzymes corroborated the proposed topological modifications of the proteoglycan core protein precursor.  相似文献   

3.
A genomic DNA fragment (gCORE-1), encoding a portion of the cartilage proteoglycan core protein, has been isolated from a phage library using cDNA as a probe. The genomic insert is about 17 kilobase pairs; two BamHI fragments of the insert (1.3 and 4.8 kilobase pairs) contain most of the hybridizable sequences found in the cDNA. Sequence analysis of these fragments shows that they contain a total of five exons that encompass 216 amino acid residues, all of which are identical to those of the corresponding cDNA sequence. Three of the exons, which are adjacent to one another, are very similar to the corresponding exons in the gene of a rat hepatic lectin as well as to an exon in the gene of human pulmonary surfactant-associated protein. There is a strong degree of conservation of amino acid sequences encoded in the three genes, although there is no similarity between their introns. The sizes of the five exons in gCORE-1, except for one (which is indeterminate because only a partial cDNA sequence is available), are less than 184 base pairs, whereas the sizes of the introns range from 218 to greater than 2629 base pairs. Four of the introns interrupt an exon codon at either their donor or acceptor sites, between the first and second nucleotides. Only one intron does not split a codon. Intron and exon boundary sites are in agreement with known consensus sequences for introns. The dispersed distribution and relatively small size of the exons, if representative of the entire gene, suggest that the complete gene which codes for the core protein may be quite sizable.  相似文献   

4.
Primary structure of a mouse mastocytoma proteoglycan core protein.   总被引:7,自引:0,他引:7       下载免费PDF全文
The complete nucleotide sequence of a mouse mastocytoma proteoglycan core protein mRNA was determined. The mRNA, estimated to contain 1.1 kb, encodes a protein with an Mr of 16715. A 21-amino acid-residue region of the protein is composed of alternating serine and glycine residues. Southern-blot analysis of mouse genomic DNA with cDNA containing sequences corresponding to the Ser-Gly repeat region revealed more than 15 gene fragments. Hybridization with a probe corresponding to the N-terminal portion of the core protein identified two fragments, and cDNA covering the C-terminal part of the core protein and the 3' untranslated part of the mRNA hybridized to a single fragment. Antibodies against the core protein, obtained after immunization of rabbits with a fusion protein, reacted with both chondroitin sulphate proteoglycans and heparin proteoglycans produced by the tumour. In immunoblotting of a microsomal fraction from the mastocytoma, the antiserum recognized a single protein (Mr 17,000), which probably represents the core protein before glycosylation.  相似文献   

5.
6.
7.
8.
9.
A technique for mapping intramuscular innervation   总被引:1,自引:0,他引:1  
  相似文献   

10.
Large aggregating chondroitin sulfate proteoglycan (CSPG/aggrecan) is one of the major extracellular matrix components in cartilage. The core protein is also large, over 200 kDa, and modular with a distinct correspondence between protein structural domains and the encoding exons. Here we report the isolation, using chick CSPG cDNA probes and the ensuing sequencing, of genomic clones containing exons encoding the chick CSPG core protein. The 5 two globular domains, G1 and G2, are encoded by four and three exons, respectively, and the interglobular domain is encoded by a single exon. The chondroitin sulfate attachment domain is encoded by the largest exon, 3,216 bp, which is approximately 50% of the total coding sequence. Combined with the previous report (Tanaka, T., Har-el, R. Tanzer, M.L. 1988 J. Biol. Chem. 263, 15831–15835), these data reveal that the chick CSPG gene contains at least 18 exons spanning a genome which is greater than 30 kb. No evidence was obtained for multiple genes for aggrecan in the chick genome. Elucidation of the chick genomic structure allows comparison of the avian and mammalian link protein genes to the homologous portions of avian and mammalian core protein genes (hyaluronate binding domain) with respect to their origins and paths of duplication and divergence. Correspondence to: N.B. Schwartz  相似文献   

11.
The ultrastructure of embryonic chick cartilage proteoglycan core protein was investigated by electron microscopy of specimens prepared by low angle shadowing. The molecular images demonstrated a morphological substructural arrangement of three globular and two linear regions within each core protein. The internal globular region (G2) was separated from two terminally located globular regions (G1 and G3) by two elongated strands with lengths of 21 +/- 3 nm (E1) and 105 +/- 22 nm (E2). The two N-terminal globular regions, separated by the 21-nm segment, were consistently visualized in well spread molecules and showed little variation in the length of the linear segment connecting them. The E2 segment, however, was quite variable in length, and the C-terminal globular region (G3) was detected in only 53% of the molecules. The G1, G2, and G3 regions in chick core protein were 10.1 +/- 1.7 nm, 9.7 +/- 1.3 nm, and 8.3 +/- 1.3 nm in diameter, respectively. These results are similar to those described previously for proteoglycan core proteins isolated from rat chondrosarcoma, bovine nasal cartilage, and pig laryngeal cartilage (Paulsson, M., Morgelin, M., Wiedemann, H., Beardmore-Gray, M., Dunham, D., Hardingham, T., Heinegard, D., Timpl, R., and Engel, J. (1987) Biochem. J. 245, 763-772). However, a significant difference was detected between the length of the elongated strand (E2) of core proteins isolated from chick cartilage, E2 length = 105 +/- 22 nm, compared to bovine nasal cartilage, E2 length = 260 +/- 39 nm. The epitope of the proteoglycan core protein-specific monoclonal antibody, S103L, was visualized by electron microscopy, and the distance from the core protein N terminus to the S103L binding site was measured. The S103L binding site was localized to the E2 region, 111 +/- 20 nm from the G1 (N terminus) domain and 34 nm from the G3 (C terminus) domain. cDNA clones selected from an expression vector library of chicken cartilage mRNA also show this epitope to be located near the C-terminal region (R. C. Krueger, T. A. Fields, J. Mensch, and B. Schwartz (1990) J. Biol. Chem. 265, 12088-12097).  相似文献   

12.
We study theoretically the denaturation of single RNA molecules by mechanical stretching, focusing on signatures of the (un)folding pathway in molecular fluctuations. Our model describes the interactions between nucleotides by incorporating the experimentally determined free energy rules for RNA secondary structure, whereas exterior single-stranded regions are modeled as freely jointed chains. For exemplary RNA sequences (hairpins and the Tetrahymena thermophila group I intron), we compute the quasiequilibrium fluctuations in the end-to-end distance as the molecule is unfolded by pulling on opposite ends. Unlike the average quasiequilibrium force-extension curves, these fluctuations reveal clear signatures from the unfolding of individual structural elements. We find that the resolution of these signatures depends on the spring constant of the force-measuring device, with an optimal value intermediate between very rigid and very soft. We compare and relate our results to recent experiments by Liphardt et al. (2001).  相似文献   

13.
M H Lee  T Ohta    G C Walker 《Journal of bacteriology》1994,176(16):4825-4837
UmuD participates in a variety of protein-protein interactions that appear to be essential for its role in UV mutagenesis. To learn about these interactions, we have initiated an approach based on the construction of a series of monocysteine derivatives of UmuD and have carried out experiments exploring the chemistry of the unique thiol group in each derivative. In vivo and in vitro characterizations indicate that these proteins have an essentially native structure. In proposing a model for the interactions of UmuD in the homodimer, we have made the following assumptions: (i) the conformations of the mutant proteins are similar to that of the wild type, and (ii) the differences in reactivity of the mutant proteins are predominantly due to the positional effects of the single cysteine substitutions. The model proposes the following. The region including the Cys-24-Gly-25 cleavage site, Val-34, and Leu-44 are closer to the interface than the other positions tested as suggested by the relative ease of dimer cross-linking of the monocysteine derivatives at these positions by oxidation with iodine (I2) and by reaction with bis-maleimidohexane. The mutant with a Ser-to-Cys change at position 60 (SC60) is similar in iodoacetate reactivity to the preceding derivatives but cross-links less efficiently by I2 oxidation. This suggests that Ser-60, the site of the putative nucleophile in the cleavage reaction, is located further from the dimer interface or in a cleft region. Both Ser-19, located in the N-terminal fragment of UmuD that is removed by RecA-mediated cleavage, and Ser-67 are probably not as close to the dimer interface, since they are cross-linked more easily with bis-maleimidohexane than with I2. The SC67 mutant phenotype also suggests that this position is less important in RecA-mediated cleavage but more important in a subsequent role for UmuD in mutagenesis. Ala-89, Gln-100, and Asp-126 are probably not particularly solvent accessible and may play important roles in protein architecture.  相似文献   

14.
Optical mapping of genomic DNA is of relevance for a plethora of applications such as scaffolding for sequencing and detection of structural variations as well as identification of pathogens like bacteria and viruses. For future clinical applications it is desirable to have a fast and robust mapping method based on as few steps as possible. We here demonstrate a single-step method to obtain a DNA barcode that is directly visualized using nanofluidic devices and fluorescence microscopy. Using a mixture of YOYO-1, a bright DNA dye, and netropsin, a natural antibiotic with very high AT specificity, we obtain a DNA map with a fluorescence intensity profile along the DNA that reflects the underlying sequence. The netropsin binds to AT-tetrads and blocks these binding sites from YOYO-1 binding which results in lower fluorescence intensity from AT-rich regions of the DNA. We thus obtain a DNA barcode that is dark in AT-rich regions and bright in GC-rich regions with kilobasepair resolution. We demonstrate the versatility of the method by obtaining a barcode on DNA from the phage T4 that captures its circular permutation and agrees well with its known sequence.  相似文献   

15.
16.
We have developed an improved method of straightening DNA molecules for use in optical restriction mapping. The DNA was straightened on 3-aminopropyltriethoxysilane-coated glass slides using surface tension generated by a moving meniscus. In our method the meniscus motion was controlled mechanically, which provides advantages of speed and uniformity of the straightened molecules. Variation in the affinity of the silanized surfaces for DNA was compensated by precoating the slide with single-stranded non-target blocking DNA. A small amount of MgCl2 added to the DNA suspension increased the DNA-surface affinity and was necessary for efficient restriction enzyme digestion of the straightened surface-bound DNA. By adjusting the amounts of blocking DNA and MgCl2, we prepared slides that contained many straight parallel DNA molecules. Straightened lambda phage DNA (48 kb) bound to a slide surface was digested by EcoRI restriction endonuclease, and the resulting restriction fragments were imaged by fluorescence microscopy using a CCD camera. The observed fragment lengths showed excellent agreement with their predicted lengths.  相似文献   

17.
We have identified a protein(s) on the surface of hepatocytes that binds to the core protein of the heparan sulfate proteoglycan of basement membranes. These cells attached and spread on substrates prepared from the basement membrane heparan sulfate proteoglycan (HSPG) and its core protein (HSPG-core). Three proteins (Mr = 38,000, 36,000, and 26,000) were found to bind to a HSPG-core affinity column using extracts of iodinated hepatocytes, whereas proteins extracted from isolated membranes contained primarily the larger protein (Mr = 38,000). Similar results were obtained using a solid phase binding technique using labeled HSPG-core. Binding of HSPG-core to the protein (Mr = 38,000) was not altered by the presence of an excess of heparin, heparan sulfate, fibronectin, laminin, or collagen IV but was reduced by unlabeled HSPG-core. Similar studies showed that the binding protein (Mr = 3,0000) was present in extracts from the membranes of Engelbreth-Holm-Swarm tumor cells, Madin-Darby canine kidney cells, COS cells, melanoma cells, and rat kidney epithelial cells but not in fibroblasts. The protein was found in increased amounts in 3T3 cells treated with retinoic acid. These observations suggest that a variety of cells that contact basement membrane contain the proteoglycan-binding protein.  相似文献   

18.
Rat chondrosarcoma chondrocytes were labeled with [3H]serine or [3H]mannose as a precursor. Intracellular proteoglycan core protein precursor was purified from cell lysates by immunoprecipitation with polyclonal antibodies against the hyaluronic acid-binding region, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The core precursor was eluted from the gels and treated with alkaline borohydride in order to convert serine residues substituted with xylose or N-acetylgalactosamine to alanine (or with alkaline sulfite to convert them to cysteic acid). After acid hydrolysis, the proportions of labeled serine and alanine (or cysteic acid) were determined by high performance liquid chromatography, and the results were compared with those obtained for the completed proteoglycan molecules isolated from the same cultures. In the completed proteoglycans, about 55% of the serine residues were substituted with xylose or N-acetylgalactosamine, while the corresponding figure for the intracellular precursor molecules was less than 5%. These results indicate, in agreement with our previous kinetic data, that the major part of the xylosyl transfer to the chondrosarcoma proteoglycan core protein precursor must occur late in the processing sequence, i.e. after about 85% of its intracellular lifetime and no more than 7 min before the addition of the rest of the chondroitin sulfate chain. The ratio of [3H]mannose to [3H]fucose in the core precursor was about 19, while that for the complete proteoglycan was about 2. This indicates the presence of high mannose, N-linked oligosaccharides on the core protein precursor which are converted to the complex forms on the completed proteoglycan. These data provide further support that the core precursor resides mainly in the pre-Golgi compartment and that xylosylation occurs mainly in a Golgi compartment.  相似文献   

19.
Two forms of small, interstitial proteoglycans have been isolated from bovine articular cartilage and have different core proteins, based on NH2-terminal analysis and peptide mapping (Choi, H. U., Johnson, T. L., Pal, S., Tang, L-H., Rosenberg, L. C., and Neame, P. J. (1989) J. Biol. Chem. 264, 2876-2884). These proteoglycans have been called PG I and PG II. Since they were first described, they have also been called "biglycan" (PG I), "decorin," and "DS-PG" (PG II). This report describes the primary structure of PG I from bovine articular cartilage. The protein core consists of 331 amino acids with a molecular mass of 37,280 Da. The amino acid sequence shows 55% identity to the cDNA-derived sequence of PG II from bovine bone. There are four discrete domains in the amino acid sequence. Domain 1, at the NH2 terminus (approximately 23 amino acids), contains two sites of attachment of dermatan sulfate, both of which match the consensus sequence of Asp/Glu-X-X-Ser-Gly-hydrophobic. Neither of these sites is substituted to 100% with glycosaminoglycan in native PG I. Domain 2, near the NH2 terminus and containing approximately 28 amino acids, has a cysteine pattern similar to a domain near the COOH terminus of mouse metallothionein and contains at least one disulfide bond (between the first and fourth cysteine residues). The majority of the core protein of PG I (domain 3) is a leucine-rich domain containing ten repeating units (approximately 231 amino acids). Patthy [1987) J. Mol. Biol. 198, 567-577) has shown that for PG II, the majority of domain 3 shows considerable similarity to leucine-rich alpha 2-glycoprotein (LRG) from serum. Domain 2 of PG I or PG II also has an analog in LRG, in that it has two cysteines in a similar place. The major motif in the PG I described here, in PG II and in LRG, is a series of leucine-rich repeats. PG I and PG II both contain 10 leucine-rich repeats which are 14 amino acids long and which are somewhat irregularly spaced, while LRG contains 9 leucine-rich repeats spaced 10 amino acids apart. Other proteins which contain leucine repeats are the platelet glycoprotein Ib, which is involved in platelet adherence to subendothelium (eight repeats in the alpha chain and two in the beta chain), the protein encoded by the Toll gene (involved in lateral and ventral spatial organization in Drosophila) and chaoptin (a protein involved in Drosophila photoreceptor morphogenesis).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号