首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SUMMARY: An algorithm and software are described that provide a fast method to produce a novel, function-oriented visualization of the results of a sequence database search. Text mining of sequence annotations allows position specific plots of potential functional similarity to be compared in a simple compact representation. AVAILABILITY: The application can be accessed via a web server at http://www.compbio.dundee.ac.uk. The RHIMS software may be obtained by request to the authors.  相似文献   

2.
Tandem mass spectrometry (MS/MS) combined with protein database searching has been widely used in protein identification. A validation procedure is generally required to reduce the number of false positives. Advanced tools using statistical and machine learning approaches may provide faster and more accurate validation than manual inspection and empirical filtering criteria. In this study, we use two feature selection algorithms based on random forest and support vector machine to identify peptide properties that can be used to improve validation models. We demonstrate that an improved model based on an optimized set of features reduces the number of false positives by 58% relative to the model which used only search engine scores, at the same sensitivity score of 0.8. In addition, we develop classification models based on the physicochemical properties and protein sequence environment of these peptides without using search engine scores. The performance of the best model based on the support vector machine algorithm is at 0.8 AUC, 0.78 accuracy, and 0.7 specificity, suggesting a reasonably accurate classification. The identified properties important to fragmentation and ionization can be either used in independent validation tools or incorporated into peptide sequencing and database search algorithms to improve existing software programs.  相似文献   

3.
Robust statistical validation of peptide identifications obtained by tandem mass spectrometry and sequence database searching is an important task in shotgun proteomics. PeptideProphet is a commonly used computational tool that computes confidence measures for peptide identifications. In this paper, we investigate several limitations of the PeptideProphet modeling approach, including the use of fixed coefficients in computing the discriminant search score and selection of the top scoring peptide assignment per spectrum only. To address these limitations, we describe an adaptive method in which a new discriminant function is learned from the data in an iterative fashion. We extend the modeling framework to go beyond the top scoring peptide assignment per spectrum. We also investigate the effect of clustering the spectra according to their spectrum quality score followed by cluster-specific mixture modeling. The analysis is carried out using data acquired from a mixture of purified proteins on four different types of mass spectrometers, as well as using a complex human serum data set. A special emphasis is placed on the analysis of data generated on high mass accuracy instruments.  相似文献   

4.
Hundreds of ribosomally synthesized cyclopeptides have been isolated from all domains of life, the vast majority having been reported in the last 15 years. Studies of cyclic peptides have highlighted their exceptional potential both as stable drug scaffolds and as biomedicines in their own right. Despite this, computational techniques for cyclopeptide identification are still in their infancy, with many such peptides remaining uncharacterized. Tandem mass spectrometry has occupied a niche role in cyclopeptide identification, taking over from traditional techniques such as nuclear magnetic resonance spectroscopy (NMR). MS/MS studies require only picogram quantities of peptide (compared to milligrams for NMR studies) and are applicable to complex samples, abolishing the requirement for time-consuming chromatographic purification. While database search tools such as Sequest and Mascot have become standard tools for the MS/MS identification of linear peptides, they are not applicable to cyclopeptides, due to the parent mass shift resulting from cyclization and different fragmentation patterns of cyclic peptides. In this paper, we describe the development of a novel database search methodology to aid in the identification of cyclopeptides by mass spectrometry and evaluate its utility in identifying two peptide rings from Helianthus annuus, a bacterial cannibalism factor from Bacillus subtilis, and a θ-defensin from Rhesus macaque.  相似文献   

5.

Background  

Analysis of complex samples with tandem mass spectrometry (MS/MS) has become routine in proteomic research. However, validation of database search results creates a bottleneck in MS/MS data processing. Recently, methods based on a randomized database have become popular for quality control of database search results. However, a consequent problem is the ignorance of how to combine different database search scores to improve the sensitivity of randomized database methods.  相似文献   

6.
7.
Protein phosphorylation, one of the most important protein post-translational modifications, is involved in various biological processes, and the identification of phosphorylation peptides (phosphopeptides) and their corresponding phosphorylation sites (phosphosites) will facilitate the understanding of the molecular mechanism and function of phosphorylation. Mass spectrometry (MS) provides a high-throughput technology that enables the identification of large numbers of phosphosites. PhoPepMass is designed to assist human phosphopeptide identification from MS data based on a specific database of phophopeptide masses and a multivariate hypergeometric matching algorithm. It contains 244,915 phosphosites from several public sources. Moreover, the accurate masses of peptides and fragments with phosphosites were calculated. It is the first database that provides a systematic resource for the query of phosphosites on peptides and their corresponding masses. This allows researchers to search certain proteins of which phosphosites have been reported, to browse detailed phosphopeptide and fragment information, to match masses from MS analyses with defined threshold to the corresponding phosphopeptide, and to compare proprietary phosphopeptide discovery results with results from previous studies. Additionally, a database search software is created and a “two-stage search strategy” is suggested to identify phosphopeptides from tandem mass spectra of proteomics data. We expect PhoPepMass to be a useful tool and a source of reference for proteomics researchers. PhoPepMass is available at https://www.scbit.org/phopepmass/index.html.  相似文献   

8.
Manual analysis of mass spectrometry data is a current bottleneck in high throughput proteomics. In particular, the need to manually validate the results of mass spectrometry database searching algorithms can be prohibitively time-consuming. Development of software tools that attempt to quantify the confidence in the assignment of a protein or peptide identity to a mass spectrum is an area of active interest. We sought to extend work in this area by investigating the potential of recent machine learning algorithms to improve the accuracy of these approaches and as a flexible framework for accommodating new data features. Specifically we demonstrated the ability of boosting and random forest approaches to improve the discrimination of true hits from false positive identifications in the results of mass spectrometry database search engines compared with thresholding and other machine learning approaches. We accommodated additional attributes obtainable from database search results, including a factor addressing proton mobility. Performance was evaluated using publically available electrospray data and a new collection of MALDI data generated from purified human reference proteins.  相似文献   

9.
A wealth of bioinformatics tools and databases has been created over the last decade and most are freely available to the general public. However, these valuable resources live a shadow existence compared to experimental results and methods that are widely published in journals and relatively easily found through publication databases such as PubMed. For the general scientist as well as bioinformaticists, these tools can deliver great value to the design and analysis of biological and medical experiments, but there is no inventory presenting an up-to-date and easily searchable index of all these resources. To remedy this, the BioWareDB search engine has been created. BioWareDB is an extensive and current catalog of software and databases of relevance to researchers in the fields of biology and medicine, and presently consists of 2800 validated entries. AVAILABILITY: BioWareDB is freely available over the Internet at http://www.biowaredb.org/  相似文献   

10.
The Identification and Classification of Bacteria (ICB) database (http:/www.mbio.co.jp/icb) contains currently available information about the DNA gyrase subunit B (gyrB) gene in bacteria. The database is designed to provide the scientific community with a reference point for using gyrB as an evolutionary and taxonomic marker. Nucleic and amino acid sequence data are currently available for over 850 strains, along with alignments at several different taxonomic levels and an exhaustive review of primer selection and background information.  相似文献   

11.
At the Wageningen Laboratory of Plant Breeding, a software package has been developed to query a simple structured database with variety pedigree data. The package, called Peditree, creates a tree-shaped representation of pedigree information and has several visualization and lookup options. Estimates of inbreeding coefficient within a pedigree or coefficients of coancestry among pedigrees can be obtained. Furthermore trait data--if available--can be linked, displayed within the pedigree tree, and used to highlight pedigree entries that comply with set criteria.  相似文献   

12.
It has become standard to evaluate newly devised database search methods in terms of sensitivity and selectivity and to compare them with existing methods. This involves the construction of a suitable evaluation scenario, the execution of the methods, the assessment of their performances, and the presentation of the results. Each of these four phases and their smooth connection usually imposes formidable work. To relieve the evaluator of this burden, a system has been designed with which evaluations can be effected rapidly. It is implemented in the programming language Python whose object-oriented features are used to offer a great flexibility in changing the evaluation design. A graphical user interface is provided which offers the usual amenities such as radio- and checkbuttons or file browsing facilities.  相似文献   

13.
Protein identification is important in proteomics. Proteomic analyses based on mass spectra (MS) constitute innovative ways to identify the components of protein complexes. Instruments can obtain the mass spectrum to an accuracy of 0.01 Da or better, but identification errors are inevitable. This study shows a novel tool, MultiProtIdent, which can identify proteins using additional information about protein-protein interactions and protein functional associations. Both single and multiple Peptide Mass Fingerprints (PMFs) are input to MultiProtIdent, which matches the PMFs to a theoretical peptide mass database. The relationships or interactions among proteins are considered to reduce false positives in PMF matching. Experiments to identify protein complexes reveal that MultiProtIdent is highly promising. The website associated with this study is http://dbms104.csie.ncu.edu.tw/.  相似文献   

14.
<正>Influenza A virus,a highly virulent pathogen that has caused several pandemic events over the course of human history,still remains a major threat to human health at present.The most serious influenza pandemic in recorded history was the 1918 Spanish flu outbreak,which killed about 20-100 million people worldwide(Murray et al.,2006).Also,the H5N1 virus was known for its high  相似文献   

15.
Yang JM  Tung CH 《Nucleic acids research》2006,34(13):3646-3659
As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods. [3D-BLAST is available at http://3d-blast.life.nctu.edu.tw].  相似文献   

16.
MOTIVATION: Due to the recent advances in technology of mass spectrometry, there has been an exponential increase in the amount of data being generated in the past few years. Database searches have not been able to keep with this data explosion. Thus, speeding up the data searches becomes increasingly important in mass-spectrometry-based applications. Traditional database search methods use one-against-all comparisons of a query spectrum against a very large number of peptides generated from in silico digestion of protein sequences in a database, to filter potential candidates from this database followed by a detailed scoring and ranking of those filtered candidates. RESULTS: In this article, we show that we can avoid the one-against-all comparisons. The basic idea is to design a set of hash functions to pre-process peptides in the database such that for each query spectrum we can use the hash functions to find only a small subset of peptide sequences that are most likely to match the spectrum. The construction of each hash function is based on a random spectrum and the hash value of a peptide is the normalized shared peak counts score (cosine) between the random spectrum and the hypothetical spectrum of the peptide. To implement this idea, we first embed each peptide into a unit vector in a high-dimensional metric space. The random spectrum is represented by a random vector, and we use random vectors to construct a set of hash functions called locality sensitive hashing (LSH) for preprocessing. We demonstrate that our mapping is accurate. We show that our method can filter out >95.65% of the spectra without missing any correct sequences, or gain 111 times speedup by filtering out 99.64% of spectra while missing at most 0.19% (2 out of 1014) of the correct sequences. In addition, we show that our method can be effectively used for other mass spectra mining applications such as finding clusters of spectra efficiently and accurately. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

17.
MOTIVATION: A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. RESULTS: CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.  相似文献   

18.

Background  

Mass spectrometry has become a standard method by which the proteomic profile of cell or tissue samples is characterized. To fully take advantage of tandem mass spectrometry (MS/MS) techniques in large scale protein characterization studies robust and consistent data analysis procedures are crucial. In this work we present a machine learning based protocol for the identification of correct peptide-spectrum matches from Sequest database search results, improving on previously published protocols.  相似文献   

19.
While tandem mass spectrometry (MS/MS) is routinely used to identify proteins from complex mixtures, certain types of proteins present unique challenges for MS/MS analyses. The major wheat gluten proteins, gliadins and glutenins, are particularly difficult to distinguish by MS/MS. Each of these groups contains many individual proteins with similar sequences that include repetitive motifs rich in proline and glutamine. These proteins have few cleavable tryptic sites, often resulting in only one or two tryptic peptides that may not provide sufficient information for identification. Additionally, there are less than 14,000 complete protein sequences from wheat in the current NCBInr release. In this paper, MS/MS methods were optimized for the identification of the wheat gluten proteins. Chymotrypsin and thermolysin as well as trypsin were used to digest the proteins and the collision energy was adjusted to improve fragmentation of chymotryptic and thermolytic peptides. Specialized databases were constructed that included protein sequences derived from contigs from several assemblies of wheat expressed sequence tags (ESTs), including contigs assembled from ESTs of the cultivar under study. Two different search algorithms were used to interrogate the database and the results were analyzed and displayed using a commercially available software package (Scaffold). We examined the effect of protein database content and size on the false discovery rate. We found that as database size increased above 30,000 sequences there was a decrease in the number of proteins identified. Also, the type of decoy database influenced the number of proteins identified. Using three enzymes, two search algorithms and a specialized database allowed us to greatly increase the number of detected peptides and distinguish proteins within each gluten protein group.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号