首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of deterministic and stochastic discrete-time epidemic models are analyzed and compared. The discrete-time stochastic models are Markov chains, approximations to the continuous-time models. Models of SIS and SIR type with constant population size and general force of infection are analyzed, then a more general SIS model with variable population size is analyzed. In the deterministic models, the value of the basic reproductive number R0 determines persistence or extinction of the disease. If R0 < 1, the disease is eliminated, whereas if R0 > 1, the disease persists in the population. Since all stochastic models considered in this paper have finite state spaces with at least one absorbing state, ultimate disease extinction is certain regardless of the value of R0. However, in some cases, the time until disease extinction may be very long. In these cases, if the probability distribution is conditioned on non-extinction, then when R0 > 1, there exists a quasi-stationary probability distribution whose mean agrees with deterministic endemic equilibrium. The expected duration of the epidemic is investigated numerically.  相似文献   

2.
新型统计方法和多源、多尺度空间信息数据的产生促进了物种空间分布模型的快速发展。不同的物种空间分布模型在生态学理论的运用以及前提假设上存在差异。选用不同的模型方法和输入数据会带来预测结果的不确定性。对比并集成多个物种空间分布模型,同时利用多组输入数据可降低预测的不确定性,提高物种分布模拟的精度。本文以中国特有种铁杉(Tsuga chinensis)为例,运用基于R语言开发的BioMod软件包对比9个物种空间分布模型对铁杉的模拟效果。最后以曲线下面积(ROC)为权重集成9个模型的模拟结果,产生和筛选最佳的铁杉潜在空间分布图。研究发现随机森林模型(RF)的模拟效果最好,其次是多元适应回归样条函数模型(MARS)和广义相加模型(GAM),模拟效果最差的是表面分布区分室模型(SRE)。模型集成结果显示,最适宜铁杉分布的区域集中在中国的西南及四川盆地周围,其次零星分散于华南和台湾部分地区。这一结果与前人对铁杉自然分布的描述和研究结果较为吻合。研究进一步表明,通过模型的集成能有效地降低由于单个模型所带来的模拟结果不确定性,从而提高模拟的精度和效果。  相似文献   

3.
The generalized Markov-Polya distribution is proposed as a probability model in the ascertainment of a group of individuals through its members who have committed criminal acts. This distribution provides excellent alternatives to the familiar binomial distribution in such studies and includes several distributions as special cases, such as the binomial, quasibinomial, and quasinegative hypergeometric models. This new probability model incorporates the intrinsic effect and an artificial effect for the next member in a group to commit a criminal act. Several results are proved to illustrate the use of this model in segregation analysis. A numerical example illustrates the procedure developed in the present paper and proves the superiority of the model over the Markov-Polya and the binomial probability models.  相似文献   

4.
Phylogenetic comparative methods that incorporate intraspecific variability are relatively new and, so far, not especially widely used in empirical studies. In the present short article we will describe a new Bayesian method for fitting evolutionary models to comparative data that incorporates intraspecific variability. This method differs from an existing likelihood-based approach in that it requires no a priori inference about species means and variances; rather it takes phenotypic values from individuals and a phylogenetic tree as input, and then samples species means and variances, along with the parameters of the evolutionary model, from their joint posterior probability distribution. One of the most novel and intriguing attributes of this approach is that jointly sampling the species means with the evolutionary model parameters means that the model and tree can influence our estimates of species mean trait values, not just the reverse. In the present implementation, we first apply this method to the most widely used evolutionary model for continuously valued phenotypic trait data (Brownian motion). However, the general approach has broad applicability, which we illustrate by also fitting the λ model, another simple model for quantitative trait evolution on a phylogeny. We test our approach via simulation and by analyzing two empirical datasets obtained from the literature. Finally, we have implemented the methods described herein in a new function for the R statistical computing environment, and this function will be distributed as part of the 'phytools' R library.  相似文献   

5.
We put forward a new item response model which is an extension of the binomial error model first introduced by Keats and Lord. Like the binomial error model, the basic latent variable can be interpreted as a probability of responding in a certain way to an arbitrarily specified item. For a set of dichotomous items, this model gives predictions that are similar to other single parameter IRT models (such as the Rasch model) but has certain advantages in more complex cases. The first is that in specifying a flexible two-parameter Beta distribution for the latent variable, it is easy to formulate models for randomized experiments in which there is no reason to believe that either the latent variable or its distribution vary over randomly composed experimental groups. Second, the elementary response function is such that extensions to more complex cases (e.g., polychotomous responses, unfolding scales) are straightforward. Third, the probability metric of the latent trait allows tractable extensions to cover a wide variety of stochastic response processes.  相似文献   

6.
This paper presents age-dependent cell cycle models i.e., models where cell generation time is a random variable given by some distribution function, and the probability of cell division per unit time is a function only of cell age (not, for example, of cell mass). It is shown that there does not exist a stable mass distribution if the cells grow exponentially. In the case of linear growth, conditions for stability of the mass distribution are derived. To show these, the methods different from those considered up till now in the literature, are used. It is also shown that one can consider the cell mass growth as a linear dynamical system with a stochastic perturbation. The sister cell model as an improvement of the Transition Probability Model is derived. Statistical data are obtained for that model, and comparisons are made with some experimental data. As a verification tool, alpha and beta curves, are used.  相似文献   

7.
Induction and elimination of sister chromatid exchanges (SCE) have been simulated during several cell cycles. Two models of SCE elimination are suggested. The first model postulates that the mutagen-induced lesions are not repaired, a lesion being only inherited by one daughter cell after DNA synthesis. According to the second model, lesions are completely repaired at the first S-phase. No SCE induction takes place during next cell cycles. SCE frequency ranges for both models are described by an equation, including the probability distribution function. The best correspondence in experimental and theoretical results was obtained using the model claiming repair of lesions during one cell cycle.  相似文献   

8.
Bayesian inference in ecology   总被引:14,自引:1,他引:13  
Bayesian inference is an important statistical tool that is increasingly being used by ecologists. In a Bayesian analysis, information available before a study is conducted is summarized in a quantitative model or hypothesis: the prior probability distribution. Bayes’ Theorem uses the prior probability distribution and the likelihood of the data to generate a posterior probability distribution. Posterior probability distributions are an epistemological alternative to P‐values and provide a direct measure of the degree of belief that can be placed on models, hypotheses, or parameter estimates. Moreover, Bayesian information‐theoretic methods provide robust measures of the probability of alternative models, and multiple models can be averaged into a single model that reflects uncertainty in model construction and selection. These methods are demonstrated through a simple worked example. Ecologists are using Bayesian inference in studies that range from predicting single‐species population dynamics to understanding ecosystem processes. Not all ecologists, however, appreciate the philosophical underpinnings of Bayesian inference. In particular, Bayesians and frequentists differ in their definition of probability and in their treatment of model parameters as random variables or estimates of true values. These assumptions must be addressed explicitly before deciding whether or not to use Bayesian methods to analyse ecological data.  相似文献   

9.
By using the state space model (Kalman filter model) of the HIV epidemic, in this paper we have developed a general Bayesian procedure to estimate simultaneously the HIV infection distribution, the HIV incubation distribution, the numbers of susceptible people, infective people and AIDS cases. The basic approach is to use the Gibbs sampling method combined with the weighted bootstrap method. We have applied this method to the San Francisco AIDS incidence data from January 1981 to December 1992. The results show clearly that both the probability density function of the HIV infection and the probability density function of the HIV incubation are curves with two peaks. The results of the HIV infection distribution are clearly consistent with the finding by Tan et al. [W.Y. Tan, S.C. Tang, S.R. Lee, Estimation of HIV seroconversion and effects of age in San Francisco homosexual populations, J. Appl. Stat. 25 (1998) 85]. The results of HIV incubation distribution seem to confirm the staged model used by Satten and Longini [G. Satten, I. Longini, Markov chain with measurement error: estimating the 'true' course of marker of the progression of human immunodeficiency virus disease, Appl. Stat. 45 (1996) 275].  相似文献   

10.
A goal of life-history theory has been to understand what combination of demographic traits is maximized by natural selection. In practice, researchers usually choose either density-independent population growth rate, lambda, or lifetime reproductive success, R0 (expected number of offspring produced in a lifetime). Others have shown that the maxima of density-independent lambda and R0 are evolutionarily stable strategies under specific density-dependent conditions: population regulation by equal density dependence among all age classes for lambda and by density dependence on a single age class for R0. Here I extend these connections between density-independent optimization models and density-dependent invasion function models in two ways. First, I derive a new demographic function for which a maximum corresponds to attainability of the equilibrium strategy or stability of the mean rather than stability of the variance of the strategy distribution. Second, I show explicitly a continuous range of cases with maxima between those for the lambda and R0. Graphical and biological interpretations are given for an example model. Finally, exceptions to a putative life-history generality (from lambda and R0 models), that high early-life mortality selects for high iteroparity, are shown.  相似文献   

11.
Mathematical models for the spread of invading plant organisms typically utilize population growth and dispersal dynamics to predict the time-evolution of a population distribution. In this paper, we revisit a particular class of deterministic contact models obtained from a stochastic birth process for invasive organisms. These models were introduced by Mollison (J R Stat Soc 39(3):283, 1977). We derive the deterministic integro-differential equation of a more general contact model and show that the quantity of interest may be interpreted not as population size, but rather as the probability of species occurrence. We proceed to show how landscape heterogeneity can be included in the model by utilizing the concept of statistical habitat suitability models which condense diverse ecological data into a single statistic. As ecologists often deal with species presence data rather than population size, we argue that a model for probability of occurrence allows for a realistic determination of initial conditions from data. Finally, we present numerical results of our deterministic model and compare them to simulations of the underlying stochastic process.  相似文献   

12.
Occupancy models (Ecology, 2002; 83: 2248) were developed to infer the probability that a species under investigation occupies a site. Bayesian analysis of these models can be undertaken using statistical packages such as WinBUGS, OpenBUGS, JAGS, and more recently Stan, however, since these packages were not developed specifically to fit occupancy models, one often experiences long run times when undertaking an analysis. Bayesian spatial single‐season occupancy models can also be fit using the R package stocc. The approach assumes that the detection and occupancy regression effects are modeled using probit link functions. The use of the logistic link function, however, is algebraically more tractable and allows one to easily interpret the coefficient effects of an estimated model by using odds ratios, which is not easily done for a probit link function for models that do not include spatial random effects. We develop a Gibbs sampler to obtain posterior samples from the posterior distribution of the parameters of various occupancy models (nonspatial and spatial) when logit link functions are used to model the regression effects of the detection and occupancy processes. We apply our methods to data extracted from the 2nd Southern African Bird Atlas Project to produce a species distribution map of the Cape weaver (Ploceus capensis) and helmeted guineafowl (Numida meleagris) for South Africa. We found that the Gibbs sampling algorithm developed produces posterior samples that are identical to those obtained when using JAGS and Stan and that in certain cases the posterior chains mix much faster than those obtained when using JAGS, stocc, and Stan. Our algorithms are implemented in the R package, Rcppocc. The software is freely available and stored on GitHub ( https://github.com/AllanClark/Rcppocc ).  相似文献   

13.
基于最大熵原理,针对目前对混交林测树因子概率分布模型研究的不足,提出了联合最大熵概率密度函数,该函数具有如下特点:1)函数的每一组成部分都是相互联系的最大熵函数,故可以综合混交林各主要组成树种测树因子的概率分布信息;2)函数是具有双权重的概率表达式,能体现混交林结构复杂的特点,在最大限度地利用混交林每一主要树种测树因子概率分布信息的同时,还能精确地全面反映混交林测树因子概率分布规律;3)函数的结构简洁、性能优良.用天目山自然保护区的混交林样地对混交林测树因子概率分布模型进行了应用与检验,结果表明:模型的拟合精度(R2=0.9655)与检验精度(R2=
0.9772)都较高.说明联合最大熵概率密度函数可以作为混交林测树因子概率分布模型,为全面了解混交林林分结构提供了一种可行的方法.  相似文献   

14.
We investigate the properties of a simple discrete time stochastic epidemic model. The model is Markovian of the SIR type in which the total population is constant and individuals meet a random number of other individuals at each time step. Individuals remain infectious for R time units, after which they become removed or immune. Individual transition probabilities from susceptible to diseased states are given in terms of the binomial distribution. An expression is given for the probability that any individuals beyond those initially infected become diseased. In the model with a finite recovery time R, simulations reveal large variability in both the total number of infected individuals and in the total duration of the epidemic, even when the variability in number of contacts per day is small. In the case of no recovery, R=infinity, a formal diffusion approximation is obtained for the number infected. The mean for the diffusion process can be approximated by a logistic which is more accurate for larger contact rates or faster developing epidemics. For finite R we then proceed mainly by simulation and investigate in the mean the effects of varying the parameters p (the probability of transmission), R, and the number of contacts per day per individual. A scale invariant property is noted for the size of an outbreak in relation to the total population size. Most notable are the existence of maxima in the duration of an epidemic as a function of R and the extremely large differences in the sizes of outbreaks which can occur for small changes in R. These findings have practical applications in controlling the size and duration of epidemics and hence reducing their human and economic costs.  相似文献   

15.
Moment closure approximations are used to provide analytic approximations to non-linear stochastic population models. They often provide insights into model behaviour and help validate simulation results. However, existing closure schemes typically fail in situations where the population distribution is highly skewed or extinctions occur. In this study we address these problems by introducing novel second-and third-order moment closure approximations which we apply to the stochastic SI and SIS epidemic models. In the case of the SI model, which has a highly skewed distribution of infection, we develop a second-order approximation based on the beta-binomial distribution. In addition, a closure approximation based on mixture distribution is developed in order to capture the behaviour of the stochastic SIS model around the threshold between persistence and extinction. This mixture approximation comprises a probability distribution designed to capture the quasi-equilibrium probabilities of the system and a probability mass at 0 which represents the probability of extinction. Two third-order versions of this mixture approximation are considered in which the log-normal and the beta-binomial are used to model the quasi-equilibrium distribution. Comparison with simulation results shows: (1) the beta-binomial approximation is flexible in shape and matches the skewness predicted by simulation as shown by the stochastic SI model and (2) mixture approximations are able to predict transient and extinction behaviour as shown by the stochastic SIS model, in marked contrast with existing approaches. We also apply our mixture approximation to approximate a likehood function and carry out point and interval parameter estimation.  相似文献   

16.
Summary The theories of the stochastic processes are applied to construct mathematical models for describing the processes of population change as an ever changing the distribution of individuals in a space. These models consist of two mathematical expressions which are named the spatial distribution probability function (Q n (t)) and the transition probability function (P i,n (t)), respectively. The former gives the spatial distribution at any future time. Given an actual spatial distribution at any time, the latter function converts it to the spatial distribution at any future time. According to these models, we discussed the time sequence of the mean crowding-mean density relation (Iwao andKuno, 1971) in some population processes such as mortality, birth, immigration, growth, and their combined processes.  相似文献   

17.
Force-clamp spectroscopy reveals the unfolding and disulfide bond rupture times of single protein molecules as a function of the stretching force, point mutations, and solvent conditions. The statistics of these times reveal whether the protein domains are independent of one another, the mechanical hierarchy in the polyprotein chain, and the functional form of the probability distribution from which they originate. It is therefore important to use robust statistical tests to decipher the correct theoretical model underlying the process. Here, we develop multiple techniques to compare the well-established experimental data set on ubiquitin with existing theoretical models as a case study. We show that robustness against filtering, agreement with a maximum likelihood function that takes into account experimental artifacts, the Kuiper statistic test, and alignment with synthetic data all identify the Weibull or stretched exponential distribution as the best fitting model. Our results are inconsistent with recently proposed models of Gaussian disorder in the energy landscape or noise in the applied force as explanations for the observed nonexponential kinetics. Because the physical model in the fit affects the characteristic unfolding time, these results have important implications on our understanding of the biological function of proteins.  相似文献   

18.
Aim (1) To increase awareness of the challenges induced by imperfect detection, which is a fundamental issue in species distribution modelling; (2) to emphasize the value of replicate observations for species distribution modelling; and (3) to show how ‘cheap’ checklist data in faunal/floral databases may be used for the rigorous modelling of distributions by site‐occupancy models. Location Switzerland. Methods We used checklist data collected by volunteers during 1999 and 2000 to analyse the distribution of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly in Switzerland. We used data from repeated visits to 1‐ha pixels to derive ‘detection histories’ and apply site‐occupancy models to estimate the ‘true’ species distribution, i.e. corrected for imperfect detection. We modelled blue hawker distribution as a function of elevation and year and its detection probability of elevation, year and season. Results The best model contained cubic polynomial elevation effects for distribution and quadratic effects of elevation and season for detectability. We compared the site‐occupancy model with a conventional distribution model based on a generalized linear model, which assumes perfect detectability (p = 1). The conventional distribution map looked very different from the distribution map obtained using site‐occupancy models that accounted for the imperfect detection. The conventional model underestimated the species distribution by 60%, and the slope parameters of the occurrence–elevation relationship were also underestimated when assuming p = 1. Elevation was not only an important predictor of blue hawker occurrence, but also of the detection probability, with a bell‐shaped relationship. Furthermore, detectability increased over the season. The average detection probability was estimated at only 0.19 per survey. Main conclusions Conventional species distribution models do not model species distributions per se but rather the apparent distribution, i.e. an unknown proportion of species distributions. That unknown proportion is equivalent to detectability. Imperfect detection in conventional species distribution models yields underestimates of the extent of distributions and covariate effects that are biased towards zero. In addition, patterns in detectability will erroneously be ascribed to species distributions. In contrast, site‐occupancy models applied to replicated detection/non‐detection data offer a powerful framework for making inferences about species distributions corrected for imperfect detection. The use of ‘cheap’ checklist data greatly enhances the scope of applications of this useful class of models.  相似文献   

19.
Bivariate cumulative damage models are proposed where the responses given the damages are independent random variables. The bivariate damage process can be either bivariate Poisson or bivariate gamma. A bivariate continuous cumulative damage model is investigated in which the responses given the damages have gamma distributions. In this case evaluation of the joint density function and bivariate tail probability function is facilitated by expanding the gamma distributions of the conditional responses by Laguerre polynomials. This approach also leads to evaluation of associated survival models. Moments and estimating equations are discussed. In addition, a bivariate discrete cumulative damage model is investigated in which the responses given the damages have a distribution chosen from a class that includes the negative binomial, the Neyman Type‐A, the Polya‐Aeppli, and the Lagrangian Poisson. Probabilities are obtained from recursive formulas which do not involve cancellation error as all quantities are non‐negative. Moments and estimating equations are presented for these models also. The continuous and the discrete models are applied to describe the rise of systolic and diastolic blood pressure with age.  相似文献   

20.
Neural networks are investigated for predicting the magnitude of the largest seismic event in the following month based on the analysis of eight mathematically computed parameters known as seismicity indicators. The indicators are selected based on the Gutenberg-Richter and characteristic earthquake magnitude distribution and also on the conclusions drawn by recent earthquake prediction studies. Since there is no known established mathematical or even empirical relationship between these indicators and the location and magnitude of a succeeding earthquake in a particular time window, the problem is modeled using three different neural networks: a feed-forward Levenberg-Marquardt backpropagation (LMBP) neural network, a recurrent neural network, and a radial basis function (RBF) neural network. Prediction accuracies of the models are evaluated using four different statistical measures: the probability of detection, the false alarm ratio, the frequency bias, and the true skill score or R score. The models are trained and tested using data for two seismically different regions: Southern California and the San Francisco bay region. Overall the recurrent neural network model yields the best prediction accuracies compared with LMBP and RBF networks. While at the present earthquake prediction cannot be made with a high degree of certainty this research provides a scientific approach for evaluating the short-term seismic hazard potential of a region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号