首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone remodeling is a process that occurs continuously in a seemingly inactive tissue like bone. Because of decreased vitamin D synthesis, phosphorus retention and decreased calcium blood concentration, patients with chronic renal failure (CRF) develop secondary hyperparathyroidism. Elevated PTH levels shifts balance between osteoblast and osteoclast activity in favor of osteoclast activity and, therefore, bone resorption. Bone metabolic disorder that affects patients with CRF is called renal osteodystrophy (ROD). We presume that renal transplantation reverses bone metabolism disorder and our goal was to establish whether osteoblast and osteoclast activity returns to the levels of healthy individuals.  相似文献   

2.
The contribution of remodeling-based bone formation coupled to osteoclast activity versus modeling-based bone formation that occurs independently of resorption, to the anabolic effect of PTH remains unclear. We addressed this question using transgenic mice with activated PTH receptor signaling in osteocytes that exhibit increased bone mass and remodeling, recognized skeletal effects of PTH elevation. Direct inhibition of bone formation was accomplished genetically by overexpressing the Wnt antagonist Sost/sclerostin; and resorption-dependent bone formation was inhibited pharmacologically with the bisphosphonate alendronate. We found that bone formation induced by osteocytic PTH receptor signaling on the periosteal surface depends on Wnt signaling but not on resorption. In contrast, bone formation on the endocortical surface results from a combination of Wnt-driven increased osteoblast number and resorption-dependent osteoblast activity. Moreover, elevated osteoclasts and intracortical/calvarial porosity is exacerbated by overexpressing Sost and reversed by blocking resorption. Furthermore, increased cancellous bone is abolished by Wnt inhibition but further increased by blocking resorption. Thus, resorption induced by PTH receptor signaling in osteocytes is critical for full anabolism in cortical bone, but tempers bone gain in cancellous bone. Dissecting underlying mechanisms of PTH receptor signaling would allow targeting actions in different bone compartments, enhancing the therapeutic potential of the pathway.  相似文献   

3.
Renal osteodystrophy (ROD) is highly prevalent in chronic kidney disease (CKD). Because most patients with ROD are asymptomatic in the early stage and bone biopsy remains not a routine procedure in many clinical settings; therefore, several biochemical parameters may help to identify the existence of ROD. C-type natriuretic peptide (CNP) is considered as a positive regulator of bone formation. Both urinary excretion and renal expression of CNP are markedly up-regulated in the early stages of CKD, whereas they are still progressively declined accompanied by CKD progression, which invites speculation that the progressive decline of CNP may contribute, in part, to the pathogenesis of ROD. In addition, fibroblast growth factor (FGF)-23 is a bone-derived endocrine regulator of phosphate homeostasis. The elevation of serum FGF-23 has been recognized as a common feature in CKD to maintain normophosphatemia at the expense of declining 1,25-dihydroxyvitamin D values. Since the effects of CNP and FGF-23 on bone formation appear to oppose each other, it is reasonable to propose a direct interaction of their signaling pathways during the progression of ROD. CNP and FGF-23 act through a close or reciprocal pathway and are in agreement with recent studies demonstrating a down-regulatory role of the mitogen-activated protein kinase activity by CNP. The specific node may act at the level of RAF-1 through the activation of cyclic guanosine monophosphate-dependent protein kinases II.  相似文献   

4.
Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively.  相似文献   

5.
Multiple signaling pathways participate in the regulation of bone remodeling, and pathological negative balance in the regulation results in osteoporosis. However, interactions of signaling pathways that act comprehensively in concert to maintain bone mass are not fully understood. We investigated roles of parathyroid hormone receptor (PTH/PTHrP receptor) signaling in osteoblasts in unloading-induced bone loss using transgenic mice. Hind limb unloading by tail suspension reduced bone mass in wild-type mice. In contrast, signaling by constitutively active PTH/PTHrP receptor (caPPR), whose expression was regulated by the osteoblast-specific Col1a1 promoter (Col1a1-caPPR), suppressed unloading-induced reduction in bone mass in these transgenic mice. In Col1a1-caPPR transgenic (Tg) mice, hind limb unloading suppressed bone formation parameters in vivo and mineralized nodule formation in vitro similarly to those observed in wild-type mice. In addition, serum osteocalcin levels and mRNA expression levels of type I collagen, Runx2 and Osterix in bone were suppressed by unloading in both wild-type mice and Tg mice. However, in contrast to unloading-induced enhancement of bone resorption parameters in wild-type mice, Col1a1-caPPR signaling suppressed, rather than enhanced, osteoclast number and osteoclast surface as well as urinary deoxypyridinoline excretion upon unloading. Col1a1-caPPR signaling also suppressed mRNA expression levels of RANK and c-fms in bone upon unloading. Although the M-CSF and monocyte chemoattractant protein 1 (MCP-1) mRNA levels were enhanced in control Tg mice, these levels were suppressed in unloaded Tg mice. These results indicated that constitutive activation of PTH/PTHrP receptor signaling in osteoblastic cells suppresses unloading-induced bone loss specifically through the regulation of osteoclastic activity.  相似文献   

6.
7.
8.
A brief historical perspective reviews studies that tested the hypotheses that PTH induces an anabolic effect in bone, and that the gain in trabecular bone was not at the expense of cortical bone. As PTH reduces the risk of fracture in humans with osteoporosis, the myths that postulated cortical bone porosity and increased bone turnover might increase fracture risk, are examined in the light of data from animals with osteonal bone. These show that PTH "braces" the bone by immediately stimulating bone formation at modeling and remodeling sites. Increased porosity is a late event, occurring close to the neutral axis of bone where detrimental effects on biomechanical strength are unlikely. PTH increases bone mass by stimulating modeling in favor of bone formation, and restructures bone geometry via more extensive remodeling. Cell and genetic events induced in bone by PTH have been studied in rats and are time- and regimen-dependent. In addition to the stimulation of gene expression for matrix proteins, early genes upregulated by once daily PTH are those associated with matrix degradation and induction of osteoclastic resorption, indicative of possible mechanisms by which PTH may increase bone turnover. Boneforming surfaces are increased due to increased numbers of newly differentiated osteoblasts and retention of older osteoblasts by inhibition of apoptosis. After stopping treatment, the number of osteoblasts is quickly reduced and bone turnover returns to that of controls, slowing both bone formation and resorption. The increased proportion of bone undergoing PTH-induced remodeling requires maturation and completion of mineralization. These responses may explain the delay in reversal of gains in bone mass and biomechanical properties for at least two turnover cycles following withdrawal in large animal models. Thus, the skeletal benefits of PTH extend beyond the active treatment phase.  相似文献   

9.
10.
To investigate the role of G protein-coupled receptor kinases (GRKs) in regulating bone formation in vivo, we overexpressed the potent G protein-coupled receptor (GPCR) regulator GRK2 in osteoblasts, using the osteocalcin gene-2 promoter to target expression to osteoblastic cells. Using the parathyroid hormone (PTH) receptor as a model system, we found that overexpression of GRK2 in osteoblasts attenuated PTH-induced cAMP generation by mouse calvaria ex vivo. This decrease in GPCR responsiveness was associated with a reduction in bone mineral density (BMD) in transgenic (TG) mice compared with non-TG littermate controls. The decrease in BMD was most prominent in trabecular-rich lumbar spine and was not observed in cortical bone of the femoral shaft. Quantitative computed tomography indicated that the loss of trabecular bone was due to a decrease in trabecular thickness, with little change in trabecular number. Histomorphometric analyses confirmed the decrease in trabecular bone volume and demonstrated reduced bone remodeling, as evidenced by a decrease in osteoblast numbers and osteoblast-mediated bone formation. Osteoclastic activity also appeared to be reduced because urinary excretion of the osteoclastic activity marker deoxypyridinoline was decreased in TG mice compared with control animals. Consistent with reduced coupling of osteoblast-mediated bone formation to osteoclastic bone resorption, mRNA levels of both osteoprotegrin and receptor activator of NF-kappaB ligand were altered in calvaria of TG mice in a pattern that would promote a low rate of bone remodeling. Taken together, these data suggest that enhancing GRK2 activity and consequently reducing GPCR activity in osteoblasts produces a low bone-turnover state that reduces bone mass.  相似文献   

11.
The clinical findings that alendronate blunted the anabolic effect of human parathyroid hormone (PTH) on bone formation suggest that active resorption is involved and enhances the anabolic effect. PTH signals via its receptor on the osteoblast membrane, and osteoclasts are impacted indirectly via the products of osteoblasts. Microarray with RNA from rats injected with human PTH or vehicle showed a strong association between the stimulation of monocyte chemoattractant protein-1 (MCP-1) and the anabolic effects of PTH. PTH rapidly and dramatically stimulated MCP-1 mRNA in the femora of rats receiving daily injections of PTH or in primary osteoblastic and UMR 106-01 cells. The stimulation of MCP-1 mRNA was dose-dependent and a primary response to PTH signaling via the cAMP-dependent protein kinase pathway in vitro. Studies with the mouse monocyte cell line RAW 264.7 and mouse bone marrow proved that osteoblastic MCP-1 can potently recruit osteoclast monocyte precursors and facilitate receptor activator of NF-kappaB ligand-induced osteoclastogenesis and, in particular, enhanced fusion. Our model suggests that PTH-induced osteoblastic expression of MCP-1 is involved in recruitment and differentiation at the stage of multinucleation of osteoclast precursors. This information provides a rationale for increased osteoclast activity in the anabolic effects of PTH in addition to receptor activator of NF-kappaB ligand stimulation to initiate greater bone remodeling.  相似文献   

12.
《Endocrine practice》2008,14(1):18-27
ObjectiveTo review approved treatment options for secondary hyperparathyroidism (SHPT) in patients with stages 3 and 4 chronic kidney disease (CKD).MethodsRecently published data on the diagnosis and treatment of SHPT in patients with CKD were critically assessed.ResultsEarly detection of SHPT is critical for effective treatment. Approximately 40% of patients with stage 3 CKD and 80% of patients with stage 4 have SHPT due to low serum 1,25-dihydroxyvitamin D levels. Appropriate treatment involves suppression of parathyroid hormone (PTH) to normal levels with active vitamin D therapy and phosphate binders. Ergocalciferol or cholecalciferol should be used to correct 25-hydroxyvitamin D levels either before or during active vitamin D therapy. Active vitamin D analogues include calcitriol, doxercalciferol, and paricalcitol. Calcitriol is effective, but has a narrow therapeutic window at higher doses because of hypercalcemia and hyperphosphatemia, which require frequent monitoring. Doxercalciferol is also effective, but has been associated with significant elevations in serum phosphorus requiring greater use of oral phosphate binders. Paricalcitol effectively suppresses PTH with minimal impact on serum calcium and phosphorus. Limited data exist on the use of cinacalcet in treating SHPT in stages 3 and 4 CKD, and it is only approved for use in patients receiving dialysis.ConclusionSHPT is an early and major complication of CKD. Treatment involves suppression of PTH to prevent metabolic bone disease, bone loss, and metabolic complications that may result in marked morbidity and mortality. Early detection of elevated PTH levels with appropriate intervention using active vitamin D therapy, even in the absence of elevated serum phosphorus and reduced serum calcium, is critical. (Endocr Pract. 2008;14:18-27)  相似文献   

13.
Wu X  Pang L  Lei W  Lu W  Li J  Li Z  Frassica FJ  Chen X  Wan M  Cao X 《Cell Stem Cell》2010,7(5):571-580
The anabolic effects of parathyroid hormone (PTH) on bone formation are impaired by concurrent use of antiresorptive drugs. We found that the release of active transforming growth factor (TGF)-β1 during osteoclastic bone resorption is inhibited by alendronate. We showed that mouse Sca-1-positive (Sca-1(+)) bone marrow stromal cells are a skeletal stem cell subset, which are recruited to bone remodeling sites by active TGF-β1 in response to bone resorption. Alendronate inhibits the release of active TGF-β1 and the recruitment of Sca-1(+) skeletal stem cells for the bone formation. The observation was validated in a Tgfb1(-/-) mouse model, in which the anabolic effects of PTH on bone formation are diminished. The PTH-stimulated recruitment of injected mouse Sca-1(+) cells to the resorptive sites was inhibited by alendronate. Thus, inhibition of active TGF-β1 release by alendronate reduces the recruitment of Sca-1(+) skeletal stem cells and impairs the anabolic action of PTH in bone.  相似文献   

14.
Interleukin-6, synthesized by osteoblasts in response to PTH, stimulates osteoclastogenesis and bone resorption in vitro, and it has been implicated in the pathogenesis of bone loss in several clinical situations. The aim of this study was to evaluate whether serum levels of interleukin-6 were increased in patients with renal osteodystrophy, and to investigate the possible relationships between serum interleukin-6 and PTH levels on one hand, and serum interleukin-6 and bone remodeling markers on the other. Serum interleukin-6 (IL-6), intact PTH, osteocalcin, bone alkaline phosphatase (BAP) and carboxyterminal telopeptide of Type 1 collagen (ICTP) were measured in 86 uremic patients. IL-6 (median [range] 16.5 [1.0-430] pg/ml), PTH (279.8 [11-2004] pg/ml), osteocalcin (143.8 [8-921] ng/ml), BAP (20.9 [6-169] U/I) and ICTP (38.8 [1.5-181.5] microg/l) were higher than normal. IL-6 levels correlated with PTH (r= 0.22, p = 0.04) and with ICTP (r = 0.31, p = 0.004). A stronger correlation was found between PTH and circulating bone remodeling markers (r = 0.66 for osteocalcin, r = 0.56 for BAP, and r = 0.39 for ICTP). The correlation between PTH and IL-6 was stronger in those patients (n = 15) with severe secondary hyperparathyroidism (r= 0,71, p = 0.003). On the other hand, in the group of patients (n = 41) with PTH lower than 250 pg/ml, there was no correlation between IL-6 and PTH, while IL-6 correlated with ICTP (r = 0.44, p = 0.006). Serum IL-6 correlates with ICTP which suggests that it may mediate bone resorption in renal osteodystrophy.  相似文献   

15.
The increased vascular calcification, cardiovascular morbidity, and mortality in chronic kidney disease (CKD) patients has been associated with disturbances in mineral-bone metabolism. In order to determine markers of the vascular calcification frequently observed in these patients, blood samples of elderly male and female hemodialysis CKD patients were used to measure serum levels of: osteoprotegerin (OPG), total soluble receptor activator of nuclear factor-κB ligand (sRANKL), and fetuin-A by enzyme immunoassay; tartrate-resistant acid phosphatase (TRACP-5b), and bone-specific alkaline phosphatase (BAP) by immunoenzymometric assay; osteocalcin (OC) by ELISA; iPTH by immunoradiometric assay; 25(OH)D3 and 1,25(OH)2D3, by I125 radioimmunoassay; and calcium and phosphorus by photometric assay. Serum OPG, BAP, iPTH, phosphorus, and OC levels were higher and serum 25(OH)D3, 1,25(OH)2D3, and fetuin-A levels lower in both male and female CKD patients than in their respective controls. Our results indicate that the bone formation and resorption parameters are altered in elderly male and female hemodialysis CKD patients. These changes may lead to vascular calcifications and cardiovascular complications, given that elevated OPG and OC levels and reduced fetuin-A levels are associated with cardiovascular events.  相似文献   

16.
The mechanisms behind the influence of PHPT on the skeleton are closely connected with bone turnover. Throughout life, the skeleton is continuously renewed by bone remodeling, a process which serves the purpose of repairing damaged bone and adapting the skeleton to changes in physical load. In this process, old bone is removed by osteoclastic resorption and new bone is laid down by osteoblastic formation. Bone mass increases with growth in the first decades of life, and around the age of 30 years the peak bone mass is reached. Thereafter, as a result of mechanisms involving bone remodeling, a net bone loss is seen: 1) A reversible bone loss because of increase in the remodeling space, i.e., the amount of bone resorped but not yet reformed during the remodeling cycle. This mechanism leads to decrease in average trabecular thickness and cortical width, and to increase in cortical porosity. 2) An irreversible bone loss caused by negative bone balance, where the amount of bone formed by the osteoblasts is exceeded by the amount of bone resorbed by the osteoclasts at the same remodeling site. Consequently, progressive thinning of trabecular elements, reduced cortical width and increased cortical porosity is seen. 3) Finally, perforation of trabecular plates by deep resorption lacunae leads to complete irreversible removal of structural bone components. Parathyroid hormone, together with vitamin D, are the principal modulators in calcium homeostasis. The main actions of PTH are executed in bone and kidneys. In the kidneys, PTH increases the tubular re-absorption of calcium, thereby tending to increase serum calcium. PTH also induces increased conversion of 25(OH)-D to 1,25(OH)2-D. This last action, enhances intestinal calcium absorption and increased skeletal calcium mobilization, which further adds to the circulating calcium pool. In bone, the "acute" regulatory actions of PTH on serum calcium are probably accompliced via activation of osteocytes and lining cells. A second mechanism of PTH in bone is the regulation of bone remodeling. The action seems to be an increased recruitment from osteoblastic precursor cells and activation of mature osteoclasts. It is supposed that these responses are predominantly mediated indirectly through actions on osteoblast-like or nonosteoblast-like stromal cells, as osteoclasts themselves to not have PTH receptors. Bone metabolism and bone mass are studied by biochemical bone markers, bone histomorphometry, and densitometry. As bone markers and bone histomorphometry give information on bone metabolism from different points of view, these methods are preferably combined. Histomorphometry gives detailed information about bone turnover on cellular level, the whole remodeling sequence is described, and the bone balance can be calculated. However, they focus on a small volume, and may, therefore, not be representative for the whole skeleton. On the other hand, studies of bone markers supply general information about turnover in the whole skeleton, but they do not give facts on the bone turnover on the cellular or tissue level and bone balance. Bone densitometry is the principal method in studying bone mass, but valuable information concerning bone structure also comes from histomorphometry. Bone remodeling is considerably increased in PHPT. Studies of bone markers show increase in both resorptive and formative markers, and the increases seem to be of equivalent size. This is in agreement with histomorphometric findings and shows that the coupling between resorption and formation is preserved. By histomorphometry on iliac crest biopsies, trabecular bone remodeling is found increased by 50%, judged by the increase in activation frequency; a measure of how often new remodeling is initiated on the trabecular bone surface. In PHPT, such remodeling activity is repeated about once every year. Reconstruction of the whole remodeling sequence does not show major deviations in lengths of the resorptive and formative periods compared to normal. Furthermore, the amount of bone removed by the osteoclasts during the resorptive phase is matched by the amount of new bone formed by the osteoblasts leading to a bone balance very close to zero. Compared with trabecular bone, the turnover rate in cortical bone is considerably lower, around 10%. Remodeling of the cortical bone takes place at the endocortical, the pericortical, and the Haversian surfaces. Endocortical bone remodeling activities are very similar to trabecular remodeling activities with good correlation between individual parameters. Periosteal remodeling activity is negligible in PHPT, as it is in the normal state. Cortical porosity, which reflects the remodeling activity on the Haversian surface, is increased by 30-65% in PHPT. (ABSTRACT TRUNCATED)  相似文献   

17.
To determine the parathyroid hormone (PTH) action on kidney and bone by high phosphorus (P) diet, this study investigated PTH/PTH-related peptide (PTHrP) receptor mRNA expression in 6-week-old parathyroidectomized (PTX) rats received constant amount of PTH. To maintain serum PTH levels equally to sham operated rats, PTX rats were constantly exposed to rPTH (1-34) and fed a control diet (0.3% P) and a high P diet (1.2% P) for 7 days, respectively. There were no significant differences in serum PTH (1-34) concentration in rats fed the control diet. In sham groups, serum PTH concentrations, both (1-84) and (1-34) fragments, were increased in rats fed the high P diet than in rats fed the control diet. Urinary excretions of P and C-terminal telopeptides of type I collagen were significantly increased in both PTX and sham rats by the high P diet. PTH/PTHrP receptor mRNA expression in kidney and femur was not changed in both PTX and sham rats by the high P diet. In conclusion, high P diet did not change PTH action in PTX rats and increased urinary excretion of P and bone resorption regardless of PTH action.  相似文献   

18.
Since bone resorption and formation by continuous and intermittent parathyroid hormone (PTH) treatments involve various types of cells in bone, this study examined the underlying mechanism by combining culture systems using mouse primary calvarial osteoblasts and bone marrow cells. The PTH/PTHrP receptor (PTH1R) expression and the cAMP accumulation in response to PTH were increased in accordance with the differentiation of osteoblasts. Osteoclast formation was strongly induced by continuous PTH treatment in the monolayer co‐culture of osteoblasts and bone marrow cells, which was associated with RANKL expression in differentiated osteoblasts. Bone formation determined by ALP activity and the type I collagen mRNA expression was stimulated by intermittent PTH treatment in the monolayer co‐culture and in the bone marrow cell layer of the separated co‐culture in a double chamber dish, but not in the culture of bone marrow cells alone. The stimulation in the separated co‐culture, accompanied by IGF‐I production by osteoblasts, was abolished when bone marrow cells were derived from knockout mice of insulin‐receptor substrate‐1 (IRS‐1?/?) or when osteoblasts were from PTH1R?/? mice. We conclude that differentiated osteoblasts are most likely the direct target of both continuous and intermittent PTH, while bone marrow cells are likely the effector cells. The osteoblasts stimulated by continuous PTH express RANKL which causes osteoclastogenesis from the precursors in bone marrow via cell‐to‐cell contact, leading to bone resorption; while the osteoblasts stimulated by intermittent PTH secrete IGF‐I which activates IRS‐1 in osteoblast precursors in bone marrow via a paracrine mechanism, leading to bone formation. J. Cell. Biochem. 109: 755–763, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Farach-Carson MC 《Steroids》2001,66(3-5):357-361
1alpha,25-Dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] treatment of osteoblastic cells elicits a series of measurable responses that include both rapid, membrane-initiated effects and longer-term nuclear receptor-mediated effects. Structural analogs have been identified and characterized that selectively activate subsets of these pathways. Two analogs from over 35 that have been tested were chosen for this comparison because they activate non-overlapping response pathways, presumably representing either membrane-initiated or nuclear receptor-initiated activities. Compound AT [25(OH)-16ene-23yne-D(3)] lacks the 1-hydroxyl essential for interacting with the nuclear receptor, but triggers Ca(2+) influx through plasma membrane Ca(2+) channels, augments parathyroid hormone (PTH)-induced Ca(2+) signals, dephosphorylates the matrix protein osteopontin (OPN), and along with PTH stimulates release of calcium from calvaria in organ culture. Compound BT [1alpha,24(OH)(2)-22ene-24cyclopropyl-D(3)] does not elicit any of the rapid responses or enhance PTH-induced bone resorption, but binds to the nuclear receptor for 1alpha,25(OH)(2)D(3) and increases steady state mRNA levels of both OPN and osteocalcin over a 48 h period. Together, these two analogs recapitulate all of the known actions of 1alpha,25(OH)(2)D(3) on osteoblasts. Based on these findings, we conclude that Ca(2+) release from bone stimulated by 1alpha,25(OH)(2)D(3) and PTH is related to the rapid, membrane-initiated actions and is not likely to involve binding to the nuclear receptor for 1alpha,25(OH)(2)D(3). Longer term stimulation of bone formation by 1alpha,25(OH)(2)D(3), however, appears to involve solely the nuclear receptor-mediated effects. These findings support our model of 1alpha,25(OH)(2)D(3) as a coupling factor for bone resorption and formation during bone remodeling.  相似文献   

20.
Systemic hormonal control exerts its effect through the regulation of local target tissues, which in turn regulate upstream signals in a feedback loop. The parathyroid hormone (PTH) axis is a well defined hormonal signaling system that regulates calcium levels and bone metabolism. To understand the interplay between systemic and local signaling in bone, we examined the effects of deficiency of the bone matrix protein osteopontin (OPN) on the systemic effects of PTH specifically within osteoblastic cell lineages. Parathyroid hormone receptor (PPR) transgenic mice expressing a constitutively active form of the receptor (caPPR) specifically in cells of the osteoblast lineage have a high bone mass phenotype. In these mice, OPN deficiency further increased bone mass. This increase was associated with conversion of the major intertrabecular cell population from hematopoietic cells to stromal/osteoblastic cells and parallel elevations in histomorphometric and biochemical parameters of bone formation and resorption. Treatment with small interfering RNA (siRNA) for osteopontin enhanced H223R mutant caPPR-induced cAMP-response element (CRE) activity levels by about 10-fold. Thus, in addition to the well known calcemic feedback system for PTH, local feedback regulation by the bone matrix protein OPN also plays a significant role in the regulation of PTH actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号