首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conservation and management of black-tailed prairie dogs (Cynomys ludovicianus) have been contentious issues in grasslands of central North America for much of the past century, primarily because of the perception that they compete with livestock for forage. Studies quantifying the magnitude of competition between prairie dogs and cattle are difficult to conduct because of the large spatial and long temporal scales needed to quantify how competition varies in response to interannual variation in precipitation and prairie dog abundance. We examined variation in mass gains of yearling steers in shortgrass steppe of northeastern Colorado, USA, with and without prairie dogs from 2008–2019, a period that encompassed a full cycle in prairie dog abundance from a nadir following plague-induced population collapse, to peak abundance following population recovery, to plague-induced population lows again. Analyses of cattle grazing distribution with global positioning system (GPS)-collars revealed preferential grazing on colonies following a period of unusually high vegetation production, and preferential grazing off colonies following a period of rapid vegetation senescence, but these patterns were not clearly related to cattle mass gains. Across all 12 years of the study, average daily mass gain (ADG) during the growing season was 0.97 kg/steer/day in pastures where prairie dogs were controlled annually, and 0.95 kg/steer/day in pastures where they were not. Average daily mass gain was a quadradic function of precipitation and a linear function of prairie dog occupancy within a pasture, with a generalized linear mixed model predicting an 8.0% decrease in ADG as prairie dog occupancy increased from 0 to 60% of a pasture with average growing-season precipitation. We did not detect a significant interaction between precipitation and prairie dog occupancy, but one limitation of our study is that the only drought year (2012) occurred when prairie dogs occupied low percentages (10–25%) of the study pastures. Prairie dogs had a small but detectable negative effect on cattle mass gains during the growing season in shortgrass steppe. The magnitude of this effect can be used by managers in combination with market conditions and the spatial extent of prairie dog colonies to estimate economic effects of prairie dogs on livestock operations. © 2021 The Wildlife Society. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

2.
One of the most important conservation issues in ecology is the imperiled state of grassland ecosystems worldwide due to land conversion, desertification, and the loss of native populations and species. The Janos region of northwestern Mexico maintains one of the largest remaining black-tailed prairie dog (Cynomys ludovicianus) colony complexes in North America and supports a high diversity of threatened and endangered species. Yet, cattle grazing, agriculture, and drought have greatly impacted the region. We evaluated the impact of human activities on the Janos grasslands, comparing changes in the vertebrate community over the last two decades. Our results reveal profound, rapid changes in the Janos grassland community, demonstrating large declines in vertebrate abundance across all taxonomic groups. We also found that the 55,000 ha prairie dog colony complex has declined by 73% since 1988. The prairie dog complex has become increasingly fragmented, and their densities have shown a precipitous decline over the years, from an average density of 25 per ha in 1988 to 2 per ha in 2004. We demonstrated that prairie dogs strongly suppressed woody plant encroachment as well as created open grassland habitat by clearing woody vegetation, and found rapid invasion of shrubland once the prairie dogs disappeared from the grasslands. Comparison of grasslands and shrublands showed markedly different species compositions, with species richness being greatest when both habitats were considered together. Our data demonstrate the rapid decline of a grassland ecosystem, and documents the dramatic loss in biodiversity over a very short time period concomitant with anthropogenic grassland degradation and the decline of a keystone species.  相似文献   

3.
Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single‐place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black‐tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black‐tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off‐colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White‐tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black‐tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black‐tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing‐tolerant shortgrasses at both complexes. Variation in modification of vegetation structure may be understood in terms of the responses of different dominant perennial grasses to intense defoliation and differences in foraging behavior among prairie dog species. Spatial variation in the engineering role of prairie dogs suggests spatial variation in their keystone role, and spatial variation in the roles of other ecosystem engineers. Thus, ecosystem engineering can have a spatial component not evident from single‐place studies.  相似文献   

4.
Despite the importance of invertebrates in grassland ecosystems, few studies have examined how grassland invertebrates have been impacted by disturbances in the southwestern United States. These grasslands may be particularly sensitive to one common disturbance, livestock grazing, because they have not recently evolved in the presence of large herds of bison, an important mammalian herbivore. This study examined how livestock grazing influenced vegetation-associated insect communities in southeastern Arizona. Insect abundance, richness, diversity, community composition, and key environmental variables were compared between sites on active cattle ranches and sites on a 3160 ha sanctuary that has not been grazed by cattle for over 25 years. Vegetation-associated insect communities were found to be sensitive to livestock grazing. Overall abundance of these insects was lower on grazed grasslands, and certain insect orders appeared to be negatively affected by livestock grazing; beetles were less rich, flies were less diverse, and Hymenoptera were less rich and diverse on grazed sites. Conversely, Hemiptera were more diverse on grazed sites. Species composition of vegetation-associated insect communities also differed and was significantly correlated with percent vegetation cover and number of shrubs. Insect species responsible for these differences were taxonomically diverse, and included herbivores and predators/parasites. When compared to other studies conducted in areas of the United States that fall within the historic range of bison, this study suggests that invertebrates in areas outside this range may be more sensitive to grazing pressure.  相似文献   

5.
Restoring historical disturbance regimes to enhance habitat for grassland birds can conflict with livestock production goals and has been controversial because of uncertainty in the frequency and pattern of different disturbances prior to European settlement. We studied nesting habitat for the mountain plover (Charadrius montanus) in relation to prescribed fire, grazing by large herbivores (cattle), and grazing by black-tailed prairie dogs (Cynomys ludovicianus) in the shortgrass steppe of northeastern Colorado. Breeding mountain plovers primarily occurred on black-tailed prairie dog colonies or areas burned during the previous dormant season. Vegetation surrounding mountain plover nests and foraging locations was characterized by a fine-scale mosaic of prostrate (<4 cm tall) vegetated patches interspersed with >35% bare soil in a given square meter, with this fine-scale pattern distributed over a broad (>100-m radius) area. Mountain plovers rarely occupied grassland lacking prairie dogs or recent fire, but those that did selected sites with similar vegetation height and bare soil exposure as sites on burns and prairie dog colonies. Vegetation structure at mountain plover-occupied sites was also similar to random sites on burns and prairie dog colonies, but differed substantially from sites managed only with cattle. Intensive cattle grazing at twice the recommended stocking rate during spring (Mar–May) or summer (May–Oct) for 6 years produced significantly less bare soil than burns and prairie dog colonies, particularly following years with average or above-average precipitation. Thus, intensive cattle grazing did not substitute for prairie dog grazing or fire in terms of effects on vegetation structure and mountain plover habitat. Both prescribed burning and increased size and distribution of black-tailed prairie dog colonies appear to be effective and complementary means to manage for mountain plover breeding habitat in shortgrass steppe. Provision of mountain plover habitat has tradeoffs with traditional management for livestock production. Thus, managers need to clearly define desired outcomes for management to provide multiple ecosystem goods and services. © 2012 The Wildlife Society.  相似文献   

6.
Prairie dogs (Cynomys spp.) have been eliminated from over 95% of their historic range in large part from direct eradication campaigns to reduce their purported competition with cattle for forage. Despite the longstanding importance of this issue to grassland management and conservation, the ecological interactions between cattle and prairie dogs have not been well examined. We address this issue through two complementary experiments to determine if cattle and prairie dogs form a mutualistic grazing association similar to that between prairie dogs and American bison. Our experimental results show that cattle preferentially graze along prairie dog colony edges and use their colony centers for resting, resembling the mutualistic relationship prairie dogs have with American bison. Our results also show that prairie dog colonies are not only an important component of the grassland mosaic for maintaining biodiversity, but also provide benefits to cattle, thereby challenging the long-standing view of prairie dogs as an undesirable pest species in grasslands.  相似文献   

7.
Anthropogenic impacts on North American grasslands, a highly endangered ecosystem, have led to declines of prairie dogs, a keystone species, over 98% of their historical range. While impacts of this loss on maintenance of grassland biodiversity have been widely documented, much less is known about the consequences on the supply of ecosystem services. Here we assessed the effect of prairie dogs in the supply of five ecosystem services by comparing grasslands currently occupied by prairie dogs, grasslands devoid of prairie dogs, and areas that used to be occupied by prairie dogs that are currently dominated by mesquite scrub. Groundwater recharge, regulation of soil erosion, regulation of soil productive potential, soil carbon storage and forage availability were consistently quantitatively or qualitatively higher in prairie dog grasslands relative to grasslands or mesquite scrub. Our findings indicate a severe loss of ecosystem services associated to the absence of prairie dogs. These findings suggest that contrary to a much publicize perception, especially in the US, prairie dogs are fundamental in maintaining grasslands and their decline have strong negative impacts in human well – being through the loss of ecosystem services.  相似文献   

8.
The High Mountains of Córdoba, Argentina have a long evolutionary history of grazing by large herbivores. However, about 400?years ago, European livestock were introduced and gradually replaced native herbivores. Since the 1920s, domestic herbivores have been the only large herbivores present in the area, causing severe soil erosion and a threat to the system diversity. The endemic fauna of the region includes four amphibian species. We evaluated the effect of livestock rearing on amphibian diversity and water bodies in woodlands and grasslands of the High Mountains of Córdoba. The work was conducted on stream stretches and ponds in two contrasting grazing situations: an area with livestock presence and another area where livestock was excluded 14?years ago. The following variables were recorded at each sampling site: amphibian richness and abundance, percentage of emergent, submerged and peripheral vegetation in areas surrounding the water bodies, water pH, and water dissolved O2. No significant differences were detected in amphibian diversity between streams of both grazing situations, whereas a greater diversity (p?<?0.01) was observed in ponds in grazed grasslands. Our results suggest that livestock rearing, qualitatively measured as grazing and 14?years of livestock exclusion, in the study area would not have negative effects on amphibian diversity. This finding might be due to the long evolutionary grazing history of the area, large-scale livestock exclusion exhibiting a novel scenario. The ongoing reintroduction of native grazers may provide the benefits of grazing without the consequent soil erosion and habitat degradation associated with domestic livestock.  相似文献   

9.
Shrub encroachment and declining grass production are widespread throughout the grasslands and savannas of the Mexico–US borderlands, with negative consequences for ecosystem services, livestock production, and native biodiversity. The problem suggests a complex interaction of social and ecological drivers that are not well understood. Using the Chihuahuan Desert grasslands of the Janos Biosphere Reserve of northern Mexico as a case study, we sought to understand the social–ecological context that shaped landscape change. Our approach included a synthesis of the historical literature and interviews with local residents, with the goal of facilitating long-term grassland restoration. Findings indicate that recent changes in Chihuahuan Desert grasslands are likely related to the co-occurrence of heavy grazing, fire suppression, and the elimination of key species, including prairie dogs and native ungulates. Local residents widely perceive both fire and prairie dogs to be destructive to grasslands and livelihoods. Over the last 50 years, evolving land tenure policies have fragmented the landscape into smaller parcels which typically produce an insufficient livelihood from cattle despite high stocking rates. Declining cattle profitability has motivated the sale and conversion of rangelands to more profitable croplands irrigated with groundwater. Since the founding of the Janos Biosphere Reserve in 2009, universities, local cattle operators, conservation organizations, and federal agencies have begun collaborating on restoration activities. While complete restoration of grasslands is unlikely, progress appears possible largely because of the willingness of local residents to try new management practices that may improve their ability to benefit from the land.  相似文献   

10.
Semi-natural grasslands are key habitats for biodiversity conservation in Central Europe. Shrub encroachment is one of the most threatening drivers of grassland degradation and affects soil properties, microclimate, and vegetation with possible impacts on higher trophic levels. We aimed to analyse the impact of shrub encroachment with broom (Cytisus scoparius) on carabid beetle diversity, species composition, and functional traits. In a field study on dry grasslands on the island of Hiddensee (Germany) we studied 15 sites along a gradient of increasing broom encroachment and classified them into three dry grassland types with low, medium, and high shrub cover. Our results provide evidence that shrub encroachment initially has positive effects on species richness and activity densities of dry grassland carabids. Carabid species composition differed among differently shrub-covered dry grassland types, and sites with low and high shrub cover were each characterised by unique carabid assemblages. The species composition of sites with a medium shrub biomass had a transitional character and contained species which are typical for open dry grassland, but also shared species with sites with a high shrub cover. Among functional trait parameters investigated, especially the body size of carabid beetles was related to environmental parameters associated with shrub encroachment. Body size was positively correlated to shrub biomass and soil humidity, but negatively to temperature. Eurytopy values of carabids were related to high litter cover, i.e. habitat generalist (eurytopic) species mainly occurred in densely shrub-encroached sites. In order to preserve unique carabid assemblages of open dry grasslands with stenotopic and smaller species, it is most important to prevent a shrub encroachment higher than about 60% cover. For management we suggest extensive grazing (by cattle, sheep or horses) to prevent shrub encroachment on dry grasslands. In areas with high shrub cover additionally the use of goats or mechanical removal of shrubs might be necessary.  相似文献   

11.
ABSTRACT In recent years, people have interpreted scientific information about the black-tailed prairie dog (Cynomys ludovicianus) in various, and sometimes conflicting, ways. Political complexity around the relationship among black-tailed prairie dogs, agricultural interests, and wildlife has increased in recent years, particularly when prairie dogs occur on publicly owned lands leased to private entities for livestock grazing. Some have proposed that estimates of prairie dog (Cynomys spp.) numbers from 1900 are inflated, that prairie dog grazing is not unique (other grazers have similar affects on vegetation), and that prairie dogs significantly reduce carrying capacity for livestock and wildlife. We address all these issues but concentrate on the degree of competition between prairie dogs and ungulates because this motivates most prairie dog control actions. We conclude that the available information does not justify holding distribution and numbers of prairie dogs at a level that is too low to perform their keystone ecological function. We further conclude that it is especially important that prairie dogs be sufficiently abundant on public lands to perform this function.  相似文献   

12.
Shrub encroachment can follow grazing or burning release in páramo grasslands. While encroachment decreases herbaceous species richness in some grassland systems, the effects of this process on the herbaceous community in páramo grasslands are currently unknown. We collected data on shrub cover, herbaceous‐species cover and species composition in a páramo grassland 12 years after release from burning and cattle grazing near Zuleta, Ecuador. Topographic and soil measures were also included as predictor variables of differences in community composition. Contrary to studies in other systems, shrub cover did not have a significant effect on herbaceous‐species richness, whereas shrub‐species richness significantly increased with shrub cover. However, shrub cover was associated with significant shifts in herbaceous–community composition. Most notably, there was an increase in some shade‐tolerant forbs and tall‐statured wetland grasses with increasing shrub cover, and a corresponding decrease in some short‐statured grasses and early successional forbs. These results could indicate that the ameliorative effects of shrubs (e.g. frost and wind protection) in harsh alpine environments may partially compensate for the expected competitive effect of shrubs due to shading.  相似文献   

13.
Diets of prairie dogs (Cynomys mexicanus) co-existing with goats or cattle were examined using microhistological fecal analysis in a 1-year study on a grassland of northern Mexico. Consumption of forbs was generally higher (33% versus 21% across all seasons; P< 0.05) in prairie dog diets co-existing with cattle compared to prairie dogs co-existing with goats. The diet of prairie dogs grazing with goats was based around grasses (79% of total forage ingested versus 68% for prairie dogs on the pasture grazed by cattle all seasons; P<0.05). In general, prairie dogs showed a higher preference for forbs in the pasture grazed by cattle than in the pasture grazed by goats. Data for dietary overlap (69% across all seasons) pointed to a moderate diet similarity between prairie dogs grazing with goats or cattle. Prairie dogs co-existing with goats had a higher (P<0.05) fecal N concentration in the fall than prairie dog co-occurring with cattle (2.4±0.1 versus 2.1±0.1). In spring and summer, prairie dogs in the pasture shared with goats had higher (P<0.05) fecal P concentrations than prairie dog co-existing with cattle (3.0±0.4 versus 2.5±0.2 and 1.6±0.1 versus 1.0±0.1, respectively). The results of this study indicate distinct differences in diets of prairie dogs co-existing with goats or cattle, although these foraging differences did not affect negatively the diet quality of prairie dogs (based on fecal N and P data) grazing with goats, despite the highly degraded range in this site. Prairie dogs showed a high feeding adaptability, which allowed them to meet their nutritional needs in a highly degraded site around the goat's pens in a settlement with communal grazing land.  相似文献   

14.
Cheng E  Ritchie ME 《Oecologia》2006,147(3):546-555
Allometric foraging theory suggests that herbivores of greatly differing size should co-exist through niche segregation, but a few studies of large–small herbivore foraging relationships have reported competitive interactions. This study addresses the potential roles of habitat productivity and large herbivore grazing intensities on large–small herbivore foraging interactions. We examined effects of different intensity simulated grazing treatments on forage abundance and quality for Utah prairie dogs (Cynomys parvidens) in a low productivity ecosystem, and consequent effects on prairie dog individual growth rates, foraging preferences, and activity budgets. We hypothesized that simulated grazing would have predominantly facilitative impacts on Utah prairie dogs, as was found for black-tailed prairie dogs in higher productivity ecosystems. To test this hypothesis, we measured the effects of simulated grazing on forage nitrogen, digestibility, and biomass. Simulated grazing increased average forage nitrogen and digestibility while decreasing forage biomass. These effects were associated with reduced individual growth rates, increased juvenile foraging time, and reduced juvenile vigilance. Results suggest that the negative effects of reduced vegetation biomass greatly outweighed positive treatment effects in this study. However, prairie dogs in the moderate intensity defoliation treatment showed some preference for “grazed” plots over “ungrazed” plots, and this preference increased with time. Our study lends support to the idea that habitat productivity and herbivore densities may mediate shifts between facilitative and competitive interactions between different-sized herbivores.  相似文献   

15.
Riparian savanna habitats grazed by hippopotamus or livestock experience seasonal ecological stresses through the depletion of herbaceous vegetation, and are often points of contacts and conflicts between herbivores, humans and their livestock. We investigated how hippopotamus and livestock grazing influence vegetation structure and cover and facilitate other wild herbivores in the Mara region of Kenya. We used 5 km-long transects, each with 13 plots measuring 10 × 10 m2, and which radiate from rivers in the Masai Mara National Reserve and adjoining community pastoral ranches. For each plot, we measured the height and visually estimated the percent cover of grasses, forbs, shrubs and bare ground, herbivore abundance and species richness. Our results showed that grass height was shortest closest to rivers in both landscapes, increased with increasing distance from rivers in the reserve, but was uniformly short in the pastoral ranches. Shifting mosaics of short grass lawns interspersed with patches of medium to tall grasses occurred within 2.5 km of the rivers in the reserve in areas grazed habitually by hippos. Hence, hippo grazing enhanced the structural heterogeneity of vegetation but livestock grazing had a homogenizing effect in the pastoral ranches. The distribution of biomass and the species richness of other ungulates with distance from rivers followed a quadratic pattern in the reserve, suggesting that hippopotamus grazing attracted more herbivores to the vegetation patches at intermediate distances from rivers in the reserve. However, the distribution of biomass and the species richness of other ungulates followed a linear pattern in the pastoral ranches, implying that herbivores avoided areas grazed heavily by livestock in the pastoral ranches, especially near rivers.  相似文献   

16.
Grazing by livestock can influence ecosystems in various ways, including altering plant communities, influencing woody plant encroachment, and determining livestock productivity. Evaluating long term effects of grazing on plant composition is valuable not only to understand herbivory on rangelands but to be able to address the primary factors that can threaten long term livestock productivity. We examined plant species composition and woody plant encroachment 45 years after the initiation of differing grazing treatments within a semiarid savanna of the southern Great Plains, USA. Grazing treatments varied in herbivore type (domestic cattle, sheep, and goats vs. goats only) and grazing intensity (heavy, moderate, and no-herbivory). All individual trees of Juniperus ashei Buchholz, the encroaching woody plant of the area, were removed prior to treatment initiation. Moderate and heavy grazing by a combination of species resulted in similar plant communities, while a history of heavy browsing by goats only and no-herbivory resulted in more distinct communities. Cover of J. ashei did not differ between mixed grazing and no-herbivory treatments, indicating that grazing was not responsible for woody plant encroachment. J. ashei cover within the browsed treatment was a third less compared to other treatments; compositional differences within this treatment are possibly due to reduced cover of woody vegetation. Declines in livestock productivity of the area are likely related to compositional changes resulting from increased woody plants. Livestock production within this semi-arid rangeland is likely unsustainable without management of woody plant encroachment, as communities tend to a closed canopy woodland.  相似文献   

17.
ABSTRACT Although habitat attributes of black-tailed prairie dog (Cynomys ludovicianus) colonies have been described for central and northern portions of the species' geographic range, little is known about these associations at the southern edge of this species' distribution. Because high-quality habitats are expected to be scarcer at the edge of the species' geographic range, different patterns of habitat selection might emerge in these populations. We analyzed habitat selection by black-tailed prairie dogs in a human-disturbed mosaic of desert grasslands and shrublands in northwestern Chihuahua, Mexico. We contrasted 151 used and 133 unused habitat units producing 11 case-control logistic regression models to explain site occupancy by prairie dogs with different combinations of environmental variables. Prairie dogs from Chihuahua occupy sites similar in most respects to sites in more northern regions, although these prairie dogs appear to be more tolerant of increased shrub density and reduced herbage cover. We found that site occupancy was best modeled by positive effects of soil moisture level, cover of forbs, cover of unpalatable vegetation, cover of bare ground, and amount of prairie-dog colony area within 1 km and by the inverse of altitude, shrub density, herbage height, and amount of hostile habitat within 1 km. The 2 most significant variables were herbage height and shrub density, which might reflect the prominent role that visibility plays in habitat selection by prairie dogs. In contrast, we found weak evidence that human features have significant impacts on site occupancy by prairie dogs. Our results support the prediction that environmental conditions of sites used by prairie dogs in edge regions partially differ from those observed in more northern latitudes. We suggest that reserve managers focus conservation efforts on areas with short vegetation, low density of shrubs, and high herbage cover, conditions that could be promoted by controlled burns, herbage mowing, and mechanical removal of shrubs.  相似文献   

18.
In recent decades, pastoral abandonment has produced profound ecological changes in the Alps. In particular, the reduction in grazing has led to extensive shrub encroachment of semi-natural grasslands, which may represent a threat to open habitat biodiversity. To reverse shrub encroachment, we assessed short-term effects of two different pastoral practices on vegetation and dung beetles (Coleoptera, Scarabaeoidea). Strategic placement of mineral mix supplements (MMS) and arrangement of temporary night camp areas (TNCA) for cattle were carried out during summer 2011 in the Val Troncea Natural Park, north-western Italian Alps. In 2012, one year after treatment, a reduction in shrub cover and an increase in bare ground cover around MMS sites was detected. A more intense effect was detected within TNCA through increases in forage pastoral value, and in the cover and height of the herbaceous layer. Immediately after treatment, changes in dung beetle diversity (total abundance, species richness, Shannon diversity, taxonomic and functional diversity) showed a limited disturbance effect caused by high cattle density. In contrast, dung beetle diversity significantly increased one year later both at MMS and TNCA sites, with a stronger effect within TNCA. Multivariate Regression Trees and associated Indicator Value analyses showed that some ecologically relevant dung beetle species preferred areas deprived of shrub vegetation. Our main conclusions are: i) TNCA are more effective than MMS in terms of changes to vegetation and dung beetles, ii) dung beetles respond more quickly than vegetation to pastoral practices, and iii) the main driver of the rapid response by dung beetles is the removal of shrubs. The resulting increase in dung beetle abundance and diversity, which are largely responsible for grassland ecosystem functioning, may have a positive effect on meso-eutrophic grassland restoration. Shrub encroachment in the Alps may therefore be reversed, and restoration of grassland enhanced, by using appropriate pastoral practices.  相似文献   

19.
Riginos C  Young TP 《Oecologia》2007,153(4):985-995
Plant–plant interactions can be a complex mixture of positive and negative interactions, with the net outcome depending on abiotic and community contexts. In savanna systems, the effects of large herbivores on tree–grass interactions have rarely been studied experimentally, though these herbivores are major players in these systems. In African savannas, trees often become more abundant under heavy cattle grazing but less abundant in wildlife preserves. Woody encroachment where cattle have replaced wild herbivores may be caused by a shift in the competitive balance between trees and grasses. Here we report the results of an experiment designed to quantify the positive, negative, and net effects of grasses, wild herbivores, and cattle on Acacia saplings in a Kenyan savanna. Acacia drepanolobium saplings under four long-term herbivore regimes (wild herbivores, cattle, cattle + wild herbivores, and no large herbivores) were cleared of surrounding grass or left with the surrounding grass intact. After two years, grass-removal saplings exhibited 86% more browse damage than control saplings, suggesting that grass benefited saplings by protecting them from herbivory. However, the negative effect of grass on saplings was far greater; grass-removal trees accrued more than twice the total stem length of control trees. Where wild herbivores were present, saplings were browsed more and produced more new stem growth. Thus, the net effect of wild herbivores was positive, possibly due to the indirect effects of lower competitor tree density in areas accessible to elephants. Additionally, colonization of saplings by symbiotic ants tracked growth patterns, and colonized saplings experienced lower rates of browse damage. These results suggest that savanna tree growth and woody encroachment cannot be predicted by grass cover or herbivore type alone. Rather, tree growth appears to depend on a variety of factors that may be acting together or antagonistically at different stages of the tree’s life cycle.  相似文献   

20.
Aim To determine how responses of an established velvet mesquite (Prosopis velutina Woot.) population to a 2002 wildfire were shaped by grazing and non‐native herbaceous species invasions, both of which influenced fire behaviour. Location The study was conducted on contiguous ranches (one actively grazed by cattle, one that had not been grazed since 1968) in the Sonoita Valley of southern Arizona. Plant communities on both ranches were comprised of Chihuahuan semi‐desert grassland, savanna, and Madrean evergreen woodland ecosystems, but large areas were dominated by Lehmann and Boer lovegrass, African grass species that were introduced more than 50 years ago. Methods We selected 243 individuals that had been defoliated and bark scorched during the fire using a stratified random design based on pre‐fire grazing status and dominant grass cover. After the start of the 2003 growing season, we recorded individual tree characteristics, fire damage, and measures of post‐fire response, and tested for relationships among classes of: grazing status, bark damage, dominant grass cover type, abundance of live and dead aboveground branches, flowering status, and sprout number and size. Analyses of fire damage and post‐fire response were interpreted with respect to values of fireline intensity, scorch height and energy release that were projected by a fire behaviour model, nexus . Results Nearly all of the trees on grazed areas suffered low levels of fire damage, while a majority on ungrazed areas suffered moderate to severe damage. Trees on grazed areas consequently had significantly more leaf‐bearing twigs and branches in 2003 but a very low number of root sprouts, while individuals on ungrazed areas had a greater density of root sprouts but little post‐fire dead branching and almost no living branches. Among the ungrazed grassland types, more than 75% of the trees on Boer lovegrass plots suffered moderate to severe damage, while a similar percentage of trees in native grass areas suffered low damage. These differences were: (1) attributed to variations in fire characteristics that were caused by differences in litter production and removal, and (2) ecologically significant because trees in the severe damage class showed almost no aboveground post‐fire branching, either live or dead in 2003, while trees in the low damage class exhibited a greater amount of both. Main conclusions Our results affirm the notion that effective management of western grasslands where mesquite encroachment has or will become a problem requires a better understanding of how interactions among key ecosystem influences (e.g. fire, grazing, non‐native species) affect not only mesquite seedlings and saplings but also larger, established individuals and thereby the long‐term structure and functioning of semi‐desert grassland ecosystems. As managers shift their focus from eradication to management of mesquite in western grasslands and savannas, our results provide insights into how prescribed fires (and their effects on mesquite populations) differ from wildfires and how such effects may be mediated by the altered land uses and ecosystem characteristics that now exist in many western ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号