首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipoteichoic acid (LTA) is one of two anionic polymers on the surface of the gram-positive bacterium Staphylococcus aureus. LTA is critical for the bacterium-host cell interaction and has recently been shown to be required for cell growth and division. To determine additional biological roles of LTA, we found it necessary to identify permissive conditions for the growth of an LTA-deficient mutant. We found that an LTA-deficient S. aureus ΔltaS mutant could grow at 30°C but not at 37°C. Even at the permissive temperature, ΔltaS mutant cells had aberrant cell division and separation, decreased autolysis, and reduced levels of peptidoglycan hydrolases. Upshift of ΔltaS mutant cells to a nonpermissive temperature caused an inability to exclude Sytox green dye. A high-osmolarity growth medium remarkably rescued the colony-forming ability of the ΔltaS mutant at 37°C, indicating that LTA synthesis is required for growth under low-osmolarity conditions. In addition, the ΔltaS mutation was found to be synthetically lethal with the ΔtagO mutation, which disrupts the synthesis of the other anionic polymer, wall teichoic acid (WTA), at 30°C, suggesting that LTA and WTA compensate for one another in an essential function.  相似文献   

2.
Phenotypic plastic responses to temperature can modulate the kinetic effects of temperature on biological rates and traits and thus play an important role for species adaptation to climate change. However, there is little information on how these plastic responses to temperature can influence trophic interactions. Here, we conducted an experiment using marbled crayfish and their water louse prey to investigate how short‐term thermal acclimation at two temperatures (16 and 24°C) modulates the predator functional response. We found that both functional response parameters (search rate and handling time) differed between the two experimental temperatures. However, the sign and magnitudes of these differences strongly depended on acclimation time. Acclimation to 16°C increased handling time and search rate whereas acclimation to 24°C leads to the opposite effects with shorter handling time and lower search rate for acclimated predators. Moreover, the strength of these effects increased with acclimation time so that the differences in search rate and handing time between the two temperatures were reversed between the treatment without acclimation and after 24 h of acclimation. Overall, we found that the magnitude of the acclimation effects can be as strong as the direct kinetic effects of temperature. Our study highlights the importance of taking into account short‐term thermal plasticity to improve our understanding of the potential consequences of global warming on species interactions.  相似文献   

3.
Heat stress is an obvious hazard, and mechanisms to recover from thermal damage, largely unknown as of yet, have evolved in all organisms. We have recently shown that a marker protein in the ER of Saccharomyces cerevisiae, denatured by exposure of cells to 50°C after preconditioning at 37°C, was reactivated by an ATP-dependent machinery, when the cells were returned to physiological temperature 24°C. Here we show that refolding of the marker enzyme Hsp150Δ–β-lactamase, inactivated and aggregated by the 50°C treatment, required a novel ER-located homologue of the Hsp70 family, Lhs1p. In the absence of Lhs1p, Hsp150Δ–β-lactamase failed to be solubilized and reactivated and was slowly degraded. Coimmunoprecipitation experiments suggested that Lhs1p was somehow associated with heat-denatured Hsp150Δ– β-lactamase, whereas no association with native marker protein molecules could be detected. Similar findings were obtained for a natural glycoprotein of S. cerevisiae, pro-carboxypeptidase Y (pro-CPY). Lhs1p had no significant role in folding or secretion of newly synthesized Hsp150Δ–β-lactamase or pro-CPY, suggesting that the machinery repairing heat-damaged proteins may have specific features as compared to chaperones assisting de novo folding. After preconditioning and 50°C treatment, cells lacking Lhs1p remained capable of protein synthesis and secretion for several hours at 24°C, but only 10% were able to form colonies, as compared to wild-type cells. We suggest that Lhs1p is involved in a novel function operating in the yeast ER, refolding and stabilization against proteolysis of heatdenatured protein. Lhs1p may be part of a fundamental heat-resistant survival machinery needed for recovery of yeast cells from severe heat stress.  相似文献   

4.
In asthma elevated rates of exhaled breath temperature changes (Δe°T) and bronchial blood flow (Qaw) may be due to increased vascularity of the airway mucosa as a result of inflammation.We investigated the relationship of Δe°T with Qaw and airway inflammation as assessed by exhaled nitric oxide (NO). We also studied the anti-inflammatory and vasoactive effects of inhaled corticosteroid and β2-agonist.Δe°T was confirmed to be elevated (7.27 ± 0.6 Δ°C/s) in 19 asthmatic subjects (mean age ± SEM, 40 ± 6 yr; 6 male, FEV1 74 ± 6 % predicted) compared to 16 normal volunteers (4.23 ± 0.41 Δ°C/s, p < 0.01) (30 ± 2 yr) and was significantly increased after salbutamol inhalation in normal subjects (7.8 ± 0.6 Δ°C/ s, p < 0.05) but not in asthmatic patients. Qaw, measured using an acetylene dilution method was also elevated in patients with asthma compared to normal subjects (49.47 ± 2.06 and 31.56 ± 1.6 μl/ml/min p < 0.01) and correlated with exhaled NO (r = 0.57, p < 0.05) and Δe°T (r = 0.525, p < 0.05). In asthma patients, Qaw was reduced 30 minutes after the inhalation of budesonide 400 μg (21.0 ± 2.3 μl/ml/min, p < 0.05) but was not affected by salbutamol.Δe°T correlates with Qaw and exhaled NO in asthmatic patients and therefore may reflect airway inflammation, as confirmed by the rapid response to steroids.  相似文献   

5.
Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM’). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM’ and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM’) declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.  相似文献   

6.

Background

The polymorphic species Candida albicans is the major cause of candidiasis in humans. The secreted aspartyl proteinases (Saps) of C. albicans, encoded by a family of 10 SAP genes, have been investigated as the virulent factors during candidiasis. However, the biological functions of most Sap proteins are still uncertain. In this study, we applied co-culture system of C. albicans and THP-1 human monocytes to explore the pathogenic roles and biological functions of Sap proteinases.

Results

After 1 hr of co-culture of C. albicans strains and THP-1 human monocytes at 37°C, more than 60% of the THP-1-engulfed wild type and Δsap5 Candida cells were developing long hyphae. However, about 50% of THP-1-engulfed Δsap6 Candida cells were generating short hyphae, and more dead Candida cells were found in Δsap6 strain that was ingested by THP-1 cells (about 15% in Δsap6 strain vs. 2 ~ 2.5% in SC5314 and Δsap5 strains). The immunofluorescence staining demonstrated that the Sap6 is the major hyphal tip located Sap protein under THP-1 phagocytosis. The sap6-deleted strains (Δsap6, Δsap4/6, and Δsap5/6) appeared slower growth on Congo red containing solid medium at 25°C, and the growth defect was exacerbated when cultured at 37°C in Congo red or SDS containing medium. In addition, more proteins were secreted from Δsap6 strain and the β-mercaptoethanol (β-ME) extractable surface proteins from Δsap6 mutant were more abundant than that of extracted from wild type strain, which included the plasma membrane protein (Pma1p), the ER-chaperone protein (Kar2p), the protein transport-related protein (Arf1p), the cytoskeleton protein (Act1), and the mitochondrial outer membrane protein (porin 1). Moreover, the cell surface accessibility was increased in sap6-deleted strains.

Conclusion

From these results, we speculated that the cell surface constitution of C. albicans Δsap6 strain was defect. This may cause the more accessible of β-ME to disulfide-bridged cell surface components and may weaken the resistance of Δsap6 strain encountering phagocytosis of THP-1 cells. Sap6 protein displays a significant function involving in maintenance the cell surface integrity.  相似文献   

7.
The anillin-related protein Bud4 of Saccharomyces cerevisiae is required for axial bud site selection by linking the axial landmark to the septins, which localize at the mother bud neck. Recent studies indicate that Bud4 plays a role in septin organization during cytokinesis. Here we show that Bud4 is also involved in septin organization during bud growth prior to cytokinesis, as bud4Δ shs1Δ cells displayed an elongated bud morphology and defective septin organization at 18°C. Bud4 overexpression also affected septin organization during bud growth in shs1Δ cells at 30°C. Bud4 was previously thought to associate with the septins via its central region, while the C-terminal anillin-related region was not involved in septin association. Surprisingly, we found that the central region of Bud4 alone targets to the bud neck throughout the cell cycle, unlike full-length Bud4, which localizes to the bud neck only during G2/M phase. We identified the anillin-related region to be a second targeting domain that cooperates with the central region for proper septin association. In addition, the anillin-related region could largely mediate Bud4''s function in septin organization during bud growth and bud site selection. We show that this region interacts with the C terminus of Bud3 and the two segments depend on each other for association with the septins. Moreover, like the bud4Δ mutant, the bud3Δ mutant genetically interacts with shs1Δ and cdc12-6 mutants in septin organization, suggesting that Bud4 and Bud3 may cooperate in septin organization during bud growth. These observations provide new insights into the interaction of Bud4 with the septins and Bud3.  相似文献   

8.
The marine foodborne enteropathogen Vibrio parahaemolyticus has four putative catalase genes. The functions of two katE-homologous genes, katE1 (VPA1418) and katE2 (VPA0305), in the growth of this bacterium were examined using gene deletion mutants with or without complementary genes. The growth of the mutant strains in static or shaken cultures in a rich medium at 37°C or at low temperatures (12 and 4°C), with or without competition from Escherichia coli, did not differ from that of the parent strain. When 175 μM extrinsic H2O2 was added to the culture medium, bacterial growth of the ΔkatE1 strain was delayed and growth of the ΔkatE1 ΔkatE2 and ΔkatE1 ΔahpC1 double mutant strains was completely inhibited at 37°C for 8 h. The sensitivity of the ΔkatE1 strain to the inhibition of growth by H2O2 was higher at low incubation temperatures (12 and 22°C) than at 37°C. The determined gene expression of these catalase and ahpC genes revealed that katE1 was highly expressed in the wild-type strain at 22°C under H2O2 stress, while the katE2 and ahpC genes may play an alternate or compensatory role in the ΔkatE1 strain. This study demonstrated that katE1 encodes the chief functional catalase for detoxifying extrinsic H2O2 during logarithmic growth and that the function of these genes was influenced by incubation temperature.  相似文献   

9.
Thermal layering in reservoirs upstream from hydroelectric dams can create temperature gradients in fishways used by upstream migrating adults. In the Snake River, Washington, federally-protected adult salmonids (Oncorhynchus spp.) often encounter relatively cool water in dam tailraces and lower ladder sections and warmer water in the upstream portions of ladders. Using radiotelemetry, we examined relationships between fish passage behavior and the temperature difference between the top and bottom of ladders (∆T) at four dams over four years. Some spring Chinook salmon (O. tshawytscha) experienced ∆T ≥ 0.5 °C. Many summer and fall Chinook salmon and summer steelhead (O. mykiss) experienced ∆T ≥ 1.0 °C, and some individuals encountered ΔT > 4.0°C. As ΔT increased, migrants were consistently more likely to move down fish ladders and exit into dam tailraces, resulting in upstream passage delays that ranged from hours to days. Fish body temperatures equilibrated to ladder temperatures and often exceeded 20°C, indicating potential negative physiological and fitness effects. Collectively, the results suggest that gradients in fishway water temperatures present a migration obstacle to many anadromous migrants. Unfavorable temperature gradients may be common at reservoir-fed fish passage facilities, especially those with seasonal thermal layering or stratification. Understanding and managing thermal heterogeneity at such sites may be important for ensuring efficient upstream passage and minimizing stress for migratory, temperature-sensitive species.  相似文献   

10.
In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4Q131L mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3Δ rho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3Δ rho4Δ61 cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4.  相似文献   

11.
Membrane fatty acid composition and thermal resistance (D value) of Pediococcus sp. were determined for mid-exponential-phase (ME) and stationary-phase (ST) cells grown in tryptic soy broth (TSB) and tryptone-glucose-yeast extract (TGY) at 28 and 37°C. As the cells entered the stationary phase of growth, the unsaturated fatty acid, C18:1n11c, produced during the exponential phase of growth was converted to its cyclic form, C19:0Δ9c. This shift in membrane fatty acid composition was accompanied by an increase in the D values of this bacterium. Data from this study suggest that the membrane fatty acid composition of Pediococcus sp. is dependent on the growth conditions and that membrane fatty acid composition plays a critical role in thermal resistance. Thermal inactivation curves of Pediococcus sp. cells grown in TGY at 28°C indicated the presence of a cell population that is heterogeneous in thermal resistance. The growth of this bacterium in TGY at 37°C and in TSB at 28 and 37°C resulted in cell populations that were uniform in thermal resistance with a lag time for thermal inactivation. Thermal inactivation curves of ME and ST cultures were similar. The data presented here suggest that the cell population’s uniformity of thermal inactivation is independent of the growth phase of the culture.  相似文献   

12.
The Aspergillus niger xylanase (Xyn) was used as a model to investigate impacts of un-structured residues on GH11 family enzyme, because the β-jelly roll structure has five residues (Ser1Ala2Gly3Ile4Asn5) at N-terminus and two residues (Ser183Ser184) at C-terminus that do not form to helix or strand. The N- or/and C-terminal residues were respectively deleted to construct three mutants. The optimal temperatures of XynΔN, XynΔC, and XynΔNC were 46, 50, and 46°C, and the thermostabilities were 15.7, 73.9, 15.5 min at 50°C, respectively, compared to 48°C and 33.9 min for the Xyn. After kinetic analysis, the substrate-binding affinities for birch-wood xylan decreased in the order XynΔC>Xyn>XynΔNC>XynΔN, while the Kcat values increased in the order XynΔC<XynΔNC<Xyn<XynΔN. The C-terminal deletion increased the GH11 xylanase thermostability and Topt, while the N- and NC-terminal deletions decreased its thermostability and optimal temperature. The C-terminal residues created more impact on enzyme thermal property, while the N-terminal residues created more impact on its catalytic efficiency and substrate-binding affinity. The impact of non-structured residues on GH11 xylanase was different from that of similar residues on GH10 xylanase, and the difference is attributed to structural difference between GH11 jelly-roll and GH10 (β/α)8.  相似文献   

13.
The Bacillus cereus spore surface layers consist of a coat surrounded by an exosporium. We investigated the interplay between the sporulation temperature and the CotE morphogenetic protein in the assembly of the surface layers of B. cereus ATCC 14579 spores and on the resulting spore properties. The cotE deletion affects the coat and exosporium composition of the spores formed both at the suboptimal temperature of 20°C and at the optimal growth temperature of 37°C. Transmission electron microscopy revealed that ΔcotE spores had a fragmented and detached exosporium when formed at 37°C. However, when produced at 20°C, ΔcotE spores showed defects in both coat and exosporium attachment and were susceptible to lysozyme and mutanolysin. Thus, CotE has a role in the assembly of both the coat and exosporium, which is more important during sporulation at 20°C. CotE was more represented in extracts from spores formed at 20°C than at 37°C, suggesting that increased synthesis of the protein is required to maintain proper assembly of spore surface layers at the former temperature. ΔcotE spores formed at either sporulation temperature were impaired in inosine-triggered germination and resistance to UV-C and H2O2 and were less hydrophobic than wild-type (WT) spores but had a higher resistance to wet heat. While underscoring the role of CotE in the assembly of B. cereus spore surface layers, our study also suggests a contribution of the protein to functional properties of additional spore structures. Moreover, it also suggests a complex relationship between the function of a spore morphogenetic protein and environmental factors such as the temperature during spore formation.  相似文献   

14.
Two-component systems (TCSs) aid bacteria in adapting to a wide variety of stress conditions. While the role of TCS response regulators in the cold tolerance of the psychrotrophic foodborne pathogen Listeria monocytogenes has been demonstrated previously, no comprehensive studies showing the role of TCS histidine kinases of L. monocytogenes at low temperature have been performed. We compared the expression levels of each histidine kinase-encoding gene of L. monocytogenes EGD-e in logarithmic growth phase at 3°C and 37°C, as well as the expression levels 30 min, 3 h, and 7 h after cold shock at 5°C and preceding cold shock (at 37°C). We constructed a deletion mutation in each TCS histidine kinase gene, monitored the growth of the EGD-e wild-type and mutant strains at 3°C and 37°C, and measured the minimum growth temperature of each strain. Two genes, yycG and lisK, proved significant in regard to induced relative expression levels under cold conditions and cold-sensitive mutant phenotypes. Moreover, the ΔresE mutant showed a lower growth rate than that of wild-type EGD-e at 3°C. Eleven other genes showed upregulated gene expression but revealed no cold-sensitive phenotypes. The results show that the histidine kinases encoded by yycG and lisK are important for the growth and adaptation of L. monocytogenes EGD-e at low temperature.  相似文献   

15.
Tolerance of photosynthesis to high temperature in desert plants   总被引:9,自引:5,他引:4       下载免费PDF全文
Winter- and summertime-active desert annual species were grown at different temperatures to assess their capacity for photosynthetic acclimation. Thermal stability of photosynthesis was determined from responses of chlorophyll fluorescence to increased temperature. Photosynthesis in winter ephemerals grown at 28°C/21°C became unstable close to 41°C in contrast to the summer annuals which were stable up to about 46°C. Growth at higher temperature (43°C/32°C) resulted in increases in thermal stability of 5 to 7°C for the winter annuals and 3 to 4°C for the summer annuals, showing that temperature can provide the primary stimulus for acclimation of the photosynthetic apparatus. The magnitude of these changes was very similar to the range of field values observed for the respective floras, indicating that the thermal acclimation response under field conditions was qualitatively similar to that occurring under controlled growth conditions. Perennial species, co-existing with these annuals in the desert, were on average more thermostable. The cacti were exceptionally heat stable, the threshold for fluorescence increase averaging 55°C.  相似文献   

16.
Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38°C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization.  相似文献   

17.

Background

A key question in evolutionary biology is the relationship between species traits and their habitats. Caves offer an ideal model to test the adjustment of species to their surrounding temperature, as they provide homogeneous and simple environments. We compared two species living under different thermal conditions within a lineage of Pyrenean beetles highly modified for the subterranean life since the Miocene. One, Troglocharinus fonti, is found in caves at 4-11°C in the ancestral Pyrenean range. The second, T. ferreri, inhabits the coastal area of Catalonia since the early Pliocene, and lives at 14-16°C.

Results

We found no differences in their short term upper thermal limit (ca. 50°C), similar to that of most organisms, or their lower thermal limit (ca. -2.5°C), higher than for most temperate insects and suggesting the absence of cryoprotectants. In longer term tests (7 days) survival between 6-20°C was almost 100% for both species plus two outgroups of the same lineage, but all four died between 23-25°C, without significant differences between them.

Conclusions

Our results suggest that species in this lineage have lost some of the thermoregulatory mechanisms common in temperate insects, as their inferred default tolerance range is larger than the thermal variation experienced through their whole evolutionary history.

Electronic supplementary material

The online version of this article (doi:10.1186/s12862-015-0288-2) contains supplementary material, which is available to authorized users.  相似文献   

18.
Thermophilic propionate-oxidizing, proton-reducing bacteria were enriched from the granular methanogenic sludge of a bench-scale upflow anaerobic sludge bed reactor operated at 55°C with a mixture of volatile fatty acids as feed. Thermophilic hydrogenotrophic methanogens had a high decay rate. Therefore, stable, thermophilic propionate-oxidizing cultures could not be obtained by using the usual enrichment procedures. Stable and reproducible cultivation was possible by enrichment in hydrogen-pregrown cultures of Methanobacterium thermoautotrophicum ΔH which were embedded in precipitates of FeS, achieved by addition of FeCl2 to the media. The propionate-oxidizing bacteria formed spores which resisted pasteurization for 30 min at 90°C or 10 min at 100°C. Highly purified cultures were obtained with either M. thermoautotrophicum ΔH or Methanobacterium thermoformicicum Z245 as the syntrophic partner organism. The optimum temperature for the two cultures was 55°C. Maximum specific growth rates of cultures with M. thermoautotrophicum ΔH were somewhat lower than those of cultures with M. thermoformicicum Z245 (0.15 and 0.19 day-1, respectively). Growth rates were even higher (0.32 day-1) when aceticlastic methanogens were present as well. M. thermoautotrophicum ΔH is an obligately hydrogen-utilizing methanogen, showing that interspecies hydrogen transfer is the mechanism by which reducing equivalents are channelled from the acetogens to this methanogen. Boundaries of hydrogen partial pressures at which propionate oxidation occurred were between 6 and 34 Pa. Formate had a strong inhibitory effect on propionate oxidation in cultures with M. thermoautotrophicum. Inhibition by formate was neutralized by addition of the formate-utilizing methanogen or by addition of fumarate. Results indicate that formate inhibited succinate oxidation to fumarate, an intermediate step in the biochemical pathway of propionate oxidation.  相似文献   

19.
There are two temperature optima connected with lignin peroxidase synthesis by Phanerochaete chrysosporium INA-12. One, at 37°C, is for the mycelium-growing phase; the other, at 30°C, is for the lignin peroxidase-producing phase. One of six extracellular proteins with ligninase activity increased when cultures were grown at 30°C for the entire fermentation period or when cultures were grown at 37°C for the first 2 days of incubation and then shifted to 30°C, compared with the activity of control cultures grown at 37°C for the entire fermentation period. The unsaturation of fatty acid (Δ/mole) of P. chrysosporium INA-12 mycelium decreased from 1.25 to 1.03 when the growth temperature was shifted from 20 to 40°C.  相似文献   

20.
White-nose syndrome (WNS) is an emergent disease estimated to have killed over five million North American bats. Caused by the psychrophilic fungus Geomyces destructans, WNS specifically affects bats during hibernation. We describe temperature-dependent growth performance and morphology for six independent isolates of G. destructans from North America and Europe. Thermal performance curves for all isolates displayed an intermediate peak with rapid decline in performance above the peak. Optimal temperatures for growth were between 12.5 and 15.8°C, and the upper critical temperature for growth was between 19.0 and 19.8°C. Growth rates varied across isolates, irrespective of geographic origin, and above 12°C all isolates displayed atypical morphology that may have implications for proliferation of the fungus. This study demonstrates that small variations in temperature, consistent with those inherent of bat hibernacula, affect growth performance and physiology of G. destructans, which may influence temperature-dependent progression and severity of WNS in wild bats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号