首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The classical cadherin·β-catenin·α-catenin complex mediates homophilic cell-cell adhesion and mechanically couples the actin cytoskeletons of adjacent cells. Although α-catenin binds to β-catenin and to F-actin, β-catenin significantly weakens the affinity of α-catenin for F-actin. Moreover, α-catenin self-associates into homodimers that block β-catenin binding. We investigated quantitatively and structurally αE- and αN-catenin dimer formation, their interaction with β-catenin and the cadherin·β-catenin complex, and the effect of the α-catenin actin-binding domain on β-catenin association. The two α-catenin variants differ in their self-association properties: at physiological temperatures, αE-catenin homodimerizes 10× more weakly than does αN-catenin but is kinetically trapped in its oligomeric state. Both αE- and αN-catenin bind to β-catenin with a Kd of 20 nm, and this affinity is increased by an order of magnitude when cadherin is bound to β-catenin. We describe the crystal structure of a complex representing the full β-catenin·αN-catenin interface. A three-dimensional model of the cadherin·β-catenin·α-catenin complex based on these new structural data suggests mechanisms for the enhanced stability of the ternary complex. The C-terminal actin-binding domain of α-catenin has no influence on the interactions with β-catenin, arguing against models in which β-catenin weakens actin binding by stabilizing inhibitory intramolecular interactions between the actin-binding domain and the rest of α-catenin.  相似文献   

5.
6.
7.
8.
9.
10.
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.  相似文献   

11.
In Xenopus laevis development, β-catenin plays an important role in the Wnt-signaling pathway by establishing the Nieuwkoop center, which in turn leads to specification of the dorsoventral axis. Cadherins are essential for embryonic morphogenesis since they mediate calcium-dependent cell–cell adhesion and can modulate β-catenin signaling. α-catenin links β-catenin to the actin-based cytoskeleton. To study the role of endogenous α-catenin in early development, we have made deletion mutants of αN-catenin. The binding domain of β-catenin has been mapped to the NH2-terminal 210 amino acids of αN-catenin. Overexpression of mutants lacking the COOH-terminal 230 amino acids causes severe developmental defects that reflect impaired calcium-dependent blastomere adhesion. Lack of normal adhesive interactions results in a loss of the blastocoel in early embryos and ripping of the ectodermal layer during gastrulation. The phenotypes of the dominant-negative mutants can be rescued by coexpressing full-length αN-catenin or a mutant of β-catenin that lacks the internal armadillo repeats.

We next show that coexpression of αN-catenin antagonizes the dorsalizing effects of β-catenin and Xwnt-8. This can be seen phenotypically, or by studying the effects of expression on the downstream homeobox gene Siamois. Thus, α-catenin is essential for proper morphogenesis of the embryo and may act as a regulator of the intracellular β-catenin signaling pathway in vivo.

  相似文献   

12.
After damage, cells reseal their plasma membrane and repair the underlying cortical cytoskeleton. Although many different proteins have been implicated in cell repair, the potential role of specific lipids has not been explored. Here we report that cell damage elicits rapid formation of spatially organized lipid domains around the damage site, with different lipids concentrated in different domains as a result of both de novo synthesis and transport. One of these lipids—diacylglycerol (DAG)—rapidly accumulates in a broad domain that overlaps the zones of active Rho and Cdc42, GTPases that regulate repair of the cortical cytoskeleton. Formation of the DAG domain is required for Cdc42 and Rho activation and healing. Two DAG targets, protein kinase C (PKC) β and η, are recruited to cell wounds and play mutually antagonistic roles in the healing process: PKCβ participates in Rho and Cdc42 activation, whereas PKCη inhibits Rho and Cdc42 activation. The results reveal an unexpected diversity in subcellular lipid domains and the importance of such domains for a basic cellular process.  相似文献   

13.
The regulation of cell–cell junctions during epidermal morphogenesis ensures tissue integrity, a process regulated by α-catenin. This cytoskeletal protein connects the cadherin complex to filamentous actin at cell–cell junctions. The cadherin–catenin complex plays key roles in cell physiology, organism development, and disease. While mutagenesis of Caenorhabditis elegans cadherin and catenin shows that these proteins are key for embryonic morphogenesis, we know surprisingly little about their structure and attachment to the cytoskeleton. In contrast to mammalian α-catenin that functions as a dimer or monomer, the α-catenin ortholog from C. elegans, HMP1 for humpback, is a monomer. Our cryogenic electron microscopy (cryoEM) structure of HMP1/α-catenin reveals that the amino- and carboxy-terminal domains of HMP1/α-catenin are disordered and not in contact with the remaining HMP1/α-catenin middle domain. Since the carboxy-terminal HMP1/α-catenin domain is the F-actin-binding domain (FABD), this interdomain constellation suggests that HMP1/α-catenin is constitutively active, which we confirm biochemically. Our perhaps most surprising finding, given the high sequence similarity between the mammalian and nematode proteins, is our cryoEM structure of HMP1/α-catenin bound to F-actin. Unlike the structure of mammalian α-catenin bound to F-actin, binding to F-actin seems to allosterically convert a loop region of the HMP1/α-catenin FABD to extend an HMP1/α-catenin FABD α-helix. We use cryoEM and bundling assays to show for the first time how the FABD of HMP1/α-catenin bundles actin in the absence of force. Collectively, our data advance our understanding of α-catenin regulation of cell–cell contacts and additionally aid our understanding of the evolution of multicellularity in metazoans.  相似文献   

14.
15.
Wnt/β-catenin signaling plays critical roles in embryonic development and disease. Here, we identify RNF220, a RING domain E3 ubiquitin ligase, as a new regulator of β-catenin. RNF220 physically interacts with β-catenin, but instead of promoting its ubiquitination and proteasomal degradation, it stabilizes β-catenin and promotes canonical Wnt signaling. Our analysis showed that RNF220 interacts with USP7, a ubiquitin-specific peptidase, which is required for RNF220 to stabilize β-catenin. The RNF220/USP7 complex deubiquitinates β-catenin and enhances canonical Wnt signaling. Interestingly, the stability of RNF220 itself is negatively regulated by Gsk3β, which is a key component of the β-catenin destruction complex and is inhibited upon Wnt stimulation. Accordingly, the RNF220/USP7 complex works as a positive feedback regulator of β-catenin signaling. In colon cancer cells with stimulated Wnt signaling, knockdown of RNF220 or USP7 impairs Wnt signaling and expression of Wnt target genes, suggesting a potentially novel role of RNF220 in Wnt-related tumorigenesis.  相似文献   

16.
Axin is a negative regulator of canonical Wnt signaling, which promotes the degradation of β-catenin, the major effector in this signaling cascade. While many protein-binding domains of Axin have been identified, their significance has not been evaluated in vivo. Here, we report the generation and analysis of mice carrying modified Axin alleles in which either the RGS domain or the six C-terminal amino acids (C6 motif) were deleted. The RGS domain is required for APC-binding, while the C6 motif has been implicated in the activation of c-Jun N-terminal kinase, but is not required for the effects of Axin on the Wnt/β-catenin pathway, in vitro. Both mutant Axin alleles caused recessive embryonic lethality at E9.5–E10.5, with defects indistinguishable from those caused by a null allele. As Axin-ΔRGS protein was produced at normal levels, its inability to support embryogenesis confirms the importance of interactions between Axin and APC. In contrast, Axin-ΔC6 protein was expressed at only 25–30% of the normal level, which may account for the recessive lethality of this allele. Furthermore, many AxinΔC6/ΔC6 embryos that were heterozygous for a β-catenin null mutation survived to term, demonstrating that early lethality was due to failure to negatively regulate β-catenin.  相似文献   

17.
Wnt signaling pathways are tightly regulated by ubiquitination, and dysregulation of these pathways promotes tumorigenesis. It has been reported that the ubiquitin ligase RNF43 plays an important role in frizzled-dependent regulation of the Wnt/β-catenin pathway. Here, we show that RNF43 suppresses both Wnt/β-catenin signaling and noncanonical Wnt signaling by distinct mechanisms. The suppression of Wnt/β-catenin signaling requires interaction between the extracellular protease-associated (PA) domain and the cysteine-rich domain (CRD) of frizzled and the intracellular RING finger domain of RNF43. In contrast, these N-terminal domains of RNF43 are not required for inhibition of noncanonical Wnt signaling, but interaction between the C-terminal cytoplasmic region of RNF43 and the PDZ domain of dishevelled is essential for this suppression. We further show the mechanism by which missense mutations in the extracellular portion of RNF43 identified in patients with tumors activate Wnt/β-catenin signaling. Missense mutations of RNF43 change their localization from the endosome to the endoplasmic reticulum (ER), resulting in the failure of frizzled-dependent suppression of Wnt/β-catenin signaling. However, these mutants retain the ability to suppress noncanonical Wnt signaling, probably due to interaction with dishevelled. RNF43 is also one of the potential target genes of Wnt/β-catenin signaling. Our results reveal the molecular role of RNF43 and provide an insight into tumorigenesis.  相似文献   

18.
19.
In epithelial cells, α-, β-, and γ-catenin are involved in linking the peripheral microfilament belt to the transmembrane protein E-cadherin. α-Catenin exhibits sequence homologies over three regions to vinculin, another adherens junction protein. While vinculin is found in cell–matrix and cell–cell contacts, α-catenin is restricted to the latter. To elucidate, whether vinculin is part of the cell–cell junctional complex, we investigated complex formation and intracellular targeting of vinculin and α-catenin. We show that α-catenin colocalizes at cell–cell contacts with endogenous vinculin and also with the transfected vinculin head domain forming immunoprecipitable complexes. In vitro, the vinculin NH2-terminal head binds to α-catenin, as seen by immunoprecipitation, dot overlay, cosedimentation, and surface plasmon resonance measurements. The Kd of the complex was determined to 2–4 × 10−7 M. As seen by overlays and affinity mass spectrometry, the COOH-terminal region of α-catenin is involved in this interaction.  相似文献   

20.
As the primary microtubule nucleator in animal cells, the γ-tubulin ring complex (γTuRC) plays a crucial role in microtubule organization, but little is known about how the activity of the γTuRC is regulated. Recently, isolated γTuRC was found to contain NME7, a poorly characterized member of the NME family. Here we report that NME7 is a γTuRC component that regulates the microtubule-nucleating activity of the γTuRC. NME7 contains two putative kinase domains, A and B, and shows autophosphorylating activity. Whereas domain A is involved in the autophosphorylation, domain B is inactive. NME7 interacts with the γTuRC through both A and B domains, with Arg-322 in domain B being crucial to the binding. In association with the γTuRC, NME7 localizes to centrosomes throughout the cell cycle and to mitotic spindles during mitosis. Suppression of NME7 expression does not affect γTuRC assembly or localization to centrosomes, but it does impair centrosome-based microtubule nucleation. Of importance, wild-type NME7 promotes γTuRC-dependent nucleation of microtubules, but kinase-deficient NME7 does so only poorly. These results suggest that NME7 functions in the γTuRC in a kinase-dependent manner to facilitate microtubule nucleation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号