首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.  相似文献   

2.
Transforming growth factor (TGFβ) prevents TH1 and TH2 differentiation and converts naïve CD4 cells into Foxp3-expressing T regulatory (Treg) cell1, 2. In sharp contrast, in the presence of pro-inflammatory cytokines, including IL-6, TGFβ not only inhibits Foxp3 expression but also promotes the differentiation of pro-inflammatory IL17-producing CD4 effector T (TH17) cells3-5. This reciprocal TGFβ-dependent differentiation imposes a critical dilemma between pro- and anti-inflammatory immunity and suggests that a sensitive regulatory mechanism must exist to control TGFβ-driven TH17 effector and Treg differentiation. A vitamin A metabolite, retinoic acid (RA), was recently identified as a key modulator of TGFβ-driven immune deviation capable of suppressing TH17 differentiation while promoting Foxp3+Treg generation 6-10.  相似文献   

3.
Regulatory T cells (Tregs) play a fundamental role in regulating the immune system in health and disease. Considerable evidence exists demonstrating that transfer of Tregs can cure colitis and a variety of other inflammatory disorders. However, little is known about the effects of inflammation on resident Tregs. Mice (BALB/c or C57BL/6) treated with an intrarectal instillation of the haptenizing agent 2,4-dinitrobenzene sulfonic acid (DNBS) develop an acute inflammatory disease, the histopathology of which peaks at 3 days posttreatment and resolves spontaneously thereafter. In this study we demonstrate that DNBS (or oxazolone)-induced colitis causes a depletion of colonic Foxp3+ Tregs 8 days posttreatment, while the proportion of Foxp3+ cells in the ileum, mesenteric lymph nodes, and spleen remains unchanged. Replenishment of the colonic Treg population was associated with the reappearance of mucosal homing (alpha4beta7+) CD4+Foxp3+ Tregs. Assessing the mechanism of local Treg depletion, we found no evidence to implicate cytokine-induced phenotypic switching in the Foxp3+ population or increased SMAD7 expression despite the essential role that TGF-beta has in Foxp3+ Treg biology. Increased Fas ligand (FasL) expression was observed in the colon of colitic mice and in vitro stimulation with a Fas cross-linking Ab resulted in apoptosis of CD4+Foxp3+ but not CD4+Foxp3- cells. Furthermore, DNBS-induced colitis in Fas/FasL-deficient mice did not result in depletion of colonic Tregs. Finally, adoptively transferred synergic Fas-/- but not Fas+/+ Tregs were protected from depletion in the colon 8 days post-DNBS treatment, thus substantiating the hypothesis that inflammation-induced local depletion of Foxp3+ Tregs in the colon of mice occurs via Fas/FasL-mediated death.  相似文献   

4.
Although IL-17 is a pro-inflammatory cytokine reportedly involved in various autoimmune inflammatory disorders, its role remains unclear in murine models of colitis. Acute colitis was induced by 2.5% dextran sodium sulfate (DSS) treatment for 5 days. A novel sphingosine-1-phosphate receptor agonist W-061, a prototype of ONO-4641, was orally administered daily, and histopathological analysis was performed on the colon. The number of lymphocytes and their cytokine production were also evaluated in spleen, mesenteric lymph node, Peyer's patch and lamina propria of the colon. Daily administration of W-061 resulted in improvement of DSS-induced colitis, and significantly reduced the number of CD4+ T cells in the colonic lamina propria. Numbers of both Th17 and Th1 cells were reduced by W-061 treatment. W-061, however, had no influence on the number of Treg cells in lamina propria. Thus, Th17 and Th1 cells in lamina propria were thought to be the key subsets in the pathogenesis of DSS-induced colitis. In conclusion, W-061 may be a novel therapeutic strategy to ameliorate acute aggravation of inflammatory bowel diseases.  相似文献   

5.
6.
We assessed Helper T-cell involvement and possibilities to quantify the cell-based immune response in systemic autoimmune diseases (SAID) in 14 systemic lupus erythematosus (SLE) and 7 rheumatoid arthritis (RA) patients. The goals of investigation were T-CD4+/T-CD8+ ratio, regulatory T cells (Treg) status and TH1/TH2 serum cytokine profiles (IFN-gamma and IL-2, respectively IL-4 and IL-6). SLE group proved significant decreased average Treg value as compared to RA group and controls and showed significant low Treg incidence (86% patients). The distribution of high T-CD4+/T-CD8+ ratio registered no significant distinction among LES and RA groups. SAID patients presented low serum IFN-gamma (86% RA, 60% SLE), high IL-2 (57% RA) and high IL-6 (53% LES), but no significant IL-4 modification. We conclude that Treg percentage remains the only cellular criterion for SAID immune evaluation. In the same time, different secretion mechanisms seem to be involved in SAID, i.e. TH2 in SLE and TH1 in RA.  相似文献   

7.
Ulcerative colitis (UC) and Crohn's disease (CD) are two forms of chronic inflammatory bowel disease. CD4 T cells play a central role in the pathogenesis of both diseases. Smoking affects both UC and CD but with opposite effects, ameliorating UC and worsening CD. We hypothesized that the severity of gut inflammation could be modulated through T cell nicotinic acetylcholine receptors (nAChRs) and that the exact clinical outcome would depend on the repertoire of nAChRs on CD4 T cells mediating each form of colitis. We measured clinical and immunologic outcomes of treating BALB/c mice with oxazolone- and trinitrobenzene sulfonic acid (TNBS)-induced colitides by nicotine. Nicotine attenuated oxazolone colitis, which was associated with an increased percentage of colonic regulatory T cells and a reduction of Th17 cells. TCR stimulation of naive CD4(+)CD62L(+) T cells in the presence of nicotine upregulated expression of Foxp3. In marked contrast, nicotine worsened TNBS colitis, and this was associated with increased Th17 cells among colonic CD4 T cells. Nicotine upregulated IL-10 and inhibited IL-17 production, which could be abolished by exogenous IL-12 that also abolished the nicotine-dependent upregulation of regulatory T cells. The dichotomous action of nicotine resulted from the up- and downregulation of anti-inflammatory α7 nAChR on colonic CD4 T cells induced by cytokines characteristic of the inflammatory milieu in oxazolone (IL-4) and TNBS (IL-12) colitis, respectively. These findings help explain the dichotomous effect of smoking in patients with UC and CD, and they underscore the potential for nicotinergic drugs in regulating colonic inflammation.  相似文献   

8.
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.  相似文献   

9.
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn''s disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD.  相似文献   

10.
通过探讨人类免疫缺陷病毒1型(HIV-1)同性恋感染者外周血中辅助性T细胞17(Th17)与CD4+CD25hiFoxp3+调节性T细胞(Treg)比例及Th17/Treg平衡状态与疾病进展的关系,初步阐明Th17/Treg失衡在HIV发病机制中的作用和意义。选取54例未经抗病毒治疗的HIV感染者,另有32名健康志愿者作为正常对照。分离外周血单核细胞后,利用流式细胞技术检测Th17和Treg水平。结果表明,在HIV感染者外周血中Th17比例明显低于正常对照组(0.68±0.35vs1.42±0.86,P<0.001),Treg比例明显高于正常对照(6.15±2.12vs4.50±0.76,P<0.001),导致HIV感染者中Th17/Treg比例较正常对照显著降低(0.12±0.07vs0.31±0.17,P<0.001)。研究还发现,Th17/CD4比例与CD4+T细胞计数正相关(r=0.371,P<0.05),与病毒载量不相关;Treg/CD4比例与CD4+T细胞计数负相关,与病毒载量正相关(r=-0.402,P<0.05;r=0.447,P<0.001)。此外,Th17/Treg比例与CD4+T细胞计数正相关,与病毒载量负相关(r=0.525,P<0.001;r=-0.318,P<0.05)。结果提示,HIV感染中存在Th17/Treg失衡现象,与疾病进程密切相关,可能在HIV进展中具有重要作用。  相似文献   

11.
Compelling evidence has now demonstrated that IL-17-producing CD4 cells (Th17) are a major contributor to autoimmune pathogenesis, whereas CD4+CD25+ T regulatory cells (Treg) play a major role in suppression of autoimmunity. Differentiation of proinflammatory Th17 and immunosuppressive Treg from naive CD4 cells is reciprocally related and contingent upon the cytokine environment. We and others have reported that in vivo administration of pertussis toxin (PTx) reduces the number and function of mouse Treg. In this study, we have shown that supernatants from PTx-treated mouse splenic cells, which contained IL-6 and other proinflammatory cytokines, but not PTx itself, overcame the inhibition of proliferation seen in cocultures of Treg and CD4+CD25- T effector cells. This stimulatory effect could be mimicked by individual inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha. The combination of these cytokines synergistically stimulated the proliferation of CD4+CD25- T effector cells despite the presence of Treg with a concomitant reduction in the percentage of FoxP3+ cells and generation of IL-17-expressing cells. PTx generated Th17 cells, while inhibiting the differentiation of FoxP+ cells, from naive CD4 cells when cocultured with bone marrow-derived dendritic cells from wild-type mice, but not from IL-6-/- mice. In vivo treatment with PTx induced IL-17-secreting cells in wild-type mice, but not in IL-6-/- mice. Thus, in addition to inhibiting the development of Treg, the immunoadjuvant activity of PTx can be attributable to the generation of IL-6-dependent IL-17-producing CD4 cells.  相似文献   

12.
AZD8055 is an ATP-competitive inhibitor of mammalian target of rapamycin (mTOR) that forms two multiprotein complexes, mTORC1 and mTORC2, and negatively regulates autophagy. We demonstrate that AZD8055 stimulates and potentiates chemotherapy-mediated autophagy, as shown by LC3I-II conversion and down-regulation of the ubiquitin-binding protein p62/sequestosome 1. AZD8055-induced autophagy was pro-survival as shown by its ability to attenuate cell death and DNA damage (p-H2AX), and to enhance clonogenic survival by cytotoxic chemotherapy. Autophagy inhibition by siRNA against Beclin 1 or LC3B, or by chloroquine, partially reversed the cytoprotective effect of AZD8055 that was independent of cell cycle inhibition. The pro-survival role of autophagy was confirmed using ectopic expression of Beclin 1 that conferred cytoprotection. To determine whether autophagy-mediated down-regulation of p62/sequestosome 1 contributes to its pro-survival role, we generated p62 knockdown cells using shRNA that showed protection from chemotherapy-induced cell death and DNA damage. We also overexpressed wild-type (wt) p62 that promoted chemotherapy-induced cell death, whereas mutated p62 at functional domains (PB1, UBA) failed to do so. The ability of ectopic wt p62 to promote cell death was blocked by AZD8055. AZD8055 was shown to inhibit phosphorylation of the autophagy-initiating kinase ULK1 at Ser(757) and inhibited known targets of mTORC1 (p-mTOR Ser(2448), p70S6K, p-S6, p4EBP1) and mTORC2 (p-mTOR Ser(2481), p-AKT Ser(473)). Knockdown of mTOR, but not Raptor or Rictor, reduced p-ULK1 at Ser(757) and enhanced chemotherapy-induced autophagy that resulted in a similar cytoprotective effect as shown for AZD8055. In conclusion, AZD8055 inhibits mTOR kinase and ULK1 phosphorylation to induce autophagy whose pro-survival effect is due, in part, to down-regulation of p62.  相似文献   

13.
The PI3K/mammalian Target of Rapamycin (mTOR) pathway is often aberrantly activated in rhabdomyosarcoma (RMS) and represents a promising therapeutic target. Recent evaluation of AZD8055, an ATP-competitive mTOR inhibitor, by the Preclinical Pediatric Testing Program showed in vivo antitumor activity against childhood solid tumors, including RMS. Therefore, in the present study, we searched for AZD8055-based combination therapies. Here, we identify a new synergistic lethality of AZD8055 together with ABT-737, a BH3 mimetic that antagonizes Bcl-2, Bcl-xL, and Bcl-w but not Mcl-1. AZD8055 and ABT-737 cooperate to induce apoptosis in alveolar and embryonal RMS cells in a highly synergistic fashion (combination index < 0.2). Synergistic induction of apoptosis by AZD8055 and ABT-737 is confirmed on the molecular level, as AZD8055 and ABT-737 cooperate to trigger loss of mitochondrial membrane potential, activation of caspases, and caspase-dependent apoptosis that is blocked by the pan-caspase inhibitor Z-VAD-fmk. Similar to AZD8055, the PI3K/mTOR inhibitor NVP-BEZ235, the PI3K inhibitor NVP-BKM120 and Akt inhibitor synergize with ABT-737 to trigger apoptosis, whereas no cooperativity is found for the mTOR complex 1 inhibitor RAD001. Interestingly, molecular studies reveal a correlation between the ability of different PI3K/mTOR inhibitors to potentiate ABT-737-induced apoptosis and to suppress Mcl-1 protein levels. Importantly, knockdown of Mcl-1 increases ABT-737-induced apoptosis similar to AZD8055/ABT-737 cotreatment. This indicates that AZD8055-mediated suppression of Mcl-1 protein plays an important role in the synergistic drug interaction. By identifying a novel synergistic interaction of AZD8055 and ABT-737, our findings have important implications for the development of molecular targeted therapies for RMS.  相似文献   

14.
Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes   总被引:18,自引:1,他引:17  
Chung Y  Yang X  Chang SH  Ma L  Tian Q  Dong C 《Cell research》2006,16(11):902-907
IL-22 is a novel cytokine in the IL-10 family that functions to promote innate immunity of tissues against infection. Although CD4+ helper T lymphocytes (TH) were found as a source of IL-22, the regulation of this cytokine has been poorly understood. Here, we show that IL-22 is expressed at both mRNA and protein levels by a novel subset of TH cells that also makes IL-17. IL-22 and IL-17 were found to be coordinately regulated by TGFI3 and IL-6 during TH differentiation by real-time PCR as well as ELISA analysis. However, IL-22 does not regulate TH differentiation; exogenous IL-22 or an IL-22 antagonist had no effect on TH differentiation. These data demonstrate a novel cytokine expressed by IL-17-producing T cells, and suggest interaction and synergy of IL-22 and IL-l 7 signaling pathways in tissue inflammation and autoimmune diseases.  相似文献   

15.
Won HY  Lee JA  Park ZS  Song JS  Kim HY  Jang SM  Yoo SE  Rhee Y  Hwang ES  Bae MA 《PloS one》2011,6(3):e18168
Increasing evidence that decreased bone density and increased rates of bone fracture are associated with abnormal metabolic states such as hyperglycemia and insulin resistance indicates that diabetes is a risk factor for osteoporosis. In this study, we observed that TallyHo/JngJ (TH) mice, a polygenic model of type II diabetes, spontaneously developed bone deformities with osteoporotic features. Female and male TH mice significantly gained more body weight than control C57BL/6 mice upon aging. Interestingly, bone density was considerably decreased in male TH mice, which displayed hyperglycemia. The osteoblast-specific bone forming markers osteocalcin and osteoprotegerin were decreased in TH mice, whereas osteoclast-driven bone resorption markers such as IL-6 and RANKL were significantly elevated in the bone marrow and blood of TH mice. In addition, RANKL expression was prominently increased in CD4+ T cells of TH mice upon T cell receptor stimulation, which was in accordance with enhanced IL-17 production. IL-17 production in CD4+ T cells was directly promoted by treatment with leptin while IFN-γ production was not. Moreover, blockade of IFN-γ further increased RANKL expression and IL-17 production in TH-CD4+ T cells. In addition, the osteoporotic phenotype of TH mice was improved by treatment with alendronate. These results strongly indicate that increased leptin in TH mice may act in conjunction with IL-6 to preferentially stimulate IL-17 production in CD4+ T cells and induce RANKL-mediated osteoclastogenesis. Accordingly, we propose that TH mice could constitute a beneficial model for osteoporosis.  相似文献   

16.
Lee J  Kim MS  Kim EY  Park HJ  Chang CY  Park KS  Jung DY  Kwon CH  Joh JW  Kim SJ 《Cytokine》2008,44(1):49-56
In this study, we used a murine intestinal inflammation model that mimics immunologic characteristics of human Crohn's disease (CD) to investigate the anti-inflammatory effects of mycophenolate mofetil (MMF) on intestinal injury and tissue inflammation. When these colitic mice were pretreated with MMF, we observed a significant decrease in mortality rates and body weight loss as well as an improvement in both wasting and histopathologic signs of colonic inflammation, relative to untreated colitic mice. To determine the mechanisms of action of MMF, we compared various immunological characteristics of the untreated and MMF-pretreated colitic mice. MMF-pretreated colitic mice showed an 18% decrease in the proportion of CD19+ B cells compared with untreated colitic mice 3 days. As a result, MMF pretreatment increases proportion of apoptotic T and B cells, especially CD19+ B cells. Also, down-regulation of Th1 cytokines (TNF-alpha, IFN-gamma) and augmentation of CD4+CD45RB(low) regulatory T (Treg) cells were observed in MMF-pretreated colitic mice compared with untreated colitic mice. Furthermore, mycophenolic acid (MPA) reduced TNF-alpha-stimulated NF-kappaB activation in HT-29 colon epithelial cells. Also, MMF-pretreated colitic mice significantly reduced expression of MD-1 compared with untreated colitic mice on B cells and dendritic cells (DCs). These studies show that MMF pretreatment can improve experimental colitis by down-regulation of expanded B cells population through apoptosis and augmentation of Treg cells. Through these mechanisms, MMF might also be an effective agent for the treatment of other diseases characterized by mucosal inflammation.  相似文献   

17.
AZD8055 is a small-molecule inhibitor of mTOR (mammalian target of rapamycin) kinase activity. The present review highlights molecular and phenotypic differences between AZD8055 and allosteric inhibitors of mTOR such as rapamycin. Biomarkers, some of which are applicable to clinical studies, as well as biological effects such as autophagy, growth inhibition and cell death are compared between AZD8055 and rapamycin. Potential ways to develop rational combinations with mTOR kinase inhibitors are also discussed. Overall, AZD8055 may provide a better therapeutic strategy than rapamycin and analogues.  相似文献   

18.
T cell defect is a common feature in lepromatous or borderline lepromatous leprosy (LL/BL) patients in contrast to tuberculoid or borderline tuberculoid type (TT/BT) patients. Tuberculoid leprosy is characterized by strong Th1-type cell response with localized lesions whereas lepromatous leprosy is hallmarked by its selective Mycobacterium leprae specific T cell anergy leading to disseminated and progressive disease. FoxP3+ Regulatory T cells (Treg) which are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases also dampen proinflammatory T cells that include T helper 17 (Th17) cells. This study is aimed at evaluating the role of Treg cells in influencing other effector T cells and its relationship with the cytokine polarized state in leprosy patients. Peripheral blood mononuclear cells from of BT/TT (n = 15) and BL/LL (n = 15) patients were stimulated with M. leprae antigen (WCL) in presence of golgi transport inhibitor monensin for FACS based intracellular cytokine estimation. The frequency of Treg cells showed >5-fold increase in BL/LL in comparison to BT/TT and healthy contacts. These cells produced suppressive cytokine, IL-10 in BL/LL as opposed to BT/TT (p = 0.0200) indicating their suppressive function. The frequency of Th17 cells (CD4, CD45RO, IL-17) was, however, higher in BT/TT. Significant negative correlation (r = -0.68, P = 0.03) was also found between IL-10 of Treg cells and IL-17+ T cells in BL/LL. Blocking IL-10/TGF-β restored the IL-17+ T cells in BL/LL patients. Simultaneously, presence of Th17 related cytokines (TGF-β, IL-6, IL-17 and IL-23) decreased the number of FoxP3+ Treg cells concomitantly increasing IL-17 producing CD4+ cells in lepromatous leprosy. Higher frequency of Programmed Death-1/PD-1+ Treg cells and its ligand, PDL-1 in antigen presenting cells (APCs) was found in BL/LL patients. Inhibition of this pathway led to rescue of IFN-γ and IL-17 producing T cells. Results indicate that Treg cells are largely responsible for the kind of immunosuppression observed in BL/LL patients. This study also proves that Treg cells are profoundly affected by the cytokine milieu and this property may be utilized for benefit of the host.  相似文献   

19.

Background

Many evidences show the inverse correlation between helminth infection and allergic or autoimmune diseases. Identification and characterization of the active helminth-derived products responsible for the beneficial effects on allergic or inflammatory diseases will provide another feasible approach to treat these diseases.

Methods and Findings

Colitis was induced in C57BL/6 mice by giving 3% DSS orally for 7 days. During this period, the mice were treated daily with the excretory/secretory products from T. spiralis adult worms (AES) intraperitoneally. The severity of colitis was monitored by measuring body weight, stool consistency or bleeding, colon length and inflammation. To determine the T. spiralis AES product-induced immunological response, Th1, Th2, Th17 and regulatory cytokine profiles were measured in lymphocytes isolated from colon, mesenteric lymph nodes (MLN), and the spleen of treated mice. The CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) were also measured in the spleens and MLN of treated mice. Mice treated with AES significantly ameliorated the severity of the DSS-induced colitis indicated by the reduced disease manifestations, improved macroscopic and microscopic inflammation correlated with the up-regulation of Treg response (increased regulatory cytokines IL-10, TGF-beta and regulatory T cells) and down-regulation of pro-inflammatory cytokines (IFN-gamma, IL-6 and IL-17) in the spleens, MLN and colon of treated mice.

Conclusions

Our results provide direct evidences that T. spiralis AES have a therapeutic potential for alleviating inflammatory colitis in mice. This effect is possibly mediated by the immunomodulation of regulatory T cells to produce regulatory and anti-inflammatory cytokines and inhibit pro-inflammatory cytokines.  相似文献   

20.
Ulcerative colitis (UC) is an inflammatory bowel disease, and its pathogenesis includes genetic, environmental, and immunological factors, such as T helper cells and their secreted cytokines. T helper cells are classified as Th1, Th2, and Th17 cells. However, it is unclear which T helper cells are important in UC. Dextran sulfate sodium (DSS)-induced colitis is a commonly used model of UC. In this study, we induced DSS colitis in Th1 dominant (T-bet transgenic (Tg)) mice, Th2 dominant (GATA-3 Tg) mice, and Th17 dominant (RORγt Tg) mice to elucidate the roles of T helper cell in DSS colitis. The results showed that GATA-3 Tg mice developed the most severe DSS colitis compared with the other groups. GATA-3 Tg mice showed a significant decreased in weight from day 1 to day 7, and an increased high score for the disease activity index compared with the other groups. Furthermore, GATA-3 Tg mice developed many ulcers in the colon, and many neutrophils and macrophages were detected on day 4 after DSS treatment. Measurement of GATA-3-induced cytokines demonstrated that IL-13 was highly expressed in the colon from DSS-induced GATA-3 Tg mice. In conclusion, GATA-3 overexpression in T-cells and IL-13 might play important roles in the development of DSS colitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号