共查询到20条相似文献,搜索用时 10 毫秒
1.
BackgroundRecently there has been increasing focus on monitoring pollinating insects, due to concerns about their declines, and interest in the role of volunteers in monitoring pollinators, particularly bumblebees, via citizen science.
Methodology / Principal Findings
The Big Bumblebee Discovery was a one-year citizen science project run by a partnership of EDF Energy, the British Science Association and the Centre for Ecology & Hydrology which sought to assess the influence of the landscape at multiple scales on the diversity and abundance of bumblebees. Timed counts of bumblebees (Bombus spp.; identified to six colour groups) visiting focal plants of lavender (Lavendula spp.) were carried out by about 13 000 primary school children (7–11 years old) from over 4000 schools across the UK. 3948 reports were received totalling 26 868 bumblebees. We found that while the wider landscape type had no significant effect on reported bumblebee abundance, the local proximity to flowers had a significant effect (fewer bumblebees where other flowers were reported to be >5m away from the focal plant). However, the rate of mis-identifcation, revealed by photographs uploaded by participants and a photo-based quiz, was high.Conclusions / Significance
Our citizen science results support recent research on the importance of local flocal resources on pollinator abundance. Timed counts of insects visiting a lure plant is potentially an effective approach for standardised pollinator monitoring, engaging a large number of participants with a simple protocol. However, the relatively high rate of mis-identifications (compared to reports from previous pollinator citizen science projects) highlights the importance of investing in resources to train volunteers. Also, to be a scientifically valid method for enquiry, citizen science data needs to be sufficiently high quality, so receiving supporting evidence (such as photographs) would allow this to be tested and for records to be verified. 相似文献2.
Citizen science is promoted as a simple and cost-effective alternative to traditional approaches for the monitoring of populations of marine megafauna. However, the reliability of datasets collected by these initiatives often remains poorly quantified. We compared datasets of shark counts collected by professional dive guides with acoustic telemetry data from tagged sharks collected at the same coral reef sites over a period of five years. There was a strong correlation between the number of grey reef sharks (Carcharhinus amblyrhynchos) observed by dive guides and the telemetry data at both daily and monthly intervals, suggesting that variation in relative abundance of sharks was detectable in datasets collected by dive guides in a similar manner to data derived from telemetry at these time scales. There was no correlation between the number or mean depth of sharks recorded by telemetry and the presence of tourist divers, suggesting that the behaviour of sharks was not affected by the presence of divers during our study. Data recorded by dive guides showed that current strength and temperature were important drivers of the relative abundance of sharks at monitored sites. Our study validates the use of datasets of shark abundance collected by professional dive guides in frequently-visited dive sites in Palau, and supports the participation of experienced recreational divers as contributors to long-term monitoring programs of shark populations. 相似文献
3.
4.
5.
6.
7.
Previous studies have examined separately how pollinator generalization and abundance influence plant reproductive success, but none so far has evaluated simultaneously the relative importance of these pollinator attributes. Here we evaluated the extent to which pollinator generalization and abundance influence plant reproductive success per visit and at the population level on a generalist plant, Opuntia sulphurea (Cactaceae). We used field experiments and path analysis to evaluate whether the per-visit effect is determined by the pollinator’s degree of generalization, and whether the population level effect (pollinator impact) is determined by the pollinator’s degree of generalization and abundance. Based on the models we tested, we concluded that the per-visit effect of a pollinator on plant reproduction was not determined by the pollinators’ degree of generalization, while the population-level impact of a pollinator on plant reproduction was mainly determined by the pollinators’ degree of generalization. Thus, generalist pollinators have the greatest species impact on pollination and reproductive success of O. sulphurea. According to our analysis this greatest impact of generalist pollinators may be partly explained by pollinator abundance. However, as abundance does not suffice as an explanation of pollinator impact, we suggest that vagility, need for resource consumption, and energetic efficiency of generalist pollinators may also contribute to determine a pollinator’s impact on plant reproduction. 相似文献
8.
Summary During recent years, much work has focused on which factors limit the reproductive success in plants. Several studies show a strong influence of either resource limitation, pollen limitation or a combined effect of both. The theoretical arguments for resource limitation are abundant, but there has been very little work done concerning the effect of pollinator availability. In this paper we construct a model to study how the reproductive success in plants is influenced by the foraging behaviour of the pollinators. The pollinator population is assumed to have a constant population density. A functional response function for the pollinators is derived. It is similar to a Holling type II functional response. It is shown that, since the pollinators are regulated by factors not included in the model and their capability to pollinate is limited by the functional response, this is sufficient for regulating the plant population. There also exists a threshold condition for the persistence of the plant population that depended on the search rate of the pollinators and the demographic parameters of the plant population. If this threshold condition is not satisfied the plant population cannot persist and will become extinct. If the condition is satisfied the plant population grows until it is limited at the equilibrium mentioned above. 相似文献
9.
10.
11.
12.
Molecular Biology - The investigation of plant genomes is of great importance for basic research and practical breeding. In 1977, F. Sanger proposed a DNA sequencing method, which allowed the... 相似文献
13.
14.
Desalegn W. Etalo Ric C.H. De Vos Matthieu H.A.J. Joosten Robert D. Hall 《Plant physiology》2015,169(3):1424-1435
Laser-ablation electrospray ionization (LAESI)-mass spectrometry imaging has been applied to contrasting plant organs to assess its potential as a procedure for performing in vivo metabolomics in plants. In a proof-of-concept experiment, purple/white segmented Phalaenopsis spp. petals were first analyzed using standard liquid chromatography-mass spectrometry analyses of separate extracts made specifically from the purple and white regions. Discriminatory compounds were defined and putatively annotated. LAESI analyses were then performed on living tissues, and these metabolites were then relocalized within the LAESI-generated data sets of similar tissues. Maps were made to illustrate their locations across the petals. Results revealed that, as expected, anthocyanins always mapped to the purple regions. Certain other (nonvisible) polyphenols were observed to colocalize with the anthocyanins, whereas others were found specifically within the white tissues. In a contrasting example, control and Cladosporium fulvum-infected tomato (Solanum lycopersicum) leaves were subjected to the same procedures, and it could be observed that the alkaloid tomatine has clear heterogeneous distribution across the tomato leaf lamina. Furthermore, LAESI analyses revealed perturbations in alkaloid content following pathogen infection. These results show the clear potential of LAESI-based imaging approaches as a convenient and rapid way to perform metabolomics analyses on living tissues. However, a range of limitations and factors have also been identified that must be taken into consideration when interpreting LAESI-derived data. Such aspects deserve further evaluation before this approach can be applied in a routine manner.Plants are a tremendously rich source of a myriad of structurally and chemically diverse metabolites (Rao and Ravishankar, 2002; D’Auria and Gershenzon, 2005). Many of these metabolites have a (partly) known function in the plant, although our knowledge of the vast majority of plant secondary metabolites is still sparse, or even nonexistent (Rao and Ravishankar, 2002; D’Auria and Gershenzon, 2005; Fernie, 2007). Plant metabolites are also of considerable importance in a crop context. Indeed, most plant species that have undergone domestication have become crops specifically because they provide us with a source of chemicals. This is not only true for all of our food crops, but also for many other species of genera such as Pyrethrum (insecticides), Jasminium and Santalum (perfumes), Hevea (rubber), Nicotiana and Cannabis (drugs), Linum (oils), Artemisia and Taxus (pharmaceuticals), Cinnamomum (flavors), etc. However, despite the importance of plants as a source of exploitable and essential biochemicals, we often still have remarkably limited knowledge of the relevant biosynthetic pathways, the genetics behind the key enzymes, and indeed when, why, and where these metabolites are produced and stored within the plant in question (Fernie, 2007; Sumner et al., 2011; Kueger et al., 2012).The field of plant metabolomics has grown tremendously since its recent inception earlier this century (Fiehn et al., 2000; Fiehn, 2002). As an untargeted approach to gain a broad overview of the complexity of plant metabolic composition, the technology has, in a short time, made significant inroads into helping expand our knowledge of plant biochemistry (Kueger et al., 2012; Etalo et al., 2013; Hunerdosse and Nomura, 2014; Meret et al., 2014). Typically, rich metabolomics data sets already provide us with a valuable means to generate hypotheses relating to plant metabolism, which then become the focus of further, more direct investigation (Quanbeck et al., 2012). New technologies are being developed, and especially, new data-mining strategies are being designed to allow us to look deep into plant metabolism without having first to rely on preconceptions. However, there are significant limitations to the application of the technology, which still remain the topic of much research effort.Robust sampling approaches for plant biochemical analysis generally entail taking reliably measurable amounts of plant material that will yield detectable levels of the chemical components. Although for metabolomics analyses, samples of just 50 mg can often suffice, obtaining a reliable sample with minimum biological variation generally requires an initial pooling of materials from which a representative sample is then taken. We therefore treat plant tissue as being homogeneous, but this is clearly a gross oversimplification (Fernie, 2007). Plants have been considered to be composed of roughly 40 different cell types, and a plant organ such as a leaf will generally contain up to 15 different cell types (Martin et al., 2001). Different morphologies also parallel different biochemical composition. Even directly neighboring cells within an organ, for example, a leaf epidermis that often comprises pavement, guard, trichome, and glandular hair cells, are formed from cells already known to have distinctly different biochemistries. Making an extract, for any kind of metabolomics or standard biochemical analysis, therefore entails that we immediately lose most intercellular and intertissue resolution. However, our knowledge is growing in that, in addition to known or expected biochemical differences between cell types, metabolite accumulation across organs can be far from uniform; indeed, islands of higher and lower concentrations of particular metabolites have been observed. This is of course immediately visible when the metabolites concerned can be seen by the naked eye; anthocyanins, for example, are often found to be heterogeneously distributed across leaves, fruits, and flower petals, creating clear phenotypic patterns. The same may also be true of other compounds that are invisible to the human eye but that, in contrast, may still be detectable by insects (e.g. through their fluorescence capacity; see http://www.naturfotograf.com/UV_flowers_list.html; Gronquist et al., 2001).In an ideal situation, we would like to be able to look directly into a plant tissue and be able to analyze the biochemical composition at the single cell level. Some so-called metabolite imaging technologies, usually based on mass spectrometric detection (mass spectrometry imaging [MSI]), have recently been introduced as a step toward this optimistic goal. Included here are matrix-assisted laser desorption/ionization (MALDI)-MSI, direct analysis in real time, and desorption electrospray ionization approaches (Cody et al., 2005; Cornett et al., 2007; Ifa et al., 2010). Early examples of MALDI-MSI have shown not only how primary metabolites such as sugars can be strongly localized within plant organs (Rolletschek et al., 2011), but also how the heterogeneous distribution of glucosinolates in Arabidopsis (Arabidopsis thaliana) can potentially determine grazing behavior of caterpillars (Shroff et al., 2008). This technology continues to improve, and recent exciting developments have resulted in cellular and subcellular imaging of metabolites at a resolution of 5 to 9 µm using MALDI (Korte et al., 2015). However, some key practical limitations of MALDI-based approaches are centered around the need to initially have to pretreat/dehydrate the tissue prior to applying the required matrix solution and the requirement of applying a vacuum during the biochemical analysis. Recently, a new technology has been introduced, laser ablation electrospray ionization (LAESI), which can potentially overcome some of these limitations, given that measurements can be made on fresh, living tissue without the need for a vacuum, thus creating the potential for high-resolution in vivo metabolomics.Here, we report on a set of experiments performed to assess both the potential and limitations of using LAESI-based MSI approaches to perform metabolic mapping on living plant tissues. While identifying a number of technological challenges that still need to be tackled, we were able to show that it is possible to use LAESI-MSI to map metabolites directly onto their known location (in this case, by exploiting the visibility of anthocyanins) as well as localize invisible metabolites in the same tissue. Results have revealed that in plants, for both petal and leaf tissue, the distribution of metabolites can be highly heterogeneous, and that this heterogeneity is of potential relevance to our gaining a broader, more detailed understanding of the overall molecular organization and phenotypic features of plant tissues. Furthermore, knowledge of the nature and extent of this heterogeneity has particular relevance and importance when trying to understand how a plant functions as a system, interacting with its environment. We predict that a higher resolution understanding of plant biochemistry will lead to an increasingly discriminatory capacity in our ability to define more accurately the spatial complexity of plant molecular organization. 相似文献
15.
The NMR Microscope: a Unique and Promising Tool for Plant Science 总被引:13,自引:1,他引:12
An outline is given of nuclear magnetic resonance (NMR) microscopyand its application to plant science. An NMR microscope non-destructivelydetects free water in tissues and creates anatomical imagesof the tissues. Since the quantity and mobility of cell-associatedwater is closely related to the condition of the cells,1H-NMRimages represent physiological maps of the tissue. In addition,the technique locates soluble organic compounds accumulatedin the tissues, such as sugars in vacuoles or fatty acids storedas oil droplets in vesicles.23Na-NMR imaging is suitable forstudying the physiology of salt-tolerant plants. Diffusion measurementsprovide information about the transport of substances and ionsaccompanied by water movement. The recently developed techniquesof three-dimensional imaging, flow-encoded imaging and spectroscopicimaging open up new opportunities for plant biologists. TheNMR microscope is thus a unique and promising tool for the studyof living plant systems in relation to morphology, the truefeatures of which are often lost during preparation for moreconventional tissue analysis. Copyright 2000 Annals of BotanyCompany Review, NMR microscope,1H-NMR imaging, non-destructive analysis, anatomy, cell-associated water, relaxation times, soluble compound mapping,23Na-NMR imaging, physiological mapping, diffusion measurement, flow-encoded imaging 相似文献
16.
17.
This study used a quantitative market survey to examine the ecological importance of the medicinal plant trade in Sierra Leone and the existing trading systems, so that it could be determined (1) if trade has a negative impact on the species traded, and/or (2) if trade could be used to support conservation projects. We interviewed vendors in three major cities and two towns and carried out focus–group discussions among collectors at forest edge communities. In the markets, specimen samples were collected and identified. In several forests, observations were made on harvesting techniques and relative abundance. More than 40 species are traded in urban markets, nine of which are the most frequently traded. Some plants are transported great distances to reach the urban markets, especially Xylopia aethiopica (Dunal) A.Rich. and Garcinia kola Heckel. Certain species might not be sustainably harvested depending on the collector practices (e.g., ring debarking, tree felling), and this might threaten these species, especially Piper guineense Schumach. & Thonn. However, results also suggest that the trade of some species could be promoted as an alternative livelihood strategy for edge communities of forest reserves. In this latter case, special attention should be paid to sustainable harvesting techniques. 相似文献
18.
19.
20.
Citizen science projects have the potential to advance science by increasing the volume and variety of data, as well as innovation. Yet this potential has not been fully realized, in part because citizen science data are typically not widely shared and reused. To address this and related challenges, we built CitSci.org (see www.citsci.org), a customizable platform that allows users to collect and generate diverse datasets. We hope that CitSci.org will ultimately increase discoverability and confidence in citizen science observations, encouraging scientists to use such data in their own scientific research. 相似文献