首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hormone Insulin-like peptide 3 (INSL3) is a major secretory product of the Leydig cells from both fetal and adult testes. Consequently, it is a major gender-specific circulating hormone in the male fetus, where it is responsible for the first phase of testicular descent, and in the adult male. In most female mammals, circulating levels are very low, corresponding to only a small production of INSL3 by the mature ovaries. Female ruminants are exceptional in exhibiting high INSL3 gene expression by the thecal cells of antral follicles and by the corpora lutea. We have developed a specific and sensitive immunoassay to measure ruminant INSL3 and show that, corresponding to the high ovarian gene expression, non-pregnant adult female sheep and cows have up to four times the levels observed in other female mammals. Significantly, this level declines during mid-pregnancy in cows carrying a female fetus, in which INSL3 is undetectable. However, in cows carrying a male fetus, circulating maternal INSL3 becomes elevated further, presumably due to the transplacental transfer of fetal INSL3 into the maternal circulation. Within male fetal blood, INSL3 is high in mid-pregnancy (day 153) corresponding to the first transabdominal phase of testicular descent, and shows a marked dependence on paternal genetics, with pure bred or hybrid male fetuses of Bos taurus (Angus) paternal genome having 30% higher INSL3 levels than those of Bos indicus (Brahman) paternity. Thus INSL3 provides the first example of a gender-specific fetal hormone with the potential to influence both placental and maternal physiology.  相似文献   

2.
Reproductive biology of the relaxin-like factor (RLF/INSL3)   总被引:11,自引:0,他引:11  
The relaxin-like factor (RLF), which is the product of the insulin-like factor 3 (INSL3) gene, is a new circulating peptide hormone of the relaxin-insulin family. In male mammals, it is a major secretory product of the testicular Leydig cells, where it appears to be expressed constitutively but in a differentiation-dependent manner. In the adult testis, RLF expression is a good marker for fully differentiated adult-type Leydig cells, but it is only weakly expressed in prepubertal immature Leydig cells or in Leydig cells that have become hypertrophic or transformed. It is also an important product of the fetal Leydig cell population, where it has been demonstrated using knockout mice to be responsible for the second phase of testicular descent acting on the gubernaculum. INSL3 knockout mice are cryptorchid, and in estrogen-induced cryptorchidism, RLF levels in the testis are significantly reduced. RLF is also made in female tissues, particularly in the follicular theca cells of small antral follicles and in the corpus luteum of the cycle and pregnancy. The ruminant ovary has a very high level of RLF expression, and analysis of primary cultures of ovarian theca-lutein cells indicated that, as in the testis, expression is probably constitutive but differentiation dependent. Female INSL3 knockout mice have altered estrous cycles, where RLF may be involved in follicle selection, an idea strongly supported by observations on bovine secondary follicles. Recently, a novel 7-transmembrane domain receptor (LGR8 or Great) has been tentatively identified as the RLF receptor, and its deletion in mice leads also to cryptorchidism.  相似文献   

3.
At present, male infertility remains an urgent medical concern. From year to year, despite advances in methods of diagnosis and treatment, medicine encounters an increasing number of infertile couples with male infertility playing a leading role. Prerequisites for fertility disorders very frequently appear in childhood. Urologists consider cryptorchidism a leading cause of male infertility. The aim of our study was to establish the relationship between testicular descent to the scrotum and the age of the fetus. Material and methods. The study was conducted using 195 specimens of male fetuses aged 4–10 months with 81.0–375.0 mm parietalcoccygeal length (PCL) using the methods of macromicroscopic, conventional, and microslide preparation under control of binocular loupes and morphometry. Results. At the beginning of the fetal period of human ontogenesis (fetuses 81.0–135.0 mm PCL), the right and left testicles are mainly located above the corresponding deep inguinal ring and they are less often located in a region of the iliac fossae. An analysis of topographic and anatomical features of the male reproductive glands in 5-month-old fetuses (136.0–185.0 mm PCL) revealed that the testicles were located within the large pelvis, with the lower end of both the right and left testicles located above the entrance to the deep inguinal ring at a distance that equals the length of the pelvic part of the gubernaculum testis—3.2 ± 0.3 mm (right) and 2.8 ± 0.2 mm (left). In 11 fetuses aged 7 months (231.0–270.0 mm PCL), the lower ends of the testicles and their gubernaculum testis are immersed in the corresponding deep inguinal ring. In eight fetuses, the testicles were within the deep inguinal ring. A combination of many factors contributes to the final migration of a testicle through the inguinal canal into the scrotum (fetuses: 270.0 cm–290.0 mm PCL), including muscle contraction of the anterolateral abdominal wall, an increase in intra-abdominal pressure, contractile capacity of the gubernaculum testis of the testicle, the vaginal process of the peritoneum, and the neuro-muscular system. We believe that the gubernaculum testis is a particularly significant factor in testicular descent to the scrotum. The gubernaculum testis is maximally developed prior to migration of a testicle through the inguinal canal (eighth month of antenatal development), as evidenced by the prevalence of smooth muscle cells over connective tissue elements. An analysis of testicular topography in fetuses aged 9 months (311.0–345.0 mm PCL) revealed that testicles were located in the scrotum in nine fetuses, near the superficial inguinal ring in six fetuses, within the inguinal canal in four cases, and in the deep inguinal ring in one case. In fetuses aged 10 months (346.0–375.0 mm PCL), testicles were located in the scrotum in 13 cases and within the inguinal canal in seven cases. According to our research, the fusion of layers of the vaginal process of the peritoneum occurs in fetuses aged 9–10 months, resulting in the disappearance of the communication of its cavity with the peritoneum. A delay in the fusion of the peritoneal vaginal process layers at the end of the fetal period is an anatomic prerequisite for the occurrence of congenital inguinal-scrotal hernias. Conclusions. It has been found that the rate of testicular descent to the scrotum does not always coincide with the corresponding stage of fetal development. An accelerated development of the gubernaculum testis in fetuses aged 5–8 months is a major factor of heterochronic development of a testicle and subsequent testicular descent into the scrotum.  相似文献   

4.
Insulin-like 3 (INSL3) is a novel circulating peptide hormone that is produced by testicular Leydig cells and ovarian thecal and luteal cells. In males, INSL3 is responsible for testicular descent during foetal life and suppresses germ cell apoptosis in adult males, whereas in females, it causes oocyte maturation. Antagonists of INSL3 thus have significant potential clinical application as contraceptives in both males and females. Previous work has shown that the INSL3 receptor binding region is largely confined to the B-chain central α-helix of the hormone and a conformationally constrained analogue of this has modest receptor binding and INSL3 antagonist activity. In the present study, we have employed and evaluated several approaches for increasing the α-helicity of this peptide in order to better present the key receptor binding residues and increase its affinity for the receptor. Analogues of INSL3 with higher α-helicity generally had higher receptor binding affinity although other structural considerations limit their effectiveness.  相似文献   

5.
GREAT/LGR8 is the only receptor for insulin-like 3 peptide   总被引:11,自引:0,他引:11  
During male development testes descend from their embryonic intraabdominal position into the scrotum. Two genes, encoding the insulin-like 3 peptide (INSL3) and the GREAT/LGR8 G protein-coupled receptor, control the differentiation of gubernaculum, the caudal genitoinguinal ligament critical for testicular descent. It was established that the INSL3 peptide activates GREAT/LGR8 receptor in vitro. Mutations of Insl3 or Great cause cryptorchidism (undescended testes) in mice. Overexpression of the transgenic Insl3 causes male-like gubernaculum differentiation, ovarian descent into lower abdominal position, and reduced fertility in females. To address the question whether Great deletion complements the mutant female phenotype caused by the Insl3 overexpression, we have produced Insl3 transgenic mice deficient for Great. Such females had a wild-type phenotype, demonstrating that Great was the only cognate receptor for Insl3 in vivo. We have established that pancreatic HIT cells, transfected with the INSL3 cDNA, produce functionally active peptide. Analysis of five INSL3 mutant variants detected in cryptorchid patients showed that P49S substitution renders functionally compromised peptide. Therefore, mutations in INSL3 might contribute to the etiology of cryptorchidism. We have also showed that synthetic insulin-like peptides (INSL4 and INSL6) were unable to activate LGR7 or GREAT/LGR8.  相似文献   

6.
7.
Regulation of testicular descent is hormonally regulated, but the reasons for maldescent remain unknown in most cases. The main regulatory hormones are Leydig cell-derived testosterone and insulin-like factor 3 (INSL3). Luteinizing hormone (LH) stimulates the secretion of these hormones, but the secretory responses to LH are different: INSL3 secretion increases slowly and may reflect the LH dependent differentiated status of Leydig cells, whereas testosterone response to LH is immediate. Testosterone contributes to the involution of the suspensory ligament and to the inguinoscrotal phase of the descent, while INSL3 acts mainly in transabdominal descent by stimulating the growth of the gubernaculum. INSL3 acts through a G-protein coupled receptor LGR8. In the absence of either INSL3 or LGR8 mice remain cryptorchid. In humans only few INSL3 mutations have been described, whereas LGR8 mutations may cause some cases of undescended testis. Similarly, androgen insensitivity or androgen deficiency can cause cryptorchidism. Estrogens have been shown to down regulate INSL3 and thereby cause maldescent. Thus, a reduced androgen–estrogen ratio may disturb testicular descent. Environmental effects changing the ratio can thereby influence cryptorchidism rate. Estrogens and anti-androgens cause cryptorchidism in experimental animals. In our cohort study we found higher LH/testosterone ratios in 3-month-old cryptorchid boys than in normal control boys, suggesting that cryptorchid testes are not cabable of normal hormone secretion without increased gonadotropin drive. This may be either the cause or consequence of cryptorchidism. Some phthalates act as anti-androgens and cause cryptorchidism in rodents. In our human material we found an association of a high phthalate exposure with a high LH/testosterone ratio. We hypothesize that an exposure to a mixture of chemicals with anti-androgenic or estrogenic properties (either their own activity or their effect on androgen–estrogen ratio) may be involved in cryptorchidism.  相似文献   

8.
Insulin-like peptide 3 (INSL3) is a member of the insulin superfamily that plays an important role in mediating testes descent during fetal development. More recently, it has also been demonstrated to initiate oocyte maturation and suppress male germ cell apoptosis. These actions are mediated via a specific G-protein-coupled receptor, LGR8. Little is known regarding the structure and function relationship of INSL3, although it is believed that the principal receptor binding site resides within its B-chain. We subsequently observed that the linear B-chain alone (INSL3B-(1-31)) bound to LGR8 and was able to antagonise INSL3 stimulated cAMP accumulation in HEK-293T cells expressing LGR8. Sequentially N- and C-terminally shortened linear analogs were prepared by solid phase synthesis and subsequent assay showed that the minimum length required for binding was residues 11-27. It was also observed that increased binding affinity correlated with a corresponding increase in alpha-helical content as measured by circular dichroism spectroscopy. Molecular modeling studies suggested that judicious placement of a conformational constraint within this peptide would increase its alpha-helix content and result in increased structural similarity to the B-chain within native INSL3. Consequently, intramolecularly disulfide-linked analogs of the B-chain showed a potentiation of INSL3 antagonistic activity, as well as exhibiting increased proteolytic stability, as assessed in rat serum in vitro. Administration of one of these peptides into the testes of rats resulted in a substantial decrease in testis weight probably due to the inhibition of germ cell survival, suggesting that INSL3 antagonists may have potential as novel contraceptive agents.  相似文献   

9.
Insulin-like peptide 3 (INSL3) is a reproduction-related peptide hormone belonging to the insulin/relaxin superfamily, which mediates testicular descent in the male fetus, suppresses male germ cell apoptosis and promotes oocyte maturation in adults by activating the relaxin family peptide receptor 2 (RXFP2). To establish an ultrasensitive receptor-binding assay for INSL3−RXFP2 interaction studies, in the present work we labeled a recombinant INSL3 peptide with a newly developed nanoluciferase (NanoLuc) reporter through a convenient chemical conjugation approach, including the introduction of an active disulfide bond to INSL3 by chemical modification and engineering of a 6× His-Cys-NanoLuc carrying a unique exposed cysteine at the N-terminus. The bioluminescent NanoLuc-conjugated INSL3 retained high binding affinity with the target receptor RXFP2 (Kd = 2.0 ± 0.1 nM, n = 3) and was able to sensitively monitor the receptor-binding of a variety of ligands, representing a novel ultrasensitive tracer for non-radioactive receptor-binding assays. Our present chemical conjugation approach could readily be adapted for conjugation of NanoLuc with other proteins, even other macrobiomolecules, for various highly sensitive bioluminescent assays.  相似文献   

10.
Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein-coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.  相似文献   

11.
12.
13.
The peptide hormone insulin-like peptide 3 (INSL3) is essential for testicular descent and has been implicated in the control of adult fertility in both sexes. The human INSL3 receptor leucine-rich repeat-containing G protein-coupled receptor 8 (LGR8) binds INSL3 and relaxin with high affinity, whereas the relaxin receptor LGR7 only binds relaxin. LGR7 and LGR8 bind their ligands within the 10 leucine-rich repeats (LRRs) that comprise the majority of their ectodomains. To define the primary INSL3 binding site in LGR8, its LRRs were first modeled on the crystal structure of the Nogo receptor (NgR) and the most likely binding surface identified. Multiple sequence alignment of this surface revealed the presence of seven of the nine residues implicated in relaxin binding to LGR7. Replacement of these residues with alanine caused reduced [(125)I]INSL3 binding, and a specific peptide/receptor interaction point was revealed using competition binding assays with mutant INSL3 peptides. This point was used to crudely dock the solution structure of INSL3 onto the LRR model of LGR8, allowing the prediction of the INSL3 Trp-B27 binding site. This prediction was then validated using mutant INSL3 peptide competition binding assays on LGR8 mutants. Our results indicated that LGR8 Asp-227 was crucial for binding INSL3 Arg-B16, whereas LGR8 Phe-131 and Gln-133 were involved in INSL3 Trp-B27 binding. From these two defined interactions, we predicted the complete INSL3/LGR8 primary binding site, including interactions between INSL3 His-B12 and LGR8 Trp-177, INSL3 Val-B19 and LGR8 Ile-179, and INSL3 Arg-B20 with LGR8 Asp-181 and Glu-229.  相似文献   

14.
15.
16.
During male development, the testes move from a high intraabdominal position and descend into the scrotum. The gubernaculum, an inguinoscrotal ligament connecting the testis to the lower abdomen, is believed to play a critical role in this process. The first stage of testicular descent is controlled by insulin like3 hormone (INSL3), produced in testicular Leydig cells. Deletion of Insl3 or its receptor, Rxfp2, in mice causes cryptorchidism. We produced Cre/loxP regulated shRNA transgenic mice targeting RXFP2 expression. We have shown that the transgene was able to reduce Rxfp2 gene expression and thus behaved as a hypomorphic allele of Rxfp2. Variable degrees of uni- and bilateral cryptorchidism was detected in males with the activated shRNA transgene on an Rxfp2+/- background. Conditional suppression of Rxfp2 in the gubernaculum led to cryptorchidism. Gene expression analysis of a mutant cremasteric sac using Illumina microarrays indicated abnormal expression of a significant number of genes in Wnt/β-catenin and Notch pathways. We have demonstrated profound changes in the expression pattern of β-catenin, Notch1, desmin, and androgen receptor (AR), in Rxfp2-/- male embryos, indicating the role of INSL3 in proliferation, differentiation, and survival of specific cellular components of the gubernaculum. We have shown that INSL3/RXFP2 signaling is essential for myogenic differentiation and maintenance of AR-positive cells in the gubernaculum. Males with the deletion of β-catenin or Notch1 in the gubernacular ligament demonstrated abnormal development. Our data indicates that β-catenin and Notch pathways are potential targets of INSL3 signaling during gubernacular development.  相似文献   

17.
Insulin-like peptide 3 (INSL3) is an insulin superfamily peptide hormone, primarily expressed in the testes and playing a key role in the fetus testes descent and suppression of male germ cell apoptosis. Insulin-degrading enzyme (IDE) is a zinc-metalloprotease, responsible for in vivo degradation of insulin, Aβ, and other peptide hormones. IDE has high expression level in the testes, implying it might be involved in INSL3 turnover in vivo. In present work, we studied in vitro degradation of INSL3 by IDE. Recombinant human IDE degraded human INSL3, but its degradation rate for INSL3 is more than a magnitude lower than that for insulin. However, IDE bound INSL3 and insulin with almost same affinity. IDE cleaved the peptide bond between B26R and B27W of INSL3, and released a pentapeptide, WSTEA, from the C-terminal of B-chain. Our present work suggested that IDE might play a role in INSL3 degradation in vivo.  相似文献   

18.
RLF (relaxin-like factor), also known as INSL3 (insulin-like peptide 3), is a novel member of the relaxin/insulin gene family that is expressed in testicular Leydig cells. Despite the implicated role of RLF/INSL3 in testis development, its native conformation remains unknown. In the present paper we demonstrate for the first time that boar testicular RLF/INSL3 is isolated as a monomeric structure with full biological activity. Using a series of chromatography steps, the native RLF/INSL3 was highly purified as a single peak in reverse-phase HPLC. MS/MS (tandem MS) analysis of the trypsinized sample provided 66% sequence coverage and revealed a distinct monomeric structure consisting of the B-, C- and A-domains deduced previously from the RLF/INSL3 cDNA. Moreover, the N-terminal peptide was four amino acid residues longer than predicted previously. MS analysis of the intact molecule and PMF (peptide mass fingerprinting) analysis at 100% sequence coverage confirmed this structure and indicated the existence of three site-specific disulfide bonds. RLF/INSL3 retained full bioactivity in HEK (human embryonic kidney)-293 cells expressing RXFP2 (relaxin/insulin-like family peptide receptor 2), the receptor for RLF/INSL3. Furthermore, RLF/INSL3 was found to be secreted from Leydig cells into testicular venous blood. Collectively, these results indicate that boar RLF/INSL3 is secreted from testicular Leydig cells as a B-C-A monomeric structure with full biological activity.  相似文献   

19.
Relaxin-1 is a heterodimeric peptide hormone primarily produced by the pregnant corpus luteum and/or placenta and is involved in many essential physiological processes centered on its action as a potent extracellular matrix (ECM) remodeling agent. Insulin-like peptide 3 (INSL3), also known as relaxin-like factor, is predominantly expressed in the Leydig cells of the testes and is an important mediator of testicular descent. The relaxin-1 equivalent peptide in humans is actually the product of the human RLN2 gene, human 2 (H2) relaxin. Recently identified and thought to be the ancestral relaxin, relaxin-3 is specifically expressed in the nucleus incertus of the mouse and rat brain and is most likely an important neuropeptide. Each of the hormones above act on cell membrane G-protein coupled receptors (GPCRs). The relaxin-1 receptor is leucine-rich repeat-containing GPCR 7 (LGR7) whereas INSL3 acts on the closely related LGR8. These receptors have large extra-cellular domains containing multiple leucine-rich repeats (LRRs) and a unique LDL receptor-like cysteine-rich motif (LDLR-domain). Relaxin-3 will bind and activate LGR7 with 50-fold lower activity than H2 relaxin. Two relaxin-3 selective GPCRs; somatostatin and angiotensin like peptide receptor (SALPR) and GPCR 142 were recently identified, these type I GPCRs are unrelated to LGR7 and LGR8. The discovery and characterisation of these receptors is greatly aiding the quest to unravel the mechanics of these important hormones, however with three other family members, insulin-like peptides 4–6 (INSL4, INSL5 and INSL6) with unknown functions and unidentified receptors, there is still much to be learnt about this hormone family.  相似文献   

20.
Exposure to phthalates in utero alters fetal rat testis gene expression and testosterone production, but much remains to be done to understand the mechanisms underlying the direct action of phthalate within the fetal testis. We aimed to investigate the direct mechanisms of action of mono-(2-ethylhexyl) phthalate (MEHP) on the rat fetal testis, focusing on Leydig cell steroidogenesis in particular. We used an in vitro system based on the culture for three days, with or without MEHP, of rat fetal testes obtained at 14.5 days post-coitum.Exposure to MEHP led to a dose-dependent decrease in testosterone production. Moreover, the production of 5 alpha-dihydrotestosterone (5α-DHT) (-68%) and androstenedione (-54%) was also inhibited by 10 μM MEHP, whereas 17 alpha-hydroxyprogesterone (17α-OHP) production was found to increase (+41%). Testosterone synthesis was rescued by the addition of androstenedione but not by any of the other precursors used. Thus, the hormone data suggested that steroidogenesis was blocked at the level of the 17,20 lyase activity of the P450c17 enzyme (CYP17), converting 17α-OHP to androstenedione. The subsequent gene expression and protein levels supported this hypothesis. In addition to Cyp17a1, microarray analysis showed that several other genes important for testes development were affected by MEHP. These genes included those encoding insulin-like factor 3 (INSL3), which is involved in controlling testicular descent, and Inha, which encodes the alpha subunit of inhibin B.These findings indicate that under in vitro conditions known to support normal differentiation of the fetal rat testis, the exposure to MEHP directly inhibits several important Leydig cell factors involved in testis function and that the Cyp17a1 gene is a specific target to MEHP explaining the MEHP-induced suppression of steroidogenesis observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号