首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A mutant of Escherichia coli K12, highly resistant to ultraviolet radiation, has been isolated. Preliminary tests show that this mutant is also resistant to mitomycin C, nalidixic acid, fluorouracil and thymineless death. The mutant strain apparently repairs its damaged DNA more efficiently than wild-type E. coli K12 strains and, to do so, constitutively produces 35 times more DNA polymerase I and 12 times more endonuclease I than the wild-type strain.  相似文献   

3.
The gene product of F tral is a bifunctional protein which nicks and unwinds the F plasmid during conjugal DNA transfer. Further biochemical characterization of the Tral protein reveals that it has a second, much lower, Km for ATP hydrolysis, in addition to that previously identified. Measurement of the single-stranded DNA-stimulated ATPase rate indicates that there is co-operative interaction between the enzyme monomers for maximal activity. Furthermore, 18O-exchange experiments indicate that Tral protein hydrolyses ATP with, at most, a low-level reversal of the hydrolytic step during each turnover.  相似文献   

4.
We report the nucleotide sequence of 3.2 kilobase pair region of the Escherichia coli polA gene, comprising the coding region for DNA polymerase I with about 400 base pairs of flanking sequence. The amino acid sequence for DNA polymerase I derived from our DNA sequence is largely consistent with previous protein chemical data. In the following paper, Brown et al. (Brown, W. E., Stump, K. H., and Kelley, W. S. (1982) J. Biol. Chem. 257, 1965-1972) present additional protein chemistry experiments that further confirm our sequence. Mild proteolysis of DNA polymerase I is known to produce two enzymatically active fragments (Brutlag, D., Atkinson, M. R., Setlow, P., and Kornberg, A. (1969) Biochem. Biophys. Res. Commun. 37, 982-989; Klenow, H., and Henningsen, I. (1970) Proc. Natl. Acad. Sci. U. S. A. 74, 5632-5636). We have located the site of this cleavage between residues 323 and 324 of the 928 amino acid polymerase molecule. By sequence comparison of the polA1 and wild type alleles, we have identified the polA1 mutation as a change from Trp (TGG) to amber (TAG) at residue 342.  相似文献   

5.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

6.
Isoleucyl-transfer ribonucleic acid (tRNA) synthetase [l-isoleucine: soluble RNA ligase (adenosine monophosphate), EC 6.1.1.5; IRS] was partially purified from Escherichia coli K-12 and from an ileS mutant that appears to be altered in IRS. The half-life of wild-type IRS, incubated at 60.5 C, is 69 min, whereas that of mutant IRS is 8 min. Mutant IRS shows about a 100-fold lower affinity than wild-type IRS for isoleucine, dl-valine, thiaisoleucine, and O-methyl-dl-threonine, both in the pyrophosphate exchange assay and in the assay of isoleucyl-tRNA formation. The affinity of the mutant enzyme for adenosine triphosphate in the assay of isoleucyl-tRNA formation is 15-fold lower than that of the wild-type enzyme. The affinity of mutant IRS for tRNA is not changed as compared with wild-type IRS. These data show that mutant IRS has an altered structure and clearly confirm that ileS is the structural gene for IRS.  相似文献   

7.
The polA6 mutation is an allele of the polA gene of Escherichia coli which produces a DNA polymerase I species readily distinguishable from that produced by the wild type allele. Experiments described here show that this enzyme has an altered pH optimum for polymerization and a lower binding affinity for DNA. The defect clearly lies within the carboxyl-terminal large fragment of the enzyme produced by in vivo or in vitro proteolysis since the fragment has the same pH optimum for polymerization as the intact enzyme. The polA6 enzyme and its fragment are more sensitive to phosphate ions than the wild type polymerase, and the large fragment is less efficient at binding poly d(AT) in in vitro binding assays. Although the specific nucleolytic activity of the polA6 enzyme is higher than that of the wild type, there is no apparent alteration in pH optimum for the hydrolysis of eigher double or single stranded DNA.  相似文献   

8.
Previous attempts to clone the Escherichia coli polA+ gene onto a high copy number plasmid were unsuccessful. The apparent lethality of unregulated overproduction of DNA polymerase I can be eliminated by cutting at a BglII site 100 nucleotides upstream from the ATG start codon of the polA gene. This permitted the construction of plasmid pMP5 which contains both the coding sequence for DNA polymerase I and the lambda pL promoter for conditional control of polA gene expression. BglII cutting only damages but does not eliminate the polA promoter activity; the BglII site thus lies within the polA promoter region. Leakiness of the damaged polA promoter results in overproduction of DNA polymerase I even under conditions where pL is fully repressed. This overproduction is inhibitory of cell growth, as reflected in both growth rate and in the frequency of appearance of mutant plasmids which are nonproducers of DNA polymerase I. Transformation of plasmid pMP5 into E. coli N4830 yields strain ATL100 which under inducing conditions provides 138-fold amplification of DNA polymerase I. Optimization of growth and expression conditions are presented together with an optimized rapid polymerase purification scheme. In addition to providing a convenient source for preparation of DNA polymerase I, this work serves as the basis for a future detailed molecular genetic analysis of the polA gene product.  相似文献   

9.
Curing of the mini-ColE1 plasmid pML21 was observed among cells of Escherichia coli K-12 strain C600(pML21) grown under subinhibitory conditions in the presence of trimethoprim, a specific inhibitor of dihydrofolate reductase. Some of the cured colonies showed (i) a reduction in frequency of transformation with pML21 compared with those of isogenic strains not treated with trimethoprim, (ii) loss of viability after acquisition of a recA mutation, and (iii) UV sensitivity greater than that of the original isogenic strain. These colonies therefore had PolA- phenotypes. Moreover, they were found to be deficient in DNA polymerase I activity in the in vitro assays, indicating the occurrence of a polA mutation in them. Many of the colonies with PolA- phenotypes were also thyA deoC mutants, and these mutations, in addition to the polA mutations, appeared to be involved in the expression of the PolA- phenotypes.  相似文献   

10.
A new deoxyribonucleic acid polymerase I mutant of Escherichia coli was isolated among conditional lethal mutants. Deoxyribonucleic acid replication in the mutant ceased in 20 min after the temperature was raised to 43 degrees C, and reinitiated when cells were further incubated at this temperature.  相似文献   

11.
12.
Recognition of B and Z forms of DNA by Escherichia coli DNA polymerase I   总被引:6,自引:0,他引:6  
Since the substrate binding domain of the large proteolytic fragment of Escherichia coli DNA polymerase I has been shown to interact with the B forms of DNA, we have studied the ability of this enzyme to recognize structures other than the B form. The polymerase activity has been used to evaluate the degree of recognition of the B and Z forms of DNA. The Z form was found to promote less activity, indicating the probable inability of the polymerase to move along the conformationally rigid form of the template. The present study indicates that the Z-DNA found in vivo may have a role in the control of replication.  相似文献   

13.
14.
An unusual Escherichia coli K12 mutant for carbamyl phosphate synthetase is described. The mutation was generated by bacteriophage MUI insertion and left a 5% residual activity of the enzyme using either ammonia or glutamine as donors. The mutation is recessive to the wild-type allele and maps at or near the pyrA gene, but the mutant requires only arginine and not uracil for growth. By a second block in the pyrB gene it was possible to shift the accumulated carbamyl phosphate to arginine biosynthesis. The Km values and the levels of ornithine activation and inhibition by UMP were normal in the mutant enzyme.  相似文献   

15.
A mutant of Escherichia coli which is more resistant to shortwave UV light than its wild-type parent strain and which can synthesise DNA polymerase I constitutively has been further analysed. It carries two mutational alleles which are located about 1.5 min apart and cotransducible by P1 with the argH locus. The two mutational alleles have been segregated and their analysis shows that one of them is responsible for UV hyper-resistance whereas the other mutation confers UV sensitivity. Recombinant plasmids carrying various sections of the polA regulatory region, linked to a galK gene, were introduced into the mutant strains. Analysis of galactokinase shows that the enzyme activity in the UV hyper-resistant mutant is increased. The results suggest that the synthesis of DNA polymerase I in E. coli is inducible.  相似文献   

16.
Biochemical characterization of a paraquat-tolerant mutant of Escherichia coli   总被引:23,自引:0,他引:23  
The biochemical basis for paraquat tolerance was investigated using one of the paraquat-resistant Escherichia coli mutants previously isolated. When grown in the absence of paraquat (PQ2+), the specific activities of glucose-6-phosphate dehydrogenase and NADPH:PQ2+-diaphorase, both required for the expression of PQ2+ toxicity, were comparable in the wild type and the mutant. However, growth in the presence of 1 mM PQ2+ resulted in greater induction of these two enzymes in the wild type than in the mutant. Nevertheless, when the mutant was grown in 50 mM PQ2+, the activities of these two enzymes were comparable to those of the wild type grown in the presence of 1 mM PQ2+. Measurement of cyanide-resistant respiration, an indication of intracellular superoxide generation, showed that the intracellular flux of superoxide mediated by subsaturating concentrations of paraquat was significantly lower in the mutant than in the wild type. Extracellular superoxide formation, as measured by superoxide dismutase-inhibitable cytochrome c reduction, was higher in the wild type than in the mutant whether grown in the absence or the presence of PQ2+. The mutant did not show cross-resistance toward juglone or plumbagin, compounds known to exacerbate superoxide generation. The kinetics of [14C]PQ2+ uptake showed that the wild type accumulated PQ2+ against a concentration gradient, whereas the mutant seemed to do so only by facilitated diffusion. The results indicate that the impaired paraquat uptake system in the mutant results in the physiological and biochemical differences observed between the wild type and mutant.  相似文献   

17.
Summary The induction of prophage by ultraviolet light has been measured inE. coli K12 lysogenic cells deficient in DNA polymerase I. The efficiency of the induction process was greater inpolA1 polC(dnaE) double mutants incubated at the temperature that blocks DNA replication than inpolA + polC single mutants. Similarly, thepolA1 mutation sensitizedtif-promoted lysogenic induction in apolA1 tif strain at 42°. In strains bearing thepolA12 mutation, which growth normally at 30°, induction of the prophage occured after the shift to 42°. It is concluded that dissapearance of the DNA polymerase I activity leads to changes in DNA replication that are able, per se, to trigger the prophage induction process.  相似文献   

18.
An invariant histidine residue, His-365 in Escherichia coli DNA topoisomerase I, is located at the active site of type IA DNA topoisomerases and near the active site tyrosine. Its ability to participate in the multistep catalytic process of DNA relaxation was investigated. His-365 was mutated to alanine, arginine, asparagine, aspartate, glutamate, and glutamine to study its ability to participate in general acid/base catalysis and bind DNA. The mutants were examined for pH-dependent DNA relaxation and cleavage, salt-dependent DNA relaxation, and salt-dependent DNA binding affinity. The mutants relax DNA in a pH-dependent manner and at low salt concentrations. The pH dependence of all mutants is different from the wild type, suggesting that His-365 is responsible for the pH dependence of the enzyme. Additionally, whereas the wild type enzyme shows pH-dependent oligonucleotide cleavage, cleavage by both H365Q and H365A is pH-independent. H365Q cleaves DNA with rates similar to the wild type enzyme, whereas H365A has a slower rate of DNA cleavage than the wild type but can cleave more substrate overall. H365A also has a lower DNA binding affinity than the wild type enzyme. The binding affinity was determined at different salt concentrations, showing that the alanine mutant displaces half a charge less upon binding DNA than an inactive form of topoisomerase I. These observations indicate that His-365 participates in DNA binding and is responsible for optimal catalysis at physiological pH.  相似文献   

19.
We examined several aspects of bacteriophage Mu development in Escherichia coli strains that carry mutations in the polA structural gene for DNA polymerase I (PolI). We found that polA mutants were markedly less efficient than PolI wild-type (PolI+) strains in their capacity to form stable Mu lysogens and to support normal lytic growth of phage Mu. The frequency of lysogenization was determined for polA mutants and their isogenic PolI+ derivatives, with the result that mutants were lysogenized 3 to 8 times less frequently than were PolI+ cells. In one-step growth experiments, we found that phage Mu grew less efficiently in polA cells than in PolI+ cells, as evidenced by a 50 to 100% increase in the latent period and a 20 to 40% decrease in mean burst size in mutant cells. A further difference noted in infected polA strains was a 10-fold reduction in the frequency of Mu-mediated transposition of chromosomal genes to an F plasmid. Pulse labeling and DNA-DNA hybridization assays to measure the rate of phage Mu DNA synthesis after the induction of thermosensitive prophages indicated that phage Mu replication began at about the same time in both polA and PolI+ strains, but proceeded at a slower rate in polA cells. We conclude that PolI is normally involved in the replication and integration of phage Mu. However, since phage Mu does not exhibit an absolute requirement for normal levels of PolI, it appears that residual PolI activity in the mutant strains, other cellular enzymes, or both can partially compensate for the absence of normal PolI activity.  相似文献   

20.
We examined the effects of mutations in the polA (encoding DNA polymerase I) and polB (DNA polymerase II) genes on inducible and constitutive stable DNA replication (iSDR and cSDR, respectively), the two alternative DNA replication systems of Escherichia coli. The polA25::miniTn10spc mutation severely inactivated cSDR, whereas polA1 mutants exhibited a significant extent of cSDR. cSDR required both the polymerase and 5'-->3' exonuclease activities of DNA polymerase I. A similar requirement for both activities was found in replication of the pBR322 plasmid in vivo. DNA polymerase II was required neither for cSDR nor for iSDR. In addition, we found that the lethal combination of an rnhA (RNase HI) and a polA mutation could be suppressed by the lexA(Def) mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号