首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of cellular signaling systems are called into play by interaction of the T lymphocyte antigen receptor/CD3 complex with its cognate antigen. Well-described signaling systems include phosphoinositide turnover, tyrosine phosphorylation, protein kinase C activation, and increased cytosolic calcium. We have explored the possibility that another recently described signaling system, activation of phospholipase D, may be operative. Data presented here demonstrate that stimulation of Jurkat T cells with anti-CD3 antibodies or phorbol esters resulted in activation of phospholipase D, as measured by production of phosphatidylethanol and phosphatidic acid. The combination of anti-CD3 antibody plus phorbol ester led to a greater than additive production of phosphatidylethanol and to the additive production of phosphatidic acid (in the absence of ethanol). Phorbol esters as a second stimulus with anti-CD3 antibody led to a additive increase in cellular diacylglycerol content but provided no increased production of inositol phosphates, suggesting that diacylglycerol production in these cells results from hydrolysis of noninositol containing lipids as well as from phosphinositides. Exogenous addition of phosphatidic acid led to increases in cytosolic calcium that, depending on the concentration used, resulted from release of an intracellular store of calcium and influx of extracellular calcium. Changes in cytosolic calcium occurred in the absence of inositol phosphates production. These studies establish a role for increased phospholipase D activity in T lymphocyte activation.  相似文献   

2.
Elevated cytosolic Ca2+ activates phospholipase D in human platelets   总被引:3,自引:0,他引:3  
We have examined the activation of phospholipase D in human platelets treated with alpha-thrombin. When incubated with 1-O-[9,10-3H2]hexadecyl-2-lysophosphatidylcholine (PtdCho) and 1-alkyl-[32P]lysoPtdCho for 2 h, platelets formed 3H/32P-labeled PtdCho in a ratio of 11:1. After incubation of such labeled platelets with alpha-thrombin for 5 min, increased accumulation of 3H/32P-labeled phosphatidic acid (PtdOH) was detected in the same ratio, indicating the action of phospholipase D. The Ca2+ ionophore A23187 and alpha-thrombin each stimulated the formation of labeled PtdOH as above in a time- and concentration-dependent manner, with only minor changes in labeled diglyceride. A23187 was able to cause increases in labeled PtdOH comparable to those observed with alpha-thrombin. beta-Phorbol 12,13-dibutyrate, an activator of protein kinase C, only slightly stimulated the accumulation of labeled PtOH. The protein kinase C inhibitor, staurosporine, totally blocked these changes but only slightly inhibited the increases in labeled PtdOH promoted by alpha-thrombin. These results suggest that an increase in intracellular Ca2+, rather than protein kinase C activity, is a major factor regulating phospholipase D in platelets exposed to alpha-thrombin. We have also examined the relative contributions of phospholipase D and diglyceride kinase (following phospholipase C action) to PtdOH accumulation in [32P]Pi-labeled platelets by comparing the 32P-specific radioactivities of PtdOH, PtdCho, and metabolic gamma-ATP in control and alpha-thrombin-exposed platelets. Based on these determinations, we conclude that 13 and 87% of incremental PtdOH in human platelets exposed to alpha-thrombin arises via phospholipase D acting on PtdCho and phospholipase C/diglyceride kinase, respectively.  相似文献   

3.
Activating the protein-tyrosine kinase of v-Src in BALB/c 3T3 cells results in rapid increases in the intracellular second messenger, diacylglycerol (DAG). v-Src-induced increases in radiolabeled DAG were most readily detected when phospholipids were prelabeled with myristic acid, which is incorporated predominantly into phosphatidylcholine. Consistent with this observation, v-Src increased the level of intracellular choline. No increase in DAG was observed when cells were prelabeled with arachidonic acid, which is incorporated predominantly into phosphatidylinositol. Inhibiting phosphatidic acid (PA) phosphatase, which hydrolyzes PA to DAG, blocked v-Src-induced DAG production and enhanced PA production, implicating a type D phospholipase. Consistent with the involvement of a type D phospholipase, v-Src increased transphosphatidylation activity, which is characteristic of type D phospholipases. Thus, v-Src-induced increases in DAG most likely result from the activation of a type D phospholipase/PA phosphatase-mediated signaling pathway.  相似文献   

4.
The CD38 cell surface receptor is a potent activator for splenic, B lymphocytes. The molecular mechanisms regulating this response, however, remain incompletely characterized. Activation of the nonreceptor tyrosine kinase, Btk, is essential for CD38 downstream signaling function. The major Btk-dependent substrate in B cells, phospholipase C-gamma2 (PLC-gamma2), functions to generate the key secondary messengers, inositol-1,4,5 trisphosphate and diacylglycerol. Surprisingly, CD38 ligation results in no detectable increase in phosphoinositide metabolism and only a minimal increase in cytosolic calcium. We hypothesized that Btk functioned independently of PLC-gamma2 in the CD38 signaling pathway. Accordingly, we demonstrate that CD38 cross-linking does not result in the functional phosphorylation of PLC-gamma2 nor an increase in inositol-1,4,5 trisphosphate production. Furthermore, splenic B cells exhibit a normal CD38-mediated, proliferative response in the presence of the phosphoinositide-PLC inhibitor, U73122. Conversely, protein kinase C (PKC) beta-deficient mice, or PKC inhibitors, indicated the requirement for diacylglycerol-dependent PKC isoforms in this pathway. Loss of PKC activity blocked CD38-dependent, B cell proliferation, NF-kappaB activation, and subsequent expression of cyclin-D2. These results suggested that an alternate diacylglycerol-producing phospholipase must participate in CD38 signaling. Consistent with this idea, CD38 increased the enzymatic activity of the phosphatidylcholine (PC)-metabolizing enzymes, PC-PLC and phospholipase D. The PC-PLC inhibitor, D609, completely blocked CD38-dependent B cell proliferation, IkappaB-alpha degradation, and cyclin-D2 expression. Analysis of Btk mutant B cells demonstrated a partial requirement for Btk in the activation of both enzymes. Taken together, these data demonstrate that CD38 initiates a novel signaling cascade leading to Btk-, PC-PLC-, and phospholipase D-dependent, PLC-gamma2-independent, B lymphocyte activation.  相似文献   

5.
Phosphatidylinositol-4-phosphate (PtdIns4P) is the most abundant phosphoinositide in plants and the precursor of phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)]. This lipid is the substrate of phosphoinositide-dependent phospholipase C (PI-PLC) that produces diacylglycerol (DAG) which can be phosphorylated to phosphatidic acid (PtdOH). In plants, it has been suggested that PtdIns4P may also be a direct substrate of PI-PLC. Whether PtdIns4P is the precursor of PtdIns(4,5)P(2) or a substrate of PI-PLC, its production by phosphatidylinositol-4-kinases (PI4Ks) is the first step in generating the phosphoinositides hydrolyzed by PI-PLC. PI4Ks can be divided into type-II and type-III. In plants, the identity of the PI4K upstream of PI-PLC is unknown. In Arabidopsis, cold triggers PI-PLC activation, resulting in PtdOH production which is paralleled by decreases in PtdIns4P and PtdIns(4,5)P(2). In suspension cells, both the PtdIns4P decrease and the PtdOH increase in response to cold were impaired by 30 μM wortmannin, a type-III PI4K inhibitor. Type-III PI4Ks include AtPI4KIIIα1, β1 and β2 isoforms. In this work we show that PtdOH resulting from the PI-PLC pathway is significantly lowered in a pi4kIIIβ1β2 double mutant exposed to cold stress. Such a decrease was not detected in single pi4kIIIβ1 and pi4kIIIβ2 mutants, indicating that AtPI4KIIIβ1 and AtPI4KIIIβ2 can both act upstream of the PI-PLC. Although several short-term to long-term responses to cold were unchanged in pi4kIIIβ1β2, cold induction of several genes was impaired in the double mutant and its germination was hypersensitive to chilling. We also provide evidence that de novo synthesis of PtdIns4P by PI4Ks occurs in parallel to PI-PLC activation.  相似文献   

6.
Protein kinase D (PKD) regulates many diverse cellular functions in response to diacylglycerol. To monitor PKD signaling in live cells, we generated a genetically encoded fluorescent reporter for PKD activity, DKAR (D kinase activity reporter). DKAR expressed in mammalian cells undergoes reversible fluorescence resonance energy transfer changes upon activation and inhibition of endogenous PKD. Surprisingly, we find that agonist-evoked activation of PKD is driven not only by diacylglycerol production, but by Ca(2+). Furthermore, elevation of intracellular Ca(2+), in the absence of any other stimulus, is sufficient to activate PKD. Concurrent imaging of Ca(2+), diacylglycerol, and PKD activity reveals that thapsigargin-mediated elevation of intracellular Ca(2+) is closely followed by a robust increase in diacylglycerol production, in turn followed by PKD activation. The Ca(2+)-induced production of diacylglycerol and accompanying PKD activation is dependent on phospholipase C activity. These data reveal that Ca(2+) is a major contributor to the initiation of PKD signaling through positive feedback regulation of diacylglycerol production, unveiling a new mechanism in PKD activation.  相似文献   

7.
Jones DR  Sanjuan MA  Mérida I 《FEBS letters》2000,476(3):160-165
Despite the fact that phosphatidic acid (PtdOH) has been implicated as a lipid second messenger for nearly a decade, its intracellular targets have remained unclear. We sought to investigate how an increase in the level of PtdOH could modulate phosphatidylinositol 4-phosphate 5-kinase (PIPkin), an enzyme involved in phosphatidylinositol 4,5-bisphosphate synthesis. Transfection of porcine aortic endothelial (PAE) cells with haemagglutinin (HA)-tagged type Ialpha PIPkin followed by immunofluorescence confocal microscopy revealed the enzyme to be localised to the plasma membrane. When the transfected PAE cells were stimulated with lyso-PtdOH, increased PIPkin activity was found to be associated with HA immunoprecipitates in an in vitro assay. This PIPkin activation was found to be greatly reduced by prior treatment of the cells with 1-butanol, thereby implicating phospholipase D (PLD) as the in vivo generator of PtdOH. In order to determine if the PtdOH-dependent activation of type Ialpha PIPkin was dictated by a specific molecular composition of PtdOH, the wild type murine and porcine alpha isoforms of diacylglycerol kinase (DGK) were individually co-transfected along with type Ialpha PIPkin. Under these conditions an increase in type Ialpha PIPkin lipid kinase activity was found in HA immunoprecipitates in an in vitro assay. No increases in lipid kinase activity were observed when type Ialpha PIPkin was co-transfected with either the human DGKepsilon isoform or a kinase-dead mutant of the murine DGKalpha isoform. These results provide the first direct evidence for the unification of the production of saturated/monounsaturated PtdOH (through two different routes, PLD and DGK) and the in vivo activation of type Ialpha PIPkin by this lipid second messenger.  相似文献   

8.
Exposure of skate erythrocytes to hypotonic medium stimulates a rapid increase in levels of 1,2-diacylglycerol. Other treatments which produce cell swelling such as replacement of a portion of medium NaCl with the permeant solutes ethylene glycol or ammonium chloride also stimulate increases in diacylglycerol. Whereas the reduction of medium osmolarity to 460 mosm (from 940) stimulated a persistent diacylglycerol increase, the increase after reduction to 660 mosm was transient, peaking at 2.5 min and then slowly declining. This decline could be prevented by preincubation with the diacylglycerol kinase inhibitor R59022. To investigate the source of the increased diacylglycerol, the rate of incorporation of [32P]PO4 into each major phospholipid was measured. Reduction of osmolarity to 660 mosm stimulated the incorporation of phosphate into phosphatidylcholine markedly, with a smaller increase observed into phosphatidylinositol. To demonstrate phosphatidylcholine hydrolysis, erythrocytes were prelabeled with [32P]PO4. Subsequent exposure to hypotonic (660 mosm) medium stimulated a decrease in radioactivity in phosphatidylcholine and a large increase in radioactivity in phosphatidic acid. When stimulated in the presence of ethanol, 32PO4-labeled phosphatidylethanol was formed, suggesting activation of phospholipase D. In addition, the initial formation of 32PO4-labeled phosphatidic acid was not sensitive to inhibition of diacylglycerol kinase, supporting the role of direct activation of phospholipase D. These results indicate that hypotonicity and the accompanying cell swelling induce cell membrane phospholipid turnover, predominantly phosphatidylcholine, and production of the protein kinase C activator, diacylglycerol, which appears to occur via activation of phospholipase D.  相似文献   

9.
The present study explored whether calcitriol plays a role in the regulation of sodium-dependent glucose transporter protein 1 (SGLT1) activity. For this purpose, alpha-methyl glucoside (AMG) uptake in stable transfected Chinese hamster ovary (CHO-G6D3) cells expressing rabbit SGLT1 (rbSGLT1) was used. The involvement of second messengers, intracellular signaling pathways, and pro-inflammatory cytokines were examined using specific inhibitors before incubation with calcitriol for 15 min. The present study demonstrated the involvement of second messengers produced by phospholipase A2, phospholipase C, calmodulin, diacylglycerol kinase, and phosphoinositide 3 kinase on calcitriol-regulated AMG uptake. Pretreatment with inhibitors of the mitogen-activated protein kinase (MAPK) signaling pathway increased calcitriol-induced AMG uptake. In contrast, inhibition of the phosphoinositide 3-kinase PI3K/Akt/mTOR signaling pathway decreased the effect of calcitriol on AMG uptake. These findings suggest that calcitriol regulates rbSGLT1 activity through a rapid, extranuclear initiated mechanism of action stimulated by MAPK and inhibited by PI3K/Akt/mTOR. Another important finding was the effect of pro-inflammatory cytokines on calcitriol-induced AMG uptake. Interleukin-6 increased while tumor necrosis factor-α decreased calcitriol-induced AMG uptake. In conclusion, the present study demonstrates the involvement of calcitriol in the regulation of rbSGLT1 activity. This is due to the activation of intracellular signaling pathways triggered by second messenger molecules and cytokines after a short time (15 min) exposure to calcitriol.  相似文献   

10.
5-Aminosalicylate, which is considered to be the active moiety of sulfasalazine, is one of the most widely used agents for treatment of inflammatory bowel disease. However, its mechanism of action is unclear. In this report, we provide evidence that the phospholipase D pathway is a target for this drug in macrophages. Activation of phospholipase D leads to the generation of important second messengers such as phosphatidic acid, lysophosphatidic acid and diacylglycerol, all of which can regulate cellular responses involved in inflammation. Murine peritoneal macrophages were labeled with [(3)H]myristate, incubated with various drugs, agonists, or inhibitors, and phospholipase D activity was assayed. 5-Aminosalicylate or sulfasalazine stimulated phospholipase D in a time- and concentration-dependent manner. Chelation of extracellular Ca(2+) inhibited phospholipase D activation by either of these drugs whereas pretreatment of macrophages with the tyrosine kinase inhibitor genistein had no effect. Downregulation of protein kinase C by prolonged incubation with phorbol ester completely blocked the activation of phospholipase D. Pertussis toxin decreased the activation of phospholipase D. The levels of inositol 1,4,5-trisphosphate increased by 260% after treatment of macrophages with 5-aminosalicylate. A phosphoinositide-specific phospholipase C inhibitor U73122 blocked phospholipase D activation completely. Interestingly, long-term preincubation of the macrophages with a relatively low concentration of 5-aminosalicylate that did not stimulate phospholipase D activity by itself, potentiated the effect of phorbol ester-induced activation of phospholipase D. Taken together, these results show that 5-aminosalicylate activates phospholipase D via a pathway involving inositol 1,4,5-trisphosphate generation, calcium fluxes, and Gi/Go. Although the mechanisms by which phospholipase D activation by 5-aminosalicylate or sulfasalazine might attenuate inflammatory responses in the intestine remain to be defined, these results highlight a novel potential mechanism of action for these drugs.  相似文献   

11.
Increases in cell phosphatidic acid content occur in response to a wide variety of agonists, many of which have growth promoting properties. These changes have correlated with calcium flux, enzyme activation, gene induction, or cell proliferation. In the current studies we show that exogenous phosphatidic acid (PA) and phosphatidylserine stimulate phosphoinositide hydrolysis and DNA synthesis in cultured human renal mesangial cells. These phospholipids also induce mRNAs for platelet-derived growth factor (PDGF). The activation of phospholipase C by PA appears to be desensitized via protein kinase C as brief preincubation with phorbol ester abrogates the effect. PA-induced DNA synthesis is only partly mediated via protein kinase C as co-incubation with the inhibitor staurosporine blunts DNA synthesis by only one-third. In contrast, induction of PDGF A-chain mRNA is almost totally inhibited by staurosporine. We propose that changes in endogenous phospholipids such as PA or phosphatidylserine may serve as common signaling pathway for a variety of growth factors. Induction of PDGF proto-oncogenes via protein kinase C may represent one mechanism by which this cell activation occurs.  相似文献   

12.
Stimulation of the antigen receptor of WEHI-231 B lymphoma cells with anti-receptor antibodies (anti-IgM) induces irreversible growth arrest. Anti-IgM stimulates two kinds of transmembrane signaling events, phosphorylation of proteins on tyrosyl residues and breakdown of inositol phospholipids, which results in increases of inositol phosphates, diacylglycerol, and calcium. The roles of these reactions in mediating the growth arrest of the B lymphoma cells have not been established. To examine this issue, we took a genetic approach. Mutants of WEHI-231 cells were isolated that were resistant to anti-IgM-induced growth arrest. Five out of seven independent mutants analyzed had normal cell-surface expression of antigen receptors. Although each of these five mutants had tyrosine protein phosphorylation patterns comparable to wild-type cells, they exhibited alterations in the phosphoinositide signaling pathway. Four of the mutants had decreased phosphoinositide breakdown, probably due to an alteration in phospholipase C. Decreased second messenger production may be responsible for the growth-resistant phenotype. Full growth arrest was restored upon addition of the calcium ionophore ionomycin, suggesting that the limiting second messenger was intracellular free calcium. The final mutant appeared to be altered in a component(s) that responds to diacylglycerol and calcium. Taken together, these results provide further evidence that the phosphoinositide pathway is at least partly responsible for mediating antigen receptor regulation of B lymphoma cell growth.  相似文献   

13.
The production of the second messenger molecules diacylglycerol and inositol 1,4,5-trisphosphate is mediated by activated phosphatidylinositol-specific phospholipase C (PLC) enzymes. We report the enhancement of the phosphoinositide metabolism pathway in KMS-4 and KMS-8 cells, both of which are human colorectal carcinoma cell lines derived from familial adenomatous polyposis patients. In these cells, the cellular contents of diacylglycerol and inositol 1,4,5-trisphosphate were constitutively increased and the PLC activity in vitro was significantly high, as compared with those in normal colon cells or in other sporadic colorectal carcinoma cells. Northern and Western analyses showed the high expression levels of both PLC-γ1 and PLC-δ1 in KMS-4 and KMS-8 cells. Moreover, we detected the enhancement of protein–tyrosine kinase activity and tyrosine phosphorylation of PLC-γ1 in these KMS cells. These results suggest the involvement of activated phosphoinositide signaling pathways in the colorectal tumorigenesis of familial adenomatous polyposis. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Signal-induced turnover of membrane phospholipids represents a fundamental transducing mechanism that induces a signal cascade resulting in mobilization of calcium, activation of protein kinase C by diacylglycerol, release of arachidonic acid and stimulation of cyclic GMP production. In this pathway tumor-promoting phorbol esters such as phorbol myristate acetate (PMA) may substitute for diacylglycerol. The interferonlike antiviral effect of PMA described here suggests that the inositol phospholipid-diacylglycerol-protein kinase C signal-transducing mechanism may be involved in interferon action.  相似文献   

15.
To determine the role of protein tyrosine phosphorylation in the activation of phospholipase D (PLD), electropermeabilized HL-60 cells labeled in [3H]alkyl-phosphatidylcholine were treated with vanadate derivatives. Micromolar concentrations of vanadyl hydroperoxide (V(4+)-OOH) induced accumulation of tyrosine-phosphorylated proteins. Concomitantly, V(4+)-OOH or a combination of vanadate and NADPH elicited a concentration- and time-dependent accumulation of phosphatidic acid (PtdOH). In the presence of ethanol a sustained formation of phosphatidylethanol was observed, indicating that a type D phospholipase was activated. A good correlation was found to exist between the accumulation of tyrosine-phosphorylated proteins and activation of PLD. The V(4+)-OOH concentration dependence of the two responses was nearly identical, and the time course of activation was similar, with tyrosine phosphorylation preceding PLD activation by approximately 1 min. The ability of V(4+)-OOH to induce both responses was found to be strictly dependent on the presence of ATP and/or Mg2+, suggesting that PLD activation involves phosphotransferase reactions. Accordingly, ST638, a tyrosine kinase inhibitor, reduced concomitantly tyrosine phosphorylation and PLD activation elicited by V(4+)-OOH. The mechanism of action of V(4+)-OOH was investigated. The diacylglycerol kinase inhibitors, dioctanoylethylene glycol and R59022 potentiated PLD stimulation by exogenous diacylglycerol but not by V(4+)-OOH. Moreover, stimulation by V(4+)-OOH and by phorbol esters was synergystic. Therefore, diacylglycerol-induced activation of protein kinase C is unlikely to mediate the effects of V(4+)-OOH. The response of PLD to V(4+)-OOH was larger than that to guanosine 5'-(gamma-thio)triphosphate. Moreover, the effects of GTP gamma S and V(4+)-OOH were additive. Hence, activation of G proteins cannot account for the stimulation of PLD by V(4+)-OOH. V(4+)-OOH also triggers a burst of O2 consumption by the NADPH oxidase. Inhibition of PtdOH accumulation by addition of ethanol or by ST638 abolished this respiratory burst. Together, the results establish a strong correlation between tyrosine phosphorylation, PLD activation, and stimulation of the NADPH oxidase in HL-60 cells, suggesting a causal relationship.  相似文献   

16.
17.
We have previously reported that endothelin-1 stimulates phospholipase C-induced hydrolysis of phosphatidylinositol-4,5-bisphosphate. Other signal transduction pathways that hydrolyze alternative phospholipids through phospholipase D may also mediate endothelin-stimulated cellular responses. We initially evaluated endothelin-dependent generation of 32P-phosphatidic acid as an indirect indication of phospholipase D activity in rat mesangial cells. Endothelin (10(-7) M) induced an elevation of phosphatidic acid that was maximal at 15 min and persisted upward of 60 min. Pretreatment with the diacylglycerol-kinase inhibitor, R59022, did not reduce formation of endothelin-stimulated 32P-phosphatidic acid, demonstrating that the sequential actions of phospholipase C/diacylglycerol kinase do not contribute to endothelin-stimulated phosphatidic acid formation. We next conclusively identified a role for phospholipase D in the generation of phosphatidic acid by assessing the formation of 3H-phosphatidylethanol from 3H-alkyl lyso glycerophosphocholine and exogenous ethanol. Endothelin stimulated 3H-alkyl phosphatidylethanol formation in the presence but not the absence of 0.5% ethanol. Also, endothelin induced a concomitant elevation of 3H-alkyl-phosphatidic acid that was significantly reduced when the cells were exposed to exogenous ethanol, reflecting the formation of phosphatidylethanol. In addition, endothelin stimulated the release of 3H-choline and 3H-ethanolamine, demonstrating that additional phospholipids may serve as substrates for phospholipase D. Phorbol esters and synthetic diglycerides mimicked the effects of endothelin to stimulate phospholipase D and inhibitors of protein kinase C significantly reduced endothelin-stimulated phospholipase D. In addition, endothelin did not stimulate phosphatidylethanol formation in protein kinase C down-regulated cells. The calcium ionophore, ionomycin, did not stimulate phospholipase D and mesangial cells pretreated with BAPTA to chelate cytosolic calcium did not show a diminished endothelin-stimulated phospholipase D. Thus these data demonstrate that mesangial cells possess a protein kinase C-regulated phospholipase D activity that can be stimulated with endothelin.  相似文献   

18.
The alternate pathway of signal transduction via hydrolysis of phosphatidylcholine, the major cellular phospholipid, has been investigated in murine peritoneal macrophages. A sustained formation of diacylglycerol, is preceded by an enhanced production of phosphatidic acid, when the macrophages were given a stimulus with 12-O-tetradecanoyl phorbol-13-acetate for sixty minutes. Production of choline and choline metabolites are significantly increased too. Propranolol, which inhibits phosphatidate phosphohydrolase, the enzyme responsible for conversion of phosphatidic acid to diacylglycerol, can effectively block the formation of diacylglycerol. Inhibition of protein kinase C either by its inhibitors, staurosporine and H-7 or by depletion, apparently affect the generation of the lipid products. Moreover, based on the results of transphosphatidylation reaction, involvement of a phospholipase D in the phosphatidylcholine-hydrolytic pathway in macrophages is predicted. These observations support the view that probably the phorbol ester acting directly on protein kinase C of the macrophages activate their phosphatidylcholine-specific phospholipase D to allow a steady generation of second messengers, to enable them to participate in the cell signalling process in a more efficient manner than those generated in the phosphoinositide pathway of signal transduction. (Mol Cell Biochem 000: 000-000,1999)  相似文献   

19.
Currently, a central question in biology is how signals from the cell surface modulate intracellular processes. In recent years phosphoinositides have been shown to play a key role in signal transduction. Two phosphoinositide pathways have been characterized, to date. In the canonical phosphoinositide turnover pathway, activation of phosphatidylinositol-specific phospholipase C results in the hydrolysis of phosphatidylinositol 4,5-bisphospate and the generation of two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. The 3-phosphoinositide pathway involves protein-tyrosine kinase-mediated recruitment and activation of phosphatidylinositol 3-kinase, resulting in the production of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. The 3-phosphoinositides are not substrates of any known phospholipase C, are not components of the canonical phosphoinositide turnover pathway, and may themselves act as intracellular mediators. The 3-phosphoinositide pathway has been implicated in growth factor-dependent mitogenesis, membrane ruffling and glucose uptake. Furthermore the homology of the yeast vps34 with the mammalian phosphatidylinositol 3-kinase has suggested a role for this pathway in vesicular trafficking. In this review the different mechanisms employed by protein-tyrosine kinases to activate phosphatidylinositol 3-kinase, and its involvement in the signaling cascade initiated by tyrosine phosphorylation, are examined.  相似文献   

20.
Human erythroleukaemia (HEL) cells were exposed to thrombin and other platelet-activating stimuli, and changes in radiolabelled phospholipid metabolism were measured. Thrombin caused a transient fall in PtdInsP and PtdInsP2 levels, accompanied by a rise in diacylglycerol and phosphatidic acid, indicative of a classical phospholipase C/diacylglycerol kinase pathway. However, the rise in phosphatidic acid preceded that of diacylglycerol, which is inconsistent with phospholipase C/diacylglycerol kinase being the sole source of phosphatidic acid. In the presence of ethanol, thrombin and other agonists (platelet-activating factor, adrenaline and ADP, as well as fetal-calf serum) stimulated the appearance of phosphatidylethanol, an indicator of phospholipase D activity. The Ca2+ ionophore A23187 and the protein kinase C activator phorbol myristate acetate (PMA) also elicited phosphatidylethanol formation, although A23187 was at least 5-fold more effective than PMA. Phosphatidylethanol production stimulated by agonists or A23187 was Ca2(+)-dependent, whereas that with PMA was not. These result suggest that phosphatidic acid is generated in agonist-stimulated HEL cells by two routes: phospholipase C/diacylglycerol kinase and phospholipase D. Activation of the HEL-cell phospholipase D in response to agonists may be mediated by a rise in intracellular Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号