首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shigellosis is the major global cause of dysentery. Shigella sonnei, which has historically been more commonly isolated in developed countries, is undergoing an unprecedented expansion across industrializing regions in Asia, Latin America, and the Middle East. The precise reasons underpinning the epidemiological distribution of the various Shigella species and this global surge in S. sonnei are unclear but may be due to three major environmental pressures. First, natural passive immunization with the bacterium Plesiomonas shigelloides is hypothesized to protect populations with poor water supplies against S. sonnei. Improving the quality of drinking water supplies would, therefore, result in a reduction in P. shigelloides exposure and a subsequent reduction in environmental immunization against S. sonnei. Secondly, the ubiquitous amoeba species Acanthamoeba castellanii has been shown to phagocytize S. sonnei efficiently and symbiotically, thus allowing the bacteria access to a protected niche in which to withstand chlorination and other harsh environmental conditions in temperate countries. Finally, S. sonnei has emerged from Europe and begun to spread globally only relatively recently. A strong selective pressure from localized antimicrobial use additionally appears to have had a dramatic impact on the evolution of the S. sonnei population. We hypothesize that S. sonnei, which exhibits an exceptional ability to acquire antimicrobial resistance genes from commensal and pathogenic bacteria, has a competitive advantage over S. flexneri, particularly in areas with poorly regulated antimicrobial use. Continuing improvement in the quality of global drinking water supplies alongside the rapid development of antimicrobial resistance predicts the burden and international distribution of S. sonnei will only continue to grow. An effective vaccine against S. sonnei is overdue and may become one of our only weapons against this increasingly dominant and problematic gastrointestinal pathogen.  相似文献   

2.
The protective efficacy of and immune response to heat‐killed cells of monovalent and hexavalent mixtures of six serogroups/serotypes of Shigella strains (Shigella dysenteriae 1, Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, Shigella boydii 4, and Shigella sonnei) were examined in a guinea pig colitis model. A monovalent or hexavalent mixture containing 1 × 107 of each serogroup/serotype of heat‐killed Shigella cells was administered orally on Days 0, 7, 14 and 21. On Day 28, the immunized animals were challenged rectally with 1 × 109 live virulent cells of each of the six Shigella serogroups/serotypes. In all immunized groups, significant levels of protection were observed after these challenges. The serum titers of IgG and IgA against the lipopolysaccharide of each of the six Shigella serogroups/serotypes increased exponential during the course of immunization. High IgA titers against the lipopolysaccharide of each of the six Shigella serogroups/serotypes were also observed in intestinal lavage fluid from all immunized animals. These data indicate that a hexavalent mixture of heat‐killed cells of the six Shigella serogroups/serotypes studied would be a possible broad‐spectrum candidate vaccine against shigellosis.  相似文献   

3.
Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.  相似文献   

4.
Summary Plasmid profiling was used to characterize 219 strains of Shigellaspecies isolated from sporadic cases of shigellosis in Malaysia during the period 1994–2000. Heterogeneous plasmid patterns were observed in all Shigella spp. There was a correlation between plasmid patterns and serotypes of S. flexneri, S. dysenteriaeand S. sonnei. Five common small plasmids (>20.0 kb) were observed in S. flexneri1b and 2a, whereas six common small plasmids were found in serotype 3a. Some of these plasmids appeared to maintain their existence stably in each individual serotype. Plasmids of size 11.40 and 4.20 kb were present only in S. flexneri2a isolates, whereas the 4.40 kb plasmid was unique for serotype 3a. Large (>150 kb) or mid-range plasmid (20.0–150 kb) was not observed from any S. flexneri1b isolates. Eighty-nine percent of S. flexneriof various serotypes harboured the plasmid of 3.20 kb. All S. dysenteriaetype 2 isolates harboured the 9.00 kb plasmid, while four common small plasmids were found in S. sonneiisolates. The 2.10 kb plasmid was only seen in S. sonnei. Streptomycin resistance in S. dysenteriaetype 2 and multi-drug resistance in S. sonneimay be associated with the 9.00 and 14.8 kb plasmids, respectively. Plasmid profiling provided a further discrimination beyond serotyping and a useful alternative genotypic marker for differentiation of Shigellaspecies. To the best of our knowledge, this is the first report on the plasmid prevalence of the Malaysian Shigellaspecies.  相似文献   

5.
The short‐ and long‐term passive protective efficacy of a mixture of heat‐killed cells of six serogroups/serotypes of Shigella strains (Shigella dysenteriae 1, S. flexneri 2a, S. flexneri 3a, S. flexneri 6, S. boydii 4, and S. sonnei) were studied in neonatal mice. Neonatal mice from immunized dams exhibited significant short‐ and long‐term passive protection against individual challenge by each of the six Shigella strains. High IgG and IgA titers against the lipopolysaccharide from each of the six Shigella strains were observed in sera from immunized dams.  相似文献   

6.
A trivalent liveShigella vaccine candidate FSD01 against S.flexneri 2a, S.sonnei and S.dysenteriae I was constructed. This candidate strain was based on the S.flexneri 2a vaccine T32. By homologous recombination exchange, the chromosomalasd gene of T32 was site-specifically inactivated, resulting in the strain unable to grow normally in LB broth, while anotherasd gene of S.mutans was employed to construct an Asd+ complementary vector. This combination ofasd - host/Asd+ vector formed a balanced-lethal expression system in T32 strain. By use of this system, two important protective antigen genes coding for S.sonnei Form I antigen and Shiga toxin B subunit were cloned and expressed in T32, which led to the construction of trivalent candidate vaccine FSD01. Experimental results showed that this strain was genetically stable, but its recombinant plasmid was non-resistant. Moreover, it was able to effectively express trivalent antigens in one host and induce protective responses in mice against the challenges of the above threeShigella strains.  相似文献   

7.
Amplified fragment length polymorphism (AFLP) can be used to assess the genetic diversity of closely related microbial genomes. In this study, the first of its kind for identification of Shigella, the high discriminatory power of AFLP has been used to determine the genetic relatedness of 230 isolates of Shigella flexneri and Shigella sonnei strains. An AFLP database was generated to demonstrate its utility in the discrimination of closely related strains. Based on AFLP, S. flexneri strains could be grouped into separate clusters according to their serotypes. Within each serotype, strains demonstrated 80–100% similarity indicating that identical strains and closely related strains could be distinguished by this technique. S. flexneri 6 formed a distinct cluster with 55% similarity to the rest of the S. flexneri strains showing significant divergence from the rest of the S. flexneri strains. Significantly, S. sonnei isolates formed a distinct group and showed approximately the same level of genetic linkage to S. flexneri as Escherichia coli strains. Untypable isolates that showed conflicting agglutination reactions with conventional typing sera were identifiable by AFLP. Thus AFLP can be used for genetic fingerprinting of Shigella strains and aid in the identification of variant untypable isolates.  相似文献   

8.

Background

Shigella, the causative agent of shigellosis, is a major global public health concern, particularly in developing countries with poor sanitation. A comprehensive and current understanding of the prevalent species and serotypes of shigellosis is essential for both disease prevention and vaccine development. However, no current data are available on the causative species/serotypes of shigellosis in mainland China during the past decade.

Methods and Findings

Relevant studies addressing the prevalent species of shigellosis in mainland China from January 2001 to December 2010 were identified from PubMed and the Chinese BioMedical Literature Database (in Chinese) until April 2012. A total of 131 eligible articles (136 studies) were included in this review. Meta-analyses showed that the prevalences of S. flexneri and S. sonnei were 76.2% (95% CI, 73.7%–78.5%) and 21.3% (95% CI, 19.0%–23.7%), respectively. Stratified analyses indicated a decrease in the prevalence of S. flexneri cases and an increase in the prevalence of S. sonnei cases concurrent with the rapid economic growth experienced by China in recent years. Moreover, significantly higher rates of S. sonnei were observed in the East, North and Northeast regions of China, as compared to the rest of the country. These phenomena imply the possible association between the prevalent species of Shigella and regional economic status; however, additional factors also exist and require further investigations. Moreover, the two major serotypes S. flexneri 2a and 4c accounted for 21.5% (95% CI, 16.7%–27.4%) and 12.9% (95% CI 9.8%–16.9%) of S. flexneri infections, respectively, in the past decade. However, these results were found to be frequently heterogeneous (p for Q tests <0.01).

Conclusions

This study provides an updated review of the causative agents of shigellosis in mainland China and focuses on the importance of strengthening prevention and research efforts on S. sonnei and the newly emerged S. flexneri serotype 4c.  相似文献   

9.
A trivalent liveShigella vaccine candidate FSD01 against S.flexneri 2a, S.sonnei and S.dysenteriae I was constructed. This candidate strain was based on the S.flexneri 2a vaccine T32. By homologous recombination exchange, the chromosomalasd gene of T32 was site-specifically inactivated, resulting in the strain unable to grow normally in LB broth, while anotherasd gene of S.mutans was employed to construct an Asd+ complementary vector. This combination ofasd - host/Asd+ vector formed a balanced-lethal expression system in T32 strain. By use of this system, two important protective antigen genes coding for S.sonnei Form I antigen and Shiga toxin B subunit were cloned and expressed in T32, which led to the construction of trivalent candidate vaccine FSD01. Experimental results showed that this strain was genetically stable, but its recombinant plasmid was non-resistant. Moreover, it was able to effectively express trivalent antigens in one host and induce protective responses in mice against the challenges of the above threeShigella strains.  相似文献   

10.
BackgroundAntimicrobial resistance is a major issue in the Shigellae, particularly as a specific multidrug-resistant (MDR) lineage of Shigella sonnei (lineage III) is becoming globally dominant. Ciprofloxacin is a recommended treatment for Shigella infections. However, ciprofloxacin-resistant S. sonnei are being increasingly isolated in Asia and sporadically reported on other continents. We hypothesized that Asia is a primary hub for the recent international spread of ciprofloxacin-resistant S. sonnei.ConclusionsThis study suggests that a single clone, which is widespread in South Asia, is likely driving the current intercontinental surge of ciprofloxacin-resistant S. sonnei and is capable of establishing endemic transmission in new locations. Despite being limited in geographical scope, our work has major implications for understanding the international transfer of antimicrobial-resistant pathogens, with S. sonnei acting as a tractable model for studying how antimicrobial-resistant Gram-negative bacteria spread globally.  相似文献   

11.
IntroductionShigellosis is endemic in low-and middle-income countries, causing approximately 125 million episodes of diarrhea and leading to approximately 160 .000 deaths annually one-third of which is associated with children.ObjectiveTo describe the characteristics and antimicrobial resistance profiles of Shigella species recovered in Colombia from 1997 to 2018.Materials and methodsWe received isolates from laboratories in 29 Colombian departments. We serotyped with specific antiserum and determined antimicrobial resistance and minimal inhibitory concentrations for ten antibiotics with Kirby-Bauer tests following the Clinical and Laboratory Standards Institute recommendations.ResultsWe analyzed 5,251 isolates of Shigella spp., most of them obtained from stools (96.4%); 2,511 (47.8%) were from children under five years of age. The two most common species were S. sonnei (55.1%) and S. flexneri (41.7%). The highest resistance rate was that of tetracycline (88.1%) followed by trimethoprim-sulfamethoxazole (79.3%) and ampicillin (65.5%); 50.8% of isolates were resistant to chloramphenicol, 43.6% to amoxicillin/clavulanic acid, and less than 1% to cefotaxime, ceftazidime, gentamicin, and ciprofloxacin. In S. sonnei, the most common resistance profile corresponded to trimethoprim-sulfamethoxazole (92%) whereas in S. flexneri the most common antibiotic profiles were multidrug resistance.ConclusionsIn Colombia, children under five years are affected by all Shigella species. These findings should guide funders and public health officials to make evidence-based decisions for protection and prevention measures. The antimicrobial resistance characteristics found in this study underline the importance of combating the dissemination of the most frequently isolated species, S. sonnei and S. flexneri.  相似文献   

12.
Shigellosis, caused by Shigella species, is a major public health problem in Bangladesh. To determine the prevalence and distribution of different Shigella species, we analyzed 10,827 Shigella isolates from patients between 2001 and 2011. S. flexneri was the predominant species isolated throughout the period. However, the prevalence of S. flexneri decreased from 65.7% in 2001 to 47% in 2011, whereas the prevalence of S. sonnei increased from 7.2% in 2001 to 25% in 2011. S. boydii and S. dysenteriae accounted for 17.3% and 7.7% of the isolates respectively throughout the period. Of 200 randomly selected S. sonnei isolates for extensive characterization, biotype g strains were predominant (95%) followed by biotype a (5%). Resistance to commonly used antibiotics including trimethoprim-sulfamethoxazole, nalidixic acid, ciprofloxacin, mecillinam and ampicillin was 89.5%, 86.5%, 17%, 10.5%, and 9.5%, respectively. All isolates were susceptible to ceftriaxone, cefotaxime, ceftazidime and imipenem. Ninety-eight percent of the strains had integrons belonging to class 1, 2 or both. The class 1 integron contained only dfrA5 gene, whereas among class 2 integron, 16% contained dhfrAI-sat1-aadA1-orfX gene cassettes and 84% harbored dhfrA1-sat2 gene cassettes. Plasmids of ∼5, ∼1.8 and ∼1.4 MDa in size were found in 92% of the strains, whereas only 33% of the strains carried the 120 MDa plasmid. PFGE analysis showed that strains having different integron patterns belonged to different clusters. These results show a changing trend in the prevalence of Shigella species with the emergence of multidrug resistant S. sonnei. Although S. flexneri continues to be the predominant species albeit with reduced prevalence, S. sonnei has emerged as the second most prevalent species replacing the earlier dominance by S. boydii and S. dysenteriae in Bangladesh.  相似文献   

13.
S. flexneri is the leading cause of bacillary dysentery in the developing countries. Several temperate phages originating from this host have been characterised. However, all S. flexneri phages known to date are lambdoid phages, which have the ability to confer the O-antigen modification of their host. In this study, we report the isolation and characterisation of a novel Mu-like phage from a serotype 4a strain of S. flexneri. The genome of phage SfMu is composed of 37,146 bp and is predicted to contain 55 open reading frames (orfs). Comparative genome analysis of phage SfMu with Mu and other Mu-like phages revealed that SfMu is closely related to phage Mu, sharing >90% identity with majority of its proteins. Moreover, investigation of phage SfMu receptor on the surface of the host cell revealed that the O-antigen of the host serves as the receptor for the adsorption of phage SfMu. This study also demonstrates pervasiveness of SfMu phage in S. flexneri, by identifying complete SfMu prophage strains of serotype X and Y, and remnants of SfMu in strains belonging to 4 other serotypes, thereby indicating that transposable phages in S. flexneri are not uncommon. The findings of this study contribute an advance in our current knowledge of S. flexneri phages and will also play a key role in understanding the evolution of S. flexneri.  相似文献   

14.
Shigella, which infects primates, can be transmitted via fresh vegetables; however, its molecular interactions with plants have not been elucidated. Here, we show that four Shigella strains, Shigella boydii, Shigella sonnei, Shigella flexneri 2a, and S. flexneri 5a, proliferate at different levels in Arabidopsis thaliana. Microscopic studies revealed that these bacteria were present inside leaves and damaged plant cells. Green fluorescent protein (GFP)‐tagged S. boydii and S. flexneri 5a colonized leaves only, whereas S. flexneri 2a colonized both leaves and roots. Using Shigella mutants lacking type III secretion systems (T3SSs), we found that T3SSs that regulate the pathogenesis of shigellosis in humans also play a central role in bacterial proliferation in Arabidopsis. Strikingly, the immunosuppressive activity of two T3S effectors, OspF and OspG, was required for proliferation of Shigella in Arabidopsis. Of note, delivery of OspF or OspG effectors inside plant cells upon Shigella inoculation was confirmed using a split GFP system. These findings demonstrate that the human pathogen Shigella can proliferate in plants by adapting immunosuppressive machinery used in the original host human.  相似文献   

15.
There is no licensed vaccine for the prevention of shigellosis. Our approach to the development of a Shigella vaccines is based on inducing serum IgG antibodies to the O-specific polysaccharide (O-SP) domain of their lipopolysaccharides (LPS). We have shown that low molecular mass O-SP-core (O-SPC) fragments isolated from Shigella sonnei LPS conjugated to proteins induced significantly higher antibody levels in mice than the full length O-SP conjugates. This finding is now extended to the O-SPC of Shigella flexneri 2a and 6, and Shigella dysenteriae type 1. The structures of O-SPC, containing core plus 1-4 O-SP repeat units (RUs), were analyzed by NMR and mass spectroscopy. The first RUs attached to the cores of S. flexneri 2a and 6 LPS were different from the following RUs in their O-acetylation and/or glucosylation. Conjugates of core plus more than 1 RU were necessary to induce LPS antibodies in mice. The resulting antibody levels were comparable to those induced by the full length O-SP conjugates. In S. dysenteriae type 1, the first RU was identical to the following RUs, with the exception that the GlcNAc was bound to the core in the β-configuration, while in all other RUs the GlcNAc was present in the α-configuration. In spite of this difference, conjugates of S. dysenteriae type 1 core with 1, 2, or 3 RUs induced LPS antibodies in mice with levels statistically higher than those of the full size O-SP conjugates. O-SPC conjugates are easy to prepare, characterize, and standardize, and their clinical evaluation is planned.  相似文献   

16.
Outer membrane particles from Gram-negative bacteria are attractive vaccine candidates as they present surface antigens in their natural context. We previously developed a high yield production process for genetically derived particles, called generalized modules for membrane antigens (GMMA), from Shigella. As GMMA are derived from the outer membrane, they contain immunostimulatory components, especially lipopolysaccharide (LPS). We examined ways of reducing their reactogenicity by modifying lipid A, the endotoxic part of LPS, through deletion of late acyltransferase genes, msbB or htrB, in GMMA-producing Shigella sonnei and Shigella flexneri strains. GMMA with resulting penta-acylated lipid A from the msbB mutants showed a 600-fold reduced ability, and GMMA from the S. sonnei ΔhtrB mutant showed a 60,000-fold reduced ability compared with GMMA with wild-type lipid A to stimulate human Toll-like receptor 4 (TLR4) in a reporter cell line. In human peripheral blood mononuclear cells, GMMA with penta-acylated lipid A showed a marked reduction in induction of inflammatory cytokines (S. sonnei ΔhtrB, 800-fold; ΔmsbB mutants, 300-fold). We found that the residual activity of these GMMA is largely due to non-lipid A-related TLR2 activation. In contrast, in the S. flexneri ΔhtrB mutant, a compensatory lipid A palmitoleoylation resulted in GMMA with hexa-acylated lipid A with ∼10-fold higher activity to stimulate peripheral blood mononuclear cells than GMMA with penta-acylated lipid A, mostly due to retained TLR4 activity. Thus, for use as vaccines, GMMA will likely require lipid A penta-acylation. The results identify the relative contributions of TLR4 and TLR2 activation by GMMA, which need to be taken into consideration for GMMA vaccine development.  相似文献   

17.
Autotransporters have become attractive tools for surface expression of foreign proteins in Gram-negative bacteria. In this study, the Shigella autotransporter IcsA, has been exploited to express the human papillomavirus (HPV) type 16 L1 capsid protein in Shigella sonnei and Escherichia coli. The L1 gene was fused in-frame to replace the coding sequence of the IcsA passenger domain that is responsible for actin-based motility. The resultant hybrid protein could be detected by an anti-L1 antibody on the surface of S. sonnei and E. coli. In E. coli, the protein was expressed on the entire surface of the bacterium. In contrast, the protein was detected mainly at one pole of the Shigella bacterium. However, the protein became evenly distributed on the surface of the Shigella bacterium when the icsP gene was removed. Our study demonstrated the possibility of exploiting autotransporters for surface expression of large, heterologous viral proteins, which may be a useful strategy for vaccine development.  相似文献   

18.
Shigella flexneri remains a significant human pathogen due to high morbidity among children < 5 years in developing countries. One of the key features of Shigella infection is the ability of the bacterium to initiate actin tail polymerisation to disseminate into neighbouring cells. Dynamin II is associated with the old pole of the bacteria that is associated with F-actin tail formation. Dynamin II inhibition with dynasore as well as siRNA knockdown significantly reduced Shigella cell to cell spreading in vitro. The ocular mouse Sereny model was used to determine if dynasore could delay the progression of Shigella infection in vivo. While dynasore did not reduce ocular inflammation, it did provide significant protection against weight loss. Therefore dynasore''s effects in vivo are unlikely to be related to the inhibition of cell spreading observed in vitro. We found that dynasore decreased S. flexneri-induced HeLa cell death in vitro which may explain the protective effect observed in vivo. These results suggest the administration of dynasore or a similar compound during Shigella infection could be a potential intervention strategy to alleviate disease symptoms.  相似文献   

19.
Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria''s ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa) and might contribute (along with enterotoxins) to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them from the small to the large intestine where they invade colonocytes inducing a strong inflammatory response.  相似文献   

20.
Shigella spp. are water-borne pathogens responsible for mild to severe cases bacilli dysentery all around the world known as Shigellosis. The progressively increasing of antibiotic resistance among Shigella calls for developing and establishing novel alternative therapeutic methods. The present study aimed to evaluate a novel phage cocktail of lytic phages against extended spectrum beta lactamase isolates of Shigella species in an aquatic environment. The phage cocktail containing six novel Shigella specific phages showed a broad host spectrum. The cocktail was very stable in aquatic environment. The cocktail resulted in about 99% decrease in the bacterial counts in the contaminated water by several species and strains of Shigella such as Shigella sonnei, Shigella flexneri and Shigella dysenteriae. Achieving such a high efficiency in this in-vitro study demonstrates a high potential for in-vivo and in-situ application of this phage cocktail as a bio-controlling agent against Shigella spp. contamination and infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号