首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission1-3. An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data4.Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling.The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an automatic module. Trajectory segmentation5 involves the identification of indoor and outdoor parts from pre-processed space-time tracks. Again, both interactive visual segmentation and automatic segmentation are supported. Segmented space-time tracks are then analyzed to derive characteristics of one''s activity space such as activity radius etc. Density estimation and visualization are used to examine large amount of trajectory data to model hot spots and interactions. We demonstrate both density surface mapping6 and density volume rendering7. We also include a couple of other exploratory data analyses (EDA) and visualizations tools, such as Google Earth animation support and connection analysis. The suite of analytical as well as visual methods presented in this paper may be applied to any trajectory data for space-time activity studies.  相似文献   

2.
While the distribution patterns of cold-water corals, such as Paragorgia arborea, have received increasing attention in recent studies, little is known about their in situ activity patterns. In this paper, we examine polyp activity in P. arborea using machine learning techniques to analyze high-resolution time series data and photographs obtained from an autonomous lander cluster deployed in the Stjernsund, Norway. An interactive illustration of the models derived in this paper is provided online as supplementary material.We find that the best predictor of the degree of extension of the coral polyps is current direction with a lag of three hours. Other variables that are not directly associated with water currents, such as temperature and salinity, offer much less information concerning polyp activity. Interestingly, the degree of polyp extension can be predicted more reliably by sampling the laminar flows in the water column above the measurement site than by sampling the more turbulent flows in the direct vicinity of the corals.Our results show that the activity patterns of the P. arborea polyps are governed by the strong tidal current regime of the Stjernsund. It appears that P. arborea does not react to shorter changes in the ambient current regime but instead adjusts its behavior in accordance with the large-scale pattern of the tidal cycle itself in order to optimize nutrient uptake.  相似文献   

3.

Background

Epigenome-wide association scans (EWAS) are an increasingly powerful and widely-used approach to assess the role of epigenetic variation in human complex traits. However, this rapidly emerging field lacks dedicated visualisation tools that can display features specific to epigenetic datasets.

Result

We developed coMET, an R package and online tool for visualisation of EWAS results in a genomic region of interest. coMET generates a regional plot of epigenetic-phenotype association results and the estimated DNA methylation correlation between CpG sites (co-methylation), with further options to visualise genomic annotations based on ENCODE data, gene tracks, reference CpG-sites, and user-defined features. The tool can be used to display phenotype association signals and correlation patterns of microarray or sequencing-based DNA methylation data, such as Illumina Infinium 450k, WGBS, or MeDIP-seq, as well as other types of genomic data, such as gene expression profiles. The software is available as a user-friendly online tool from http://epigen.kcl.ac.uk/cometand as an R Bioconductor package. Source code, examples, and full documentation are also available from GitHub.

Conclusion

Our new software allows visualisation of EWAS results with functional genomic annotations and with estimation of co-methylation patterns. coMET is available to a wide audience as an online tool and R package, and can be a valuable resource to interpret results in the fast growing field of epigenetics. The software is designed for epigenetic data, but can also be applied to genomic and functional genomic datasets in any species.  相似文献   

4.
The publication of the world catalog of terrestrial isopods some ten years ago by Schmalfuss has facilitated research on isopod diversity patterns at a global scale. Furthermore, even though we still lack a comprehensive and robust phylogeny of Oniscidea, we do have some useful approaches to phylogenetic relationships among major clades which can offer additional insights into isopod evolutionary dynamics. Taxonomic diversity is one of many approaches to biodiversity and, despite its sensitiveness to biases in taxonomic practice, has proved useful in exploring diversification dynamics of various taxa. In the present work, we attempt an analysis of taxonomic diversity patterns among Oniscidea based on an updated world list of species containing 3,710 species belonging to 527 genera and 37 families (data till April 2014). The analysis explores species diversity at the genus and family level, as well as the relationships between species per genera, species per families, and genera per families. In addition, we consider the structure of isopod taxonomic system under the fractal perspective that has been proposed as a measure of a taxon’s diversification. Finally, we check whether there is any phylogenetic signal behind taxonomic diversity patterns. The results can be useful in a more detailed elaboration of Oniscidea systematics.  相似文献   

5.
In the life sciences, many measurement methods yield only the relative abundances of different components in a sample. With such relative—or compositional—data, differential expression needs careful interpretation, and correlation—a statistical workhorse for analyzing pairwise relationships—is an inappropriate measure of association. Using yeast gene expression data we show how correlation can be misleading and present proportionality as a valid alternative for relative data. We show how the strength of proportionality between two variables can be meaningfully and interpretably described by a new statistic ϕ which can be used instead of correlation as the basis of familiar analyses and visualisation methods, including co-expression networks and clustered heatmaps. While the main aim of this study is to present proportionality as a means to analyse relative data, it also raises intriguing questions about the molecular mechanisms underlying the proportional regulation of a range of yeast genes.  相似文献   

6.
Chromosomal evolution is widely considered an important driver of speciation because it can promote the establishment of reproductive barriers. Karyotypic reorganization is also expected to affect the mean phenotype, as well as its development and patterns of phenotypic integration, through processes such as variation in genetic linkage between quantitative trait loci or between regulatory regions and their targets. Here we explore the relationship between chromosomal evolution and phenotypic integration by analyzing a well-known house mouse parapatric contact zone between a highly derived Robertsonian (Rb) race (2n = 22) and populations with standard karyotype (2n = 40). Populations with hybrid karyotypes are scattered throughout the hybrid zone connecting the two parental races. Using mandible shape data and geometric morphometrics, we test the hypothesis that patterns of integration progressively diverge from the “normal” integration pattern observed in the standard race as they accumulate Rb fusions. We find that the main pattern of integration observed between the posterior and anterior part of the mandible can be largely attributed to allometry. We find no support for a gradual increase in divergence from normal patterns of integration as fusions accumulate. Surprisingly, however, we find that the derived Rb race (2n = 22) has a distinct allometric trajectory compared with the standard race. Our results suggest that either individual fusions disproportionately affect patterns of integration or that there are mechanisms which “purge” extreme variants in hybrids (e.g. reduced fitness of hybrid shape).  相似文献   

7.
Despite advances in our mechanistic understanding of ecological processes, the inherent complexity of real-world ecosystems still limits our ability in predicting ecological dynamics especially in the face of on-going environmental stress. Developing a model is frequently challenged by structure uncertainty, unknown parameters, and limited data for exploring out-of-sample predictions. One way to address this challenge is to look for patterns in the data themselves in order to infer the underlying processes of an ecological system rather than to build system-specific models. For example, it has been recently suggested that statistical changes in ecological dynamics can be used to infer changes in the stability of ecosystems as they approach tipping points. For computer scientists such inference is similar to the notion of a Turing machine: a computational device that could execute a program (the process) to produce the observed data (the pattern). Here, we make use of such basic computational ideas introduced by Alan Turing to recognize changing patterns in ecological dynamics in ecosystems under stress. To do this, we use the concept of Kolmogorov algorithmic complexity that is a measure of randomness. In particular, we estimate an approximation to Kolmogorov complexity based on the Block Decomposition Method (BDM). We apply BDM to identify changes in complexity in simulated time-series and spatial datasets from ecosystems that experience different types of ecological transitions. We find that in all cases, KBDM complexity decreased before all ecological transitions both in time-series and spatial datasets. These trends indicate that loss of stability in the ecological models we explored is characterized by loss of complexity and the emergence of a regular and computable underlying structure. Our results suggest that Kolmogorov complexity may serve as tool for revealing changes in the dynamics of ecosystems close to ecological transitions.  相似文献   

8.

Background

Staphylococcus aureus is one of the most important human pathogens and methicillin-resistant variants (MRSAs) are a major cause of hospital and community-acquired infection. We aimed to map the geographic distribution of the dominant clones that cause invasive infections in Europe.

Methods and Findings

In each country, staphylococcal reference laboratories secured the participation of a sufficient number of hospital laboratories to achieve national geo-demographic representation. Participating laboratories collected successive methicillin-susceptible (MSSA) and MRSA isolates from patients with invasive S. aureus infection using an agreed protocol. All isolates were sent to the respective national reference laboratories and characterised by quality-controlled sequence typing of the variable region of the staphylococcal spa gene (spa typing), and data were uploaded to a central database. Relevant genetic and phenotypic information was assembled for interactive interrogation by a purpose-built Web-based mapping application. Between September 2006 and February 2007, 357 laboratories serving 450 hospitals in 26 countries collected 2,890 MSSA and MRSA isolates from patients with invasive S. aureus infection. A wide geographical distribution of spa types was found with some prevalent in all European countries. MSSA were more diverse than MRSA. Genetic diversity of MRSA differed considerably between countries with dominant MRSA spa types forming distinctive geographical clusters. We provide evidence that a network approach consisting of decentralised typing and visualisation of aggregated data using an interactive mapping tool can provide important information on the dynamics of MRSA populations such as early signalling of emerging strains, cross border spread, and importation by travel.

Conclusions

In contrast to MSSA, MRSA spa types have a predominantly regional distribution in Europe. This finding is indicative of the selection and spread of a limited number of clones within health care networks, suggesting that control efforts aimed at interrupting the spread within and between health care institutions may not only be feasible but ultimately successful and should therefore be strongly encouraged. Please see later in the article for the Editors'' Summary  相似文献   

9.
10.

Background

Although much is known about how circadian systems control daily cycles in the physiology and behavior of Drosophila and several vertebrate models, marine invertebrates have often been overlooked in circadian rhythms research. This study focuses on the starlet sea anemone, Nematostella vectensis, a species that has received increasing attention within the scientific community for its potential as a model research organism. The recently sequenced genome of N. vectensis makes it an especially attractive model for exploring the molecular evolution of circadian behavior. Critical behavioral data needed to correlate gene expression patterns to specific behaviors are currently lacking in N. vectensis.

Methodology/Principal Findings

To detect the presence of behavioral oscillations in N. vectensis, locomotor activity was evaluated using an automated system in an environmentally controlled chamber. Animals exposed to a 24 hr photoperiod (12 hr light: 12 hr dark) exhibited locomotor behavior that was both rhythmic and predominantly nocturnal. The activity peak occurred in the early half of the night with a 2-fold increase in locomotion. Upon transfer to constant lighting conditions (constant light or constant dark), an approximately 24 hr rhythm persisted in most animals, suggesting that the rhythm is controlled by an endogenous circadian mechanism. Fourier analysis revealed the presence of multiple peaks in some animals suggesting additional rhythmic components could be present. In particular, an approximately 12 hr oscillation was often observed. The nocturnal increase in generalized locomotion corresponded to a 24 hr oscillation in animal elongation.

Conclusions/Significance

These data confirm the presence of a light-entrainable circadian clock in Nematostella vectensis. Additional components observed in some individuals indicate that an endogenous clock of approximately 12 hr frequency may also be present. By describing rhythmic locomotor behavior in N. vectensis, we have made important progress in developing the sea anemone as a model organism for circadian rhythm research.  相似文献   

11.
The detection of epistatic interactive effects of multiple genetic variants on the susceptibility of human complex diseases is a great challenge in genome-wide association studies (GWAS). Although methods have been proposed to identify such interactions, the lack of an explicit definition of epistatic effects, together with computational difficulties, makes the development of new methods indispensable. In this paper, we introduce epistatic modules to describe epistatic interactive effects of multiple loci on diseases. On the basis of this notion, we put forward a Bayesian marker partition model to explain observed case-control data, and we develop a Gibbs sampling strategy to facilitate the detection of epistatic modules. Comparisons of the proposed approach with three existing methods on seven simulated disease models demonstrate the superior performance of our approach. When applied to a genome-wide case-control data set for Age-related Macular Degeneration (AMD), the proposed approach successfully identifies two known susceptible loci and suggests that a combination of two other loci—one in the gene SGCD and the other in SCAPER—is associated with the disease. Further functional analysis supports the speculation that the interaction of these two genetic variants may be responsible for the susceptibility of AMD. When applied to a genome-wide case-control data set for Parkinson's disease, the proposed method identifies seven suspicious loci that may contribute independently to the disease.  相似文献   

12.
Deep neural networks have demonstrated improved performance at predicting the sequence specificities of DNA- and RNA-binding proteins compared to previous methods that rely on k-mers and position weight matrices. To gain insights into why a DNN makes a given prediction, model interpretability methods, such as attribution methods, can be employed to identify motif-like representations along a given sequence. Because explanations are given on an individual sequence basis and can vary substantially across sequences, deducing generalizable trends across the dataset and quantifying their effect size remains a challenge. Here we introduce global importance analysis (GIA), a model interpretability method that quantifies the population-level effect size that putative patterns have on model predictions. GIA provides an avenue to quantitatively test hypotheses of putative patterns and their interactions with other patterns, as well as map out specific functions the network has learned. As a case study, we demonstrate the utility of GIA on the computational task of predicting RNA-protein interactions from sequence. We first introduce a convolutional network, we call ResidualBind, and benchmark its performance against previous methods on RNAcompete data. Using GIA, we then demonstrate that in addition to sequence motifs, ResidualBind learns a model that considers the number of motifs, their spacing, and sequence context, such as RNA secondary structure and GC-bias.  相似文献   

13.
The present study aims to understand the neurally based coordination dynamics (multistability, loss of stability, transitions, etc.) of trajectory formation in a simple task. Six subjects produced two spatial patterns of coordination in the xy plane by alternating the abduction-adduction and flexion-extension motions of their right index finger. Each pattern was characterized by a unique temporal ratio between the x and y directions of motion: (1) a figure zero, a 1∶1 temporal pattern; and (2) a figure eight, a 2∶1 temporal pattern. The patterns were produced rhythmically and movement frequency was scaled across ten frequency plateaus, with ten cycles of motion per step. As movement frequency increased, switching from a figure eight to a figure zero was observed at critical cycling frequencies. The switch from pattern (2) to pattern (1) was identified in the spatial trajectory and power spectra of x(t) and y(t). En route to the transition, enhancement of fluctuations was observed in the Fourier amplitudes of x(t) and y(t), specifically at f 0 (the metronome frequency) and 2f 0 (the first harmonic off 0). Interestingly, there was no difference in the spatial variability of the two patterns. Overall, the data demonstrate that spatial patterns of coordination can be characterized in terms of the temporal relationship between the spatial components of the trajectory itself. We discuss the experimental findings in relation to other end-point planning and multijoint control strategies, as well as the much more general problem of temporal synchronization in many interlimb and intralimb coordination tasks.  相似文献   

14.
The surface geometry of an organism represents the boundary of its three-dimensional (3D) form and can be used as a proxy for the phenotype. A mathematical approach is presented that describes surface morphology using parametric 3D equations with variables expressed as x, y, z in terms of parameters u, v. Partial differentiation of variables with respect to parameters yields elements of the Jacobian representing tangent lines and planes of every point on the surface. Jacobian elements provide a compact size-free summary of the entire surface, and can be used as variables in principal components analysis to produce a morphospace. Mollusk and echinoid models are generated to demonstrate that whole organisms can be represented in a common morphospace, regardless of differences in size, geometry, and taxonomic affinity. Models can be used to simulate theoretical forms, novel morphologies, and patterns of phenotypic variation, and can also be empirically-based by designing them with reference to actual forms using reverse engineering principles. Although this study uses the Jacobian to summarize models, they can also be analyzed with 3D methods such as eigensurface, spherical harmonics, wavelet analysis, and geometric morphometrics. This general approach should prove useful for exploring broad questions regarding morphological evolution and variation.  相似文献   

15.
Studies on the evolution of female preference and male color polymorphism frequently focus on single species since traits and preferences are thought to co-evolve. The guppy, Poecilia reticulata, has long been a premier model for such studies because female preferences and orange coloration are well known to covary, especially in upstream/downstream pairs of populations. However, focused single species studies lack the explanatory power of the comparative method, which requires detailed knowledge of multiple species with known evolutionary relationships. Here we describe a red color polymorphism in Poecilia picta, a close relative to guppies. We show that this polymorphism is restricted to males and is maintained in natural populations of mainland South America. Using tests of female preference we show female P. picta are not more attracted to red males, despite preferences for red/orange in closely related species, such as P. reticulata and P. parae. Male color patterns in these closely related species are different from P. picta in that they occur in discrete patches and are frequently Y chromosome-linked. P. reticulata have an almost infinite number of male patterns, while P. parae males occur in discrete morphs. We show the red male polymorphism in P. picta extends continuously throughout the body and is not a Y-linked trait despite the theoretical prediction that sexually-selected characters should often be linked to the heterogametic sex chromosome. The presence/absence of red male coloration of P. picta described here makes this an ideal system for phylogenetic comparisons that could reveal the evolutionary forces maintaining mate choice and color polymorphisms in this speciose group.  相似文献   

16.
After a short time interval of length δt during microbial growth, an individual cell can be found to be divided with probability Pd(tt, dead with probability Pm(tt, or alive but undivided with the probability 1 − [Pd(t) + Pm(t)]δt, where t is time, Pd(t) expresses the probability of division for an individual cell per unit of time, and Pm(t) expresses the probability of mortality per unit of time. These probabilities may change with the state of the population and the habitat''s properties and are therefore functions of time. This scenario translates into a model that is presented in stochastic and deterministic versions. The first, a stochastic process model, monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small populations such as those that may exist in the case of casual contamination of a food by a pathogen. The second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathematical expression that describes the population''s size as a function of time. It is suitable for large microbial populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag, inactivation with or without a “shoulder,” and transitions between growth and inactivation are all manifestations of the underlying probability structure of the model. With temperature-dependent parameters, the model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With Pd(t) and Pm(t) in the form of logistic functions, the model can simulate all commonly observed growth/mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic and deterministic versions of the model, as demonstrated with simulated data.  相似文献   

17.

Background  

An important aspect of proteomic mass spectrometry involves quantifying and interpreting the isotope distributions arising from mixtures of macromolecules with different isotope labeling patterns. These patterns can be quite complex, in particular with in vivo metabolic labeling experiments producing fractional atomic labeling or fractional residue labeling of peptides or other macromolecules. In general, it can be difficult to distinguish the contributions of species with different labeling patterns to an experimental spectrum and difficult to calculate a theoretical isotope distribution to fit such data. There is a need for interactive and user-friendly software that can calculate and fit the entire isotope distribution of a complex mixture while comparing these calculations with experimental data and extracting the contributions from the differently labeled species.  相似文献   

18.
The identification of environmental factors linked to increased risk of local extinction often relies on inference from patterns of distribution. Yet for declining populations, the assumption of population equilibrium that underlies species distribution models is violated. Measures such as individual condition can provide a more direct indication of extinction risk, and can start to be detected before declines commence. We compared distribution-based and condition-based approaches to identifying factors affecting habitat suitability for an area-sensitive passerine, the eastern yellow robin Eopsaltria australis, in eastern Australia. We compared patterns of individual condition between robins and several common, more mobile species (Meliphagid honeyeaters and yellow thornbills Acanthiza nana). Robin presence was not affected by landscape context, but robins avoided sites with a more grassy ground layer. However, robins inhabiting landscapes with less remnant woodland had higher ratios of heterophils to lymphocytes in peripheral blood, indicating higher long-term stress. No clear spatial patterns of condition were detected for the more mobile species. Our findings suggest a hierarchical model of habitat suitability, whereby robins avoid grassy sites, but where they do occur are in poorest condition when inhabiting less-vegetated landscapes. We predict greater rates of local extinction of robins from such landscapes. The use of indicators of individual condition, in addition to distribution data, can unveil otherwise cryptic factors as important influences on habitat quality. As habitat occupancy does not always reflect habitat quality, exploring patterns in condition indices can complement species distribution modelling, potentially revealing threats to persistence before population declines have commenced.  相似文献   

19.
Background and AimsIn addition to terrestrial laser scanning (TLS), mobile laser scanning (MLS) is increasingly arousing interest as a technique which provides valuable 3-D data for various applications in forest research. Using mobile platforms, the 3-D recording of large forest areas is carried out within a short space of time. Vegetation structure is described by millions of 3-D points which show an accuracy in the millimetre range and offer a powerful basis for automated vegetation modelling. The successful extraction of single trees from the point cloud is essential for further evaluations and modelling at the individual-tree level, such as volume determination, quantitative structure modelling or local neighbourhood analyses. However, high-precision automated tree segmentation is challenging, and has so far mostly been performed using elaborate interactive segmentation methods.MethodsHere, we present a novel segmentation algorithm to automatically segment trees in MLS point clouds, applying distance adaptivity as a function of trajectory. In addition, tree parameters are determined simultaneously. In our validation study, we used a total of 825 trees from ten sample plots to compare the data of trees segmented from MLS data with manual inventory parameters and parameters derived from semi-automatic TLS segmentation.Key ResultsThe tree detection rate reached 96 % on average for trees with distances up to 45 m from the trajectory. Trees were almost completely segmented up to a distance of about 30 m from the MLS trajectory. The accuracy of tree parameters was similar for MLS-segmented and TLS-segmented trees.ConclusionsBesides plot characteristics, the detection rate of trees in MLS data strongly depends on the distance to the travelled track. The algorithm presented here facilitates the acquisition of important tree parameters from MLS data, as an area-wide automated derivation can be accomplished in a very short time.  相似文献   

20.
This paper presents a model-based method to efficiently simulate dynamic magnetic resonance imaging signals. Using an analytical spatiotemporal object model, the method can approximate time-varying k-space signals such as those from objects in motion and/or during dynamic contrast enhancement. Both rigid-body and non-rigid-body motions can be simulated using the proposed method. In addition, it can simulate data with arbitrary data sampling order and/or non-uniform k-space trajectory. A set of simulated images were compared with real data acquired from a rat model on a 4.7 T scanner to verify the model. The efficient simulation method is expected to be useful for rapid testing of various imaging and image analysis algorithms such as image reconstruction, image registration, motion compensation, and kinetic parameter mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号