首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Genomics and proteomics analyses regularly involve the simultaneous test of hundreds of hypotheses, either on numerical or categorical data. To correct for the occurrence of false positives, validation tests based on multiple testing correction, such as Bonferroni and Benjamini and Hochberg, and re-sampling, such as permutation tests, are frequently used. Despite the known power of permutation-based tests, most available tools offer such tests for either t-test or ANOVA only. Less attention has been given to tests for categorical data, such as the Chi-square. This project takes a first step by developing an open-source software tool, Ptest, that addresses the need to offer public software tools incorporating these and other statistical tests with options for correcting for multiple hypotheses.  相似文献   

2.
Most electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as “black boxes,” giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility. To fill this gap, we introduce DStat (http://microfluidics.utoronto.ca/dstat), an open-source, general-purpose potentiostat for use alone or integrated with other instruments. DStat offers picoampere current measurement capabilities, a compact USB-powered design, and user-friendly cross-platform software. DStat is easy and inexpensive to build, may be modified freely, and achieves good performance at low current levels not accessible to other lab-built instruments. In head-to-head tests, DStat’s voltammetric measurements are much more sensitive than those of “CheapStat” (a popular open-source potentiostat described previously), and are comparable to those of a compact commercial “black box” potentiostat. Likewise, in head-to-head tests, DStat’s potentiometric precision is similar to that of a commercial pH meter. Most importantly, the versatility of DStat was demonstrated through integration with the open-source DropBot digital microfluidics platform. In sum, we propose that DStat is a valuable contribution to the “open source” movement in analytical science, which is allowing users to adapt their tools to their experiments rather than alter their experiments to be compatible with their tools.  相似文献   

3.
This review summarizes important work in open-source bioinformatics software that has occurred over the past couple of years. The survey is intended to illustrate how programs and toolkits whose source code has been developed or released under an Open Source license have changed informatics-heavy areas of life science research. Rather than creating a comprehensive list of all tools developed over the last 2-3 years, we use a few selected projects encompassing toolkit libraries, analysis tools, data analysis environments and interoperability standards to show how freely available and modifiable open-source software can serve as the foundation for building important applications, analysis workflows and resources.  相似文献   

4.
MetaBasis     
We have developed an integrated web-based relational database information system, which offers an extensive search functionality of validated entries containing available bioinformatics computing resources. This system, called MetaBasis, aims to provide the bioinformatics community, and especially newcomers to the field, with easy access to reliable bioinformatics databases and tools. MetaBasis is focused on non-commercial and open-source software tools. AVAILABILITY: http://metabasis.bioacademy.gr/  相似文献   

5.
Access to clean water is a grand challenge in the 21st century. Water safety testing for pathogens currently depends on surrogate measures such as fecal indicator bacteria (e.g., E. coli). Metagenomics concerns high-throughput, culture-independent, unbiased shotgun sequencing of DNA from environmental samples that might transform water safety by detecting waterborne pathogens directly instead of their surrogates. Yet emerging innovations such as metagenomics are often fiercely contested. Innovations are subject to shaping/construction not only by technology but also social systems/values in which they are embedded, such as experts’ attitudes towards new scientific evidence. We conducted a classic three-round Delphi survey, comprised of 107 questions. A multidisciplinary expert panel (n = 24) representing the continuum of discovery scientists and policymakers evaluated the emergence of metagenomics tests. To the best of our knowledge, we report here the first Delphi foresight study of experts’ attitudes on (1) the top 10 priority evidentiary criteria for adoption of metagenomics tests for water safety, (2) the specific issues critical to governance of metagenomics innovation trajectory where there is consensus or dissensus among experts, (3) the anticipated time lapse from discovery to practice of metagenomics tests, and (4) the role and timing of public engagement in development of metagenomics tests. The ability of a test to distinguish between harmful and benign waterborne organisms, analytical/clinical sensitivity, and reproducibility were the top three evidentiary criteria for adoption of metagenomics. Experts agree that metagenomic testing will provide novel information but there is dissensus on whether metagenomics will replace the current water safety testing methods or impact the public health end points (e.g., reduction in boil water advisories). Interestingly, experts view the publics relevant in a “downstream capacity” for adoption of metagenomics rather than a co-productionist role at the “upstream” scientific design stage of metagenomics tests. In summary, these findings offer strategic foresight to govern metagenomics innovations symmetrically: by identifying areas where acceleration (e.g., consensus areas) and deceleration/reconsideration (e.g., dissensus areas) of the innovation trajectory might be warranted. Additionally, we show how scientific evidence is subject to potential social construction by experts’ value systems and the need for greater upstream public engagement on metagenomics innovations.  相似文献   

6.
Versatile and open software for comparing large genomes   总被引:1,自引:0,他引:1       下载免费PDF全文
The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes. Two new graphical viewing tools provide alternative ways to analyze genome alignments. The new system is the first version of MUMmer to be released as open-source software. This allows other developers to contribute to the code base and freely redistribute the code. The MUMmer sources are available at .  相似文献   

7.
《Biophysical journal》2021,120(20):4307-4311
This article bemoans the demise of truly modular open-source image processing systems, such as SPIDER, in recent years’ development of tools for three-dimensional reconstruction in cryo-electron microscopy. Instead, today’s users have to rely on the functionality of software systems that have little or no transparency. As a consequence, users of such packages no longer gain a conceptual understanding and intuitive grasp of the analytical routes leading from the stream of input data to the final density map. Possible remedies of this situation with free software are discussed.  相似文献   

8.
The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.  相似文献   

9.

Background

UK National Guidelines (UKNG) advise HIV testing in clinically indicated neurological presentations. We audited the impact of our practical strategies to increase uptake of HIV testing at a regional acute neurology admissions unit.

Methods

We audited HIV testing in 4 periods over 2 years: before we designed a UKNG-based “HIV testing in Neurology” protocol (“pre-protocol”); after dissemination of the protocol alone (“post-protocol”); post-protocol dissemination combined with both a tailored departmental admissions clerking proforma to prompt for HIV testing & consenting, and regular focussed tutorials to doctors on HIV testing in neurological patients (“post-proforma”); and finally one year after the post-proforma period (“+1 year”). We also looked at the total number of HIV tests sent from the unit during the two-year period. We assessed significance using Fisher’s exact test.

Results

47.8% of all acute neurology non-stroke admissions were eligible for HIV testing during all the audit periods. Testing rates were as follows: pre-protocol 21.9%; post-protocol 36.6%; post-proforma 83.3%; and at +1 year 65.4% (p<0.05 for both post-protocol and +1 year when compared to pre-protocol). Documentation of consent for HIV testing improved from 25% to 67.6% with the HIV-tailored clerking proforma. The total number of HIV tests requested from the unit doubled in the post-proforma period compared to pre-protocol (p<0.05).

Conclusion

In conclusion: the combination of an HIV testing protocol, a tailored departmental clerking proforma and regular focussed teaching to doctors on indications for HIV testing led to a sustained increase in HIV testing uptake in our regional acute neurology admissions unit.  相似文献   

10.
We present the first collection of tools aimed at automated genome assembly validation. This work formalizes several mechanisms for detecting mis-assemblies, and describes their implementation in our automated validation pipeline, called amosvalidate. We demonstrate the application of our pipeline in both bacterial and eukaryotic genome assemblies, and highlight several assembly errors in both draft and finished genomes. The software described is compatible with common assembly formats and is released, open-source, at .  相似文献   

11.
Rainbow is a program that provides a graphic user interface to construct supertrees using different methods. It also provides tools to analyze the quality of the supertrees produced. Rainbow is available for Mac OS X, Windows and Linux. AVAILABILITY: Rainbow is a free open-source software. Its binary files, source code, and manual can be downloaded from the Rainbow web page: http://genome.cs.iastate.edu/Rainbow/  相似文献   

12.
13.
14.
ProteoWizard: open source software for rapid proteomics tools development   总被引:1,自引:0,他引:1  
SUMMARY: The ProteoWizard software project provides a modular and extensible set of open-source, cross-platform tools and libraries. The tools perform proteomics data analyses; the libraries enable rapid tool creation by providing a robust, pluggable development framework that simplifies and unifies data file access, and performs standard proteomics and LCMS dataset computations. The library contains readers and writers of the mzML data format, which has been written using modern C++ techniques and design principles and supports a variety of platforms with native compilers. The software has been specifically released under the Apache v2 license to ensure it can be used in both academic and commercial projects. In addition to the library, we also introduce a rapidly growing set of companion tools whose implementation helps to illustrate the simplicity of developing applications on top of the ProteoWizard library. AVAILABILITY: Cross-platform software that compiles using native compilers (i.e. GCC on Linux, MSVC on Windows and XCode on OSX) is available for download free of charge, at http://proteowizard.sourceforge.net. This website also provides code examples, and documentation. It is our hope the ProteoWizard project will become a standard platform for proteomics development; consequently, code use, contribution and further development are strongly encouraged.  相似文献   

15.
A systematic and reproducible “workflow”—the process that moves a scientific investigation from raw data to coherent research question to insightful contribution—should be a fundamental part of academic data-intensive research practice. In this paper, we elaborate basic principles of a reproducible data analysis workflow by defining 3 phases: the Explore, Refine, and Produce Phases. Each phase is roughly centered around the audience to whom research decisions, methodologies, and results are being immediately communicated. Importantly, each phase can also give rise to a number of research products beyond traditional academic publications. Where relevant, we draw analogies between design principles and established practice in software development. The guidance provided here is not intended to be a strict rulebook; rather, the suggestions for practices and tools to advance reproducible, sound data-intensive analysis may furnish support for both students new to research and current researchers who are new to data-intensive work.  相似文献   

16.
Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture the general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of dendritic arborizations as locally optimized graphs. Inspired by Ramón y Cajal''s laws of conservation of cytoplasm and conduction time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This approach allows us to generate synthetic branching geometries which replicate morphological features of any tested neuron. The essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a single parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines a neuron''s electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be directly attributed to developmental processes or a neuron''s computational role within its neural circuit. The simulations presented here are implemented in an open-source software package, the “TREES toolbox,” which provides a general set of tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any particular cell group and an approach for a model-based supervised automatic morphological reconstruction from fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures. They also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing realistic synthetic neural networks.  相似文献   

17.

Background

The analysis of microbial communities through DNA sequencing brings many challenges: the integration of different types of data with methods from ecology, genetics, phylogenetics, multivariate statistics, visualization and testing. With the increased breadth of experimental designs now being pursued, project-specific statistical analyses are often needed, and these analyses are often difficult (or impossible) for peer researchers to independently reproduce. The vast majority of the requisite tools for performing these analyses reproducibly are already implemented in R and its extensions (packages), but with limited support for high throughput microbiome census data.

Results

Here we describe a software project, phyloseq, dedicated to the object-oriented representation and analysis of microbiome census data in R. It supports importing data from a variety of common formats, as well as many analysis techniques. These include calibration, filtering, subsetting, agglomeration, multi-table comparisons, diversity analysis, parallelized Fast UniFrac, ordination methods, and production of publication-quality graphics; all in a manner that is easy to document, share, and modify. We show how to apply functions from other R packages to phyloseq-represented data, illustrating the availability of a large number of open source analysis techniques. We discuss the use of phyloseq with tools for reproducible research, a practice common in other fields but still rare in the analysis of highly parallel microbiome census data. We have made available all of the materials necessary to completely reproduce the analysis and figures included in this article, an example of best practices for reproducible research.

Conclusions

The phyloseq project for R is a new open-source software package, freely available on the web from both GitHub and Bioconductor.  相似文献   

18.
Increasingly complex research has made it more difficult to prepare data for publication, education, and outreach. Many scientists must also wade through black-box code to interface computational algorithms from diverse sources to supplement their bench work. To reduce these barriers we have developed an open-source plug-in, embedded Python Molecular Viewer (ePMV), that runs molecular modeling software directly inside of professional 3D animation applications (hosts) to provide simultaneous access to the capabilities of these newly connected systems. Uniting host and scientific algorithms into a single interface allows users from varied backgrounds to assemble professional quality visuals and to perform computational experiments with relative ease. By enabling easy exchange of algorithms, ePMV can facilitate interdisciplinary research, smooth communication between broadly diverse specialties, and provide a common platform to frame and visualize the increasingly detailed intersection(s) of cellular and molecular biology.  相似文献   

19.
ObjectivesBecause of the large amount of medical imaging data, the transmission process becomes complicated in telemedicine applications. Thus, in order to adapt the data bit streams to the constraints related to the limitation of the bandwidths a reduction of the size of the data by compression of the images is essential. Despite the improvements in the field of compression, the transmission itself can also introduce errors. For this reason, it is important to develop an adequate strategy which will help reduce this volume of data without having to introduce some distortion and resist the errors introduced by the channel noise during transmission. Thus, in this paper, we propose a ROI-based coding strategy and unequal bit stream protection to meet this dual constraint.Material and methodsThe proposed ROI-based compression strategy with unequal bit stream protection is composed of three parts: the first one allows the extraction of the ROI region, the second one consists of a ROI-based coding and the third one allows an unequal protection of the ROI bit stream.First, the Regions Of Interest (ROI) are extracted by hierarchical segmentation of these regions according to a segmentation method based on the technique of Marker-based-watershed combined with the technique of active contours by level set. The resulting regions are selectively encoded by a 3D coder based on a shape adaptive discrete wavelet transform 3D-BISK, where the compression ratio of each region depends on its relevance in diagnosis. These obtained regions of interest are protected with an error-correcting code of Reed-Solomon type with a code rate that varies according to the relevance of the region by an unequal protection strategy (UEP).ResultsThe performance of the proposed compression scheme is evaluated in several ways. First, tests are performed to study the impact of errors on the different bit streams. In the first place, these tests are carried out in order to study the effect of the variation of the compression rates on the different bit streams. Secondly, different Reed Solomon error-correcting codes of different code rates are tested at different compression rates on a BSC channel. Finally, the performances of this coding strategy are compared with those of SPIHT 3D in the case of transmission on a BSC channel.ConclusionThe obtained results show that the proposed method is quite efficient in transmission time reduction. Therefore, our proposed scheme will reduce the volume of data without having to introduce some distortion and resist the errors introduced by the channel noise in the case of telemedicine.  相似文献   

20.
In support of accurate neuropeptide identification in mass spectrometry experiments, novel Monte Carlo permutation testing was used to compute significance values. Testing was based on k-permuted decoy databases, where k denotes the number of permutations. These databases were integrated with a range of peptide identification indicators from three popular open-source database search software (OMSSA, Crux, and X! Tandem) to assess the statistical significance of neuropeptide spectra matches. Significance p-values were computed as the fraction of the sequences in the database with match indicator value better than or equal to the true target spectra. When applied to a test-bed of all known manually annotated mouse neuropeptides, permutation tests with k-permuted decoy databases identified up to 100% of the neuropeptides at p-value < 10−5. The permutation test p-values using hyperscore (X! Tandem), E-value (OMSSA) and Sp score (Crux) match indicators outperformed all other match indicators. The robust performance to detect peptides of the intuitive indicator “number of matched ions between the experimental and theoretical spectra” highlights the importance of considering this indicator when the p-value was borderline significant. Our findings suggest permutation decoy databases of size 1×105 are adequate to accurately detect neuropeptides and this can be exploited to increase the speed of the search. The straightforward Monte Carlo permutation testing (comparable to a zero order Markov model) can be easily combined with existing peptide identification software to enable accurate and effective neuropeptide detection. The source code is available at http://stagbeetle.animal.uiuc.edu/pepshop/MSMSpermutationtesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号